Способы селективного каталитического восстановления с использованием легированных оксидов церия(iv)

Иллюстрации

Показать все

Способ селективного каталитического восстановления (SCR) включает селективное восстановление газообразной смеси, включающей оксиды азота, в присутствии восстановителя и катализатора, который содержит по меньшей мере 80 мас.% оксида церия(IV) и от 0,1 до 20 мас.% оксида тантала(V), легирующего оксид церия(IV), причем катализатор прокаливают при температуре в пределах интервала от 600°C до 1000°C. Параметр кристаллической решетки у катализатора составляет по меньшей мере на 0,02% меньше, чем у нелегированного оксида церия (IV). Способ позволяет снизить концентрацию оксидов азота в выбросах. 3 н. и 11 з.п. ф-лы, 14 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение предлагает способы селективного каталитического восстановления с использованием в качестве катализатора оксида церия(IV), легированного малыми количествами оксида ниобия(V) или оксида тантала(V).

Уровень техники, к которой относится изобретение

Когда дизельные двигатели, стационарные газовые турбины и другие системы сжигают углеводороды, производится отработавший газ, который необходимо обрабатывать, чтобы отделять от него оксиды азота (NOx), в том числе NO, NO2, и N2O. Отработавший газ, который производят работающие на обедненной топливной смеси двигатели, как правило, представляет собой окислитель, и NOx необходимо селективно восстанавливать, используя гетерогенный катализатор и восстановитель, который обычно представляет собой аммиак или имеющий короткую цепь углеводород. Был тщательно исследован способ, известный как селективное каталитическое восстановление (СКВ).

Для СКВ и других каталитических процессов использовались разнообразные сочетания оксида церия(IV) и металлов пятой группы (V, Nb, Ta). Как правило, катализатор содержит, по меньшей мере, 10 мас.% металла пятой группы или оксида металла пятой группы, что следует из обзора соответствующих научных публикаций.

Le Gal и др. (J. Phys. Chem. C, 2012 г., т. 116, с. 13516), например, описывают легирование оксида церия(IV), содержащего от 10 до 50 ат.% тантала. Катализаторы изготавливают посредством соосаждения гидроксидов, для которых исходными веществами служат нитрат церия и хлорид тантала(V). Авторы сделали вывод, что тантал замещает церий в нормальной структуре оксида церия(IV) типа флюорита, о чем свидетельствует уменьшение параметра кристаллической решетки при увеличении содержания Ta. Катализаторы используются для разложения воды в процессе термохимического производства водорода под действием солнечного света.

S. Zhao и др. (Appl. Catal., 2003 г., т. 248, с. 9) исследовали воздействие оксидных легирующих веществ в оксиде церия(IV) на окисление н-бутана. Катализаторы, содержащие 10 ат.% Nb или Ta, изготавливали, используя золь-гелевый метод и вводя в реакцию гексагидрат нитрата церия(III) и хлорид ниобия(V) или хлорид тантала(V). После растворения солей в воде растворы высушивали и прокаливали. Катализаторы не использовались для селективного каталитического восстановления.

K. Yashiro и др. (Solid State Ionics, 2004 г., т. 175, с. 341) изготавливали "легированные оксидом ниобия(V) оксиды церия(IV)", содержащие менее чем 1 ат.% ниобия, и измеряли их электропроводность. Это название является ошибочным, потому что оксид церия(IV) фактически изготавливали в присутствии предварительно изготовленного оксида ниобия(V). В частности, в водный раствор нитрата церия(III) добавляли смесь, в которой содержались щавелевая кислота и тонкодисперсный порошок Nb2O5. Оксалат церия осаждается с диспергированными частицами оксида ниобия(V). Полученный осадок затем прокаливается при 1400°C. Данный продукт не используется для процесса СКВ.

E. Ramirez-Cabrera и др. (Solid State Ionics, 2000 г., т. 136-137, с. 825) описывают легированные оксидом ниобия(V) оксиды церия(IV) и их использование для превращения метана в синтетический газ. Легированные оксиды церия(IV), содержащие от 0,7 до 2,5 мол.% Nb2O5, изготавливали, осуществляя соосаждение гидроксидов церия и ниобия и последующее прокаливание.

В ряде статей (Appl. Catal. B, 2011 г., т. 103, с. 79; Appl. Catal. B, 2009 г., т. 88, с. 413; и J. Phys. Chem. C, 2010 г., т. 114, с. 9791) M. Casapu и др. описывают содержащие оксид ниобия(V) и оксид церия(IV) катализаторы и их использование для СКВ и окисления сажи. Исследованные катализаторы содержали 10 мас.% Nb2O5 на носителе, представляющем собой смесь оксида церия(IV) и оксида циркония(IV), или 30 мас.% Nb2O5 на оксиде церия(IV). Катализаторы изготавливали, осуществляя соосаждение или смешивание во влажном состоянии комплексного оксалата аммония и ниобия с оксидом церия(IV). Интересно, что эти катализаторы становились менее активными в отношении восстановления NOx после прокаливания или гидротермической обработки при повышенных температурах (см., например, фиг. 9 (a) и (b) в статье Appl. Catal. B, 2011 г., т. 103, с. 79), т. е. был получен результат, противоположный результату, обнаруженному авторами настоящего изобретения.

Сочетания оксида ниобия(V) и оксида церия(IV) также обсуждаются в патентах и опубликованных патентных заявках. Подобно статьям, обсуждаемым в предшествующем параграфе, европейский патент № EP 2368628 описывает катализаторы, включающие, по меньшей мере, 10 мас.% оксида церия(IV) и, по меньшей мере, 10 мас.% оксида ниобия(V) и их использование для процесса СКВ. Катализаторы изготавливают, осуществляя соосаждение или механическое смешивание во влажном состоянии, а затем прокаливание при повышенной температуре (550°C или 800°C). В последнем случае гидратированный комплексный оксалат аммония и ниобия(V) объединяют с оксидом церия(IV), полученную в результате суспензию высушивают в течение ночи при 80°C и после этого прокаливают при 550°C. Как представлено на фиг. 5 и 7, эти катализаторы становятся значительно менее активными, когда они прокаливаются в течение 12 часов при 800°C.

Публикация патентной заявки США № 2013/0121902 описывает смешанные оксиды, содержащие оксид церия(IV), оксид циркония(IV), оксид ниобия(V) и оксиды трехвалентных редкоземельных элементов, в качестве катализаторов для процесса СКВ. Считается, что добавление оксида ниобия(V) к имеющемуся в продаже катализатору, содержащему оксид церия(IV), оксид циркония(IV) и оксид редкоземельного металла, повышает устойчивость к старению. Как правило, катализаторы имеют высокое содержание оксида циркония(IV). В одном примере с низким процентным содержанием оксида ниобия(V) (3 мас.%), катализатор содержит 43% оксида циркония(IV) и 9% Nd2O3.

Патент США № 6605264 описывает содержащие ниобий твердые растворы на основе циркония и церия и их использование в качестве материалов, имеющих "высокую проводимость ионов кислорода" или аккумулирующих кислород. Эти твердые растворы включают "вплоть до приблизительно 95 мол.% циркония, вплоть до приблизительно 50 мол.% церия, приблизительно от 0,5 до 15 мол.% одного или нескольких редкоземельных металлов и приблизительно от 0,5 до приблизительно 15 мол.% ниобия". Во всех примерах содержание циркония составляет более чем 50 мол.%.

Катализаторы, включающие оксид ниобия(V) и оксид церия(IV), и их использование для процессов СКВ описываются в ряде международных патентных заявок (см. международные патентные заявки PCT №№ WO 2012/041921, WO 2012/004263 и WO 2013/037507). Согласно публикации № WO 2012/004263, соотношение оксида ниобия и оксида церия составляет от 2 до 20%. Показано, что катализаторы, содержащие менее чем 50% Zr, имеют более высокую способность восстановления водорода по сравнению с аналогичным катализатором, содержащим 77,6% Zr. В двух примерах (примеры 9 и 10) содержание Nb2O5 составляет 3,2 мас.% или 8,6 мас.%, оксид циркония(IV) отсутствует, а остальную массу составляет оксид церия(IV). Однако эти катализаторы представляют собой, в основном, оксид церия(IV), содержащий инкапсулированный оксид ниобия(V), а не оксид церия(IV), "легированный" оксидом ниобия(V). Как представлено в примерах, катализаторы изготавливают, получая оксид церия(IV) в присутствии меньшего количества предварительно изготовленного оксида ниобия(V). Собственное исследование авторов настоящего изобретения, которое описывается в данном документе, демонстрирует, что эти катализаторы, содержащие в таких же пропорциях оксид ниобия(V) и оксид церия(IV), оказываются менее эффективными для восстановления NOx, чем композиции, в которых оксид ниобия(V) легирует оксид церия(IV). Кроме того, как представляет публикация № WO 2012/041921 (таблица 5, примеры 9 и 10), оказывается, что эти катализаторы также теряют активность в процессе гидротермического старения при 750°C в течение 16 часов.

Новые ограничения выбросов для дизельных транспортных средств распространяются как на NOx, так и на твердые частицы. Как правило, для этого должны использоваться две отдельные системы: система NH3-СКВ для удаления NOx и каталитический сажевый фильтр (см., например, патент США № 4902487) или улавливающий твердые частицы фильтр для дизельного двигателя ("ДФЧ"; см, например, публикацию патентной заявки США № 2010/0170230) для механического захвата и окисления сажи. Сажа накапливается на поверхности фильтра и производит обратное давление, и, в конечном счете, требуется выжигание сажи при повышенных температурах. Поскольку в своем большинстве катализаторы СКВ не способны выдерживать эти высокие температуры, требуются, отдельные системы. Однако поскольку пространство является ограниченным, разработчики желали бы объединить функции СКВ и окисления сажи в едином компактном блоке очистки отработавших газов, который, как правило, представляет собой ДФЧ (см., например, публикацию патентной заявки США № 2010/0180580). Такая комбинированная система, известная в отрасли как каталитический фильтр SCRF® (продукт компании Johnson Matthey), будет иметь катализатор, на который воздействуют сажа, NH3, NO и NO2. Хотя NO2 является благоприятным для пассивного окисления сажи, которая накапливается на фильтре, он, как правило, расходуется в реакции NH3-СКВ. Таким образом, в зависимости от конфигурации катализаторы NH3-СКВ и окисления сажи могут быть вынуждены конкурировать за доступный NO2. Когда используются современные катализаторы СКВ (например, переходные металлы, диспергированные в цеолитах, или смешанные оксиды, такие как система V2O5-WO3-TiO2), превращение NO2 осуществляется значительно быстрее, чем окисление сажи под действием NO2. Таким образом, данное различие в реакционной способности ограничивает пригодность известных катализаторов СКВ для пассивного окисления сажи.

Чтобы сократить до минимума расход NO2 в быстрой реакции СКВ, катализатор СКВ может наноситься только на выпускные каналы ДФЧ. Эта стратегия использовалась для изготовления двухфункционального каталитического фильтра, описанного в международной патентной заявке PCT № WO 2012/166833. Как представлено на фиг. 1 публикации № WO 2012/166833, в фильтре присутствует зона катализатора окисления сажи, занимающая ближайшее положение к направлению потока отработавшего газа, и зона катализатора СКВ, расположенная на выпускной стороне фильтра. Хотя эта стратегия является эффективной, она уменьшает суммарное количество катализатора СКВ, который может осаждаться на фильтре, и может ограничивать возможную степень восстановления NOx.

Для промышленности является благоприятной доступность каталитических материалов, проявляющих одновременно функции СКВ и окисления сажи. Предпочтительный материал должен иметь высокую плотность, которая обеспечивает высокое содержание пористого оксидного покрытия, высокую активность СКВ в сочетании с высокой термической устойчивостью, а также низкую селективность в отношении образования N2O, в частности, в присутствии NO2. В идеальном случае материал должен обеспечивать желательный баланс между расходом NO2 в реакции СКВ и доступностью NO2 для пассивного окисления сажи, чтобы способствовать разработке компактных систем очистки отработавших газов дизельного двигателя.

Как обсуждалось выше, требуются также усовершенствованные катализаторы СКВ, в частности, низкотемпературные катализаторы NH3-СКВ. Требуются катализаторы, которые могут сохранять или даже повышать активность превращения NOx при воздействии повышенных температур. В идеальном случае в катализаторах должны более эффективно использоваться предпочтительные оксидные компоненты, например, оксид ниобия(V) или оксид тантала(V).

Сущность изобретения

Предлагаются катализаторы на основе легированного оксидом ниобия(V) и оксидом тантала(V) оксида церия(IV) и их использование в процессах селективного каталитического восстановления (СКВ), а также описывается компактная система очистки отработавших газов. Согласно некоторым аспектам, катализатор включает, по меньшей мере, 91 мас.% оксида церия(IV) и от 0,1 до 9 мас.% оксида ниобия(V) или оксида тантала(V), легирующего оксид церия(IV). В то время как традиционные катализаторы СКВ могут дезактивироваться при повышенных температурах, легированные оксиды церия(IV), в частности, материалы, имеющие низкую степень легирования и содержащие лишь 1 или 2 мас.% Nb2O5 или Ta2O5, активируются в отношении превращения NOx посредством прокаливания. Кроме того, легированные оксиды церия(IV) оказываются предпочтительными для применения каталитических фильтров SCRF®, включая систему очистки отработавших газов, которая включает улавливающий твердые частицы фильтр для дизельного двигателя, имеющий впуски и выпуски, и двухфункциональный катализатор, нанесенный на впуски и/или выпуски. По сравнению с традиционными катализаторами СКВ, легированные оксидом ниобия(V) или оксидом тантала(V) оксиды церия(IV) обеспечивают присутствие NO2 на более высоком уровне. Поскольку единый катализатор может одновременно использоваться для СКВ и окисления сажи, разработчики могут уменьшать размер, сложность и стоимость систем очистки отработавших газов.

Соответственно, согласно одному аспекту, настоящее изобретение предлагает способ селективного каталитического восстановления (СКВ). Данный способ включает селективное восстановление газообразной смеси, включающей оксиды азота, в присутствии восстановителя и катализатора. Катализатор включает, по меньшей мере, 91 мас.% оксида церия(IV) и от 0,1 до 9 мас.% оксида ниобия(V) или оксида тантала(V), легирующего оксид церия(IV). Катализатор прокаливается при температуре в пределах интервала от 600°C до 1000°C.

Согласно еще одному аспекту, катализаторы изготавливаются посредством пропитывания оксида церия(IV) водным раствором, включающим растворимую в воде соль ниобия или тантала, и после этого осуществляется прокаливание пропитанного оксида церия(IV).

Согласно настоящему изобретению, предлагается также компактная система очистки отработавших газов для дизельного транспортного средства. Данная система включает улавливающий твердые частицы фильтр для дизельного двигателя, имеющий впуски и выпуски, и двухфункциональный катализатор, нанесенный на впуски и/или выпуски. Катализатор включает, по меньшей мере, 80 мас.% оксида церия(IV) и от 0,1 до 20 мас.% оксида ниобия(V) или оксида тантала(V), легирующего оксид церия(IV). Катализатор прокаливается при температуре в пределах интервала от 600°C до 1000°C.

Авторы настоящего изобретения неожиданно обнаружили, что легированные оксидом ниобия(V) и оксидом тантала(V) оксиды церия(IV), в частности, материалы, содержащие на низком уровне Nb2O5 или Ta2O5, активируются в отношении превращения NOx посредством прокаливания. Легированные оксиды церия(IV) являются исключительно пригодными для использования в целях селективного каталитического восстановления, в частности, NH3-СКВ. Катализаторы, имеющие низкое содержание оксида ниобия(V) или оксида тантала(V) на оксиде церия(IV), составляющее лишь 1 или 2 мас.%, после прокаливания при высоких температурах, таких как 1000°C, демонстрируют превосходные характеристики восстановления NOx в температурном интервале от 150°C до 550°C, который представляет собой интерес для СКВ. С другой стороны, традиционные катализаторы СКВ на основе вольфрама теряют свою активность при повышенных температурах.

Кроме того, эти катализаторы оказываются предпочтительными для применения каталитических фильтров SCRF®, включая систему очистки отработавших газов, которая включает улавливающий твердые частицы фильтр для дизельного двигателя, имеющий впуски и выпуски, и двухфункциональный катализатор, нанесенный на впуски и/или выпуски. По сравнению с традиционными катализаторами СКВ, легированные оксидом ниобия(V) или оксидом тантала(V) оксиды церия(IV) обеспечивают присутствие NO2 на более высоком уровне. Поскольку единый катализатор может одновременно использоваться для СКВ и окисление сажи, разработчики могут уменьшать размер, сложность и стоимость систем очистки отработавших газов.

Краткое описание чертежей

Фиг. 1 представляет на графике параметр кристаллической решетки в зависимости от массового процентного содержания Nb2O5 для легированных оксидом ниобия(V) оксидов церия(IV), используемых в способе согласно настоящему изобретению, и сравнительных композиций, изготовленных согласно международной патентной заявке № WO 2012/004263.

Фиг. 2 представляет степень превращения NOx в зависимости от температуры для легированных оксидом ниобия(V) оксидов церия(IV), используемых в способе согласно настоящему изобретению, сравнительных композиций, изготовленных согласно международной патентной заявке № WO 2012/004263.

Фиг. 3 представляет степень превращения NOx в зависимости от температуры для оксида церия(IV), легированного 5% оксида ниобия(V), и сравнительного катализатора на основе вольфрама, а также представляет воздействие температуры прокаливания.

Фиг. 4 сопоставляет полученные степени превращения NOx в зависимости от температуры для оксида церия(IV), легированного 5% оксида ниобия(V), и оксида церия(IV), легированного 8,9% оксида тантала(V), а также представляет активирующий эффект прокаливания.

Фиг. 5 дополнительно иллюстрирует преимущества в отношении степени превращения NOx в результате прокаливания при повышенной температуре легированных оксидов церия(IV), содержащих от 1 до 5 мас.% оксида ниобия(V).

Фиг. 6 представляет воздействие температуры прокаливания на количество N2O, образующееся в процессе восстановления NOx в присутствии оксида церия(IV), легированного 5% оксида ниобия(V),.

Фиг. 7 представляет на графике степень превращения NOx в зависимости от температуры для разнообразных легированных оксидом ниобия(V) оксидов церия(IV) и сравнительных катализаторов на основе вольфрама.

Фиг. 8 иллюстрирует воздействие продолжительного прокаливания на легированные оксидом ниобия(V) оксиды церия(IV) и сравнительный катализатор на основе вольфрама в отношении характеристик превращения NOx.

Фиг. 9 представляет воздействие прокаливания при 900°C на характеристики превращения NOx легированных оксидом ниобия(V) оксидов церия(IV) и сравнительных катализаторы на основе вольфрама.

Фиг. 10 представляет воздействие гидротермического старения в обедненной топливной смеси (ГСО) на характеристики превращения NOx легированных оксидом ниобия(V) оксидов церия(IV) и сравнительного катализатора на основе вольфрама.

Фиг. 11 представляет на графике степень превращения NOx в зависимости от температуры для разнообразных легированных оксидом ниобия(V) оксидов церия(IV) и сравнительных катализаторов на основе вольфрама и демонстрирует активирующее воздействие прокаливания на легированные оксидом ниобия(V) оксиды церия(IV).

Фиг. 12 сопоставляет полученные степени превращения NOx в зависимости от температуры для легированных оксидом ниобия(V) оксидов церия(IV) и демонстрирует активирующее воздействие прокаливания при повышенной температуре.

Фиг. 13 представляет степень превращения NOx в зависимости от температуры для подвергнутых гидротермическому старению в обедненной топливной смеси легированных оксидом ниобия(V) оксидов церия(IV) и сравнительных содержащих обменное железо ферриеритов в присутствии или при отсутствии NO2.

Фиг. 14 представляет на графике степень превращения NOx, концентрацию NO2 и концентрацию N2O в зависимости от температуры для подвергнутых гидротермическому старению в обедненной топливной смеси легированных оксидом ниобия(V) оксидов церия(IV) и сравнительных содержащих обменное железо ферриеритов.

Подробное описание изобретения

Согласно одному аспекту настоящего изобретения, предлагается способ селективное каталитическое восстановление (СКВ). В данном способе газообразная смесь, включающая оксиды азота селективно восстанавливается в присутствии восстановителя и катализатора на основе легированного оксида церия(IV). Оксиды азота (главным образом, NO и NO2) восстанавливаются до N2, в то время как восстановитель окисляется. Когда аммиак присутствует в качестве восстановителя, N2 также представляет собой продукт окисления. В идеальном случае продукты реакции представляют собой только вода и N2, хотя NH3 в некотором количестве обычно окисляется воздухом до NO или N2O.

Процесс СКВ предпочтительно осуществляется при температуре, составляющей, по меньшей мере, 100°C, предпочтительнее при температурах в пределах интервала от 100°C до 650°C, еще предпочтительнее от 110°C до 600°C и наиболее предпочтительно от 150°C до 550°C. Газообразная смесь, включающая оксиды азота, может содержать один или несколько газов, представляющих собой NO, NO2 и N2O, помимо других газов, не представляющих собой NOx, таких как N2, O2, CO, CO2 и H2O. Как правило, отработавший газ будет содержать от 1 до 10000 частей на миллион, более вероятно от 10 до 1000 частей на миллион и еще более вероятно, от 50 до 500 частей на миллион NO.

Катализаторы, пригодный для использования в процессе СКВ, включают оксид церия(IV), легированный оксидом ниобия(V) (Nb2O5) или оксидом тантала(V) (Ta2O5). В частности, катализаторы включают, по меньшей мере, 91 мас.% оксида церия(IV) и от 0,1 до 9 мас.% оксида ниобия(V) или оксида тантала(V), легирующего оксид церия(IV). Предпочтительно, катализаторы включают от 91 до 99,5 мас.% оксида церия(IV) и от 0,5 до 9 мас.% оксида ниобия(V) или оксида тантала(V). Более предпочтительными являются катализаторы, включающие от 92 до 99 мас.% оксида церия(IV) и от 1 до 8 мас.% оксида ниобия(V) или оксида тантала(V). Наиболее предпочтительными являются катализаторы, включающие, по меньшей мере, 95 мас.% оксида церия(IV), предпочтительно от 95 до 99 мас.% оксида церия(IV) и от 1 до 5 мас.% оксида ниобия(V) или оксида тантала(V). Особенно предпочтительными являются катализаторы, включающие оксид церия(IV), легированный оксидом ниобия(V).

Предпочтительные для использование оксиды церия(IV) имеют высокую удельную площадь поверхности, составляющую, в частности, более чем 50 м2/г и предпочтительнее более чем 100 м2/г. В продаже присутствуют подходящие оксиды церия(IV), имеющие высокую удельную площадь поверхности. Примеры включают оксид церия(IV) HSA20 от компании Rhodia, оксиды церия, имеющие высокую удельную площадь поверхности, которые поставляют компании MolyCorp, HEFA Rare Earth, NanoOxides или другие поставщики, и подобные материалы. Подходящие оксиды церия(IV), имеющие высокую удельную площадь поверхности, можно также синтезировать, как описывают, например, патенты США №№ 7094383, 5063193, 4859432 и 4661330, описания которых включаются в настоящий документ посредством ссылки, а также международная патентная заявка PCT № WO 2001/036332 и европейский патент № EP 0444470.

Термином "легированный" авторы настоящего изобретения обозначают, что ниобий или тантал интегрируется в кристаллическую структуру оксида церия(IV), образуя, как правило, смешанный оксид, например, двойной оксид ниобия(V) и церия(IV) или двойной оксид тантала(V) и церия(IV). Легированный оксид церия(IV) может быть идентифицирован как имеющий уменьшенный параметр кристаллической решетки по сравнению с нелегированным оксидом церия(IV), поскольку легирующий элемент (например, Nb или Ta), как правило, имеет меньший ионный радиус по сравнению с церием. Ниобий или тантал могут равномерно распределяться в объеме кристаллической решетки или присутствовать в повышенной концентрации в поверхностном или приповерхностном слое кристаллической решетки оксида церия(IV). Здесь оксид церия(IV) образуется до введения ниобия, или оксид церия(IV) и оксид ниобия(V) образуются практически одновременно, как, например, в процессе соосаждения. Например, ниобий или тантал наносятся на частицы оксида церия(IV). Таким образом, "легированный оксид церия(IV)" отличается от физических смесей оксидов и не представляет собой композицию, в которой оксид церия(IV) образуется в присутствии предварительного изготовленных частиц оксида ниобия(V) или оксида тантала(V). Такие предварительно изготовленные композиции описываются в качестве примеров 9 и 10 международной патентной заявки PCT № WO 2012/004263. Таким образом, согласно определенным вариантам осуществления, в катализаторе отсутствует или практически отсутствует физическое покрытие оксида ниобия(V) или оксида тантала(V) на оксиде церия(IV), а также отсутствует или практически отсутствует физическое покрытие оксида церия(IV) на оксиде ниобия(V) или оксиде тантала(V).

У предпочтительных легированных оксидом ниобия(V) или оксидом тантала(V) оксидов церия(IV) параметр кристаллической решетки уменьшается в значительной степени по сравнению с параметром кристаллической решетки нелегированного оксида церия(IV). Такое сжатие кристаллической решетки может свидетельствовать, что оксид ниобия(V) или оксид тантала(V) становится частью каркаса кристаллической решетки. Параметр кристаллической решетки легированного оксидом ниобия(V) или оксидом тантала(V) оксида церия(IV) составляет предпочтительно, по меньшей мере, 0,02% меньше и предпочтительнее, по меньшей мере, 0,04% меньше, чем параметр кристаллической решетки нелегированного оксида церия(IV). Авторы настоящего изобретения неожиданно обнаружили, что такое сжатие кристаллической решетки может наблюдаться, даже когда катализатор прокаливается при относительно низкой температуре, составляющей, например, 500°C. Как представлено на фиг. 1, сжатие кристаллической решетки становится очевидным при увеличении содержания оксида ниобия(V), когда легированный оксидом ниобия(V) оксид церия(IV) изготавливается методом пропитывания, который описывается ниже в примерах 1-3. С другой стороны, такая степень сжатия кристаллической решетки не наблюдается, когда оксид церия(IV) образуется в присутствии оксида ниобия(V), как описывается в международной патентной заявке № WO 2012/004263 и воспроизводится ниже в сравнительных примерах 4-6.

Согласно одному подходящему синтетическому подходу, легированный оксид церия(IV) изготавливается посредством пропитывания оксида церия(IV) водным раствором, содержащим растворимую соль ниобия или тантала, которая обычно представляет собой ацетат, нитрат, галогенид, оксалат или подобную соль, например, хлорид ниобия(V), нитрат ниобия(III), комплексный оксалат аммония и ниобия(V) или хлорид тантала(V). Если это желательно, может использоваться вода в достаточном количестве для образования суспензии. В качестве альтернативы, количество воды может сокращаться до минимума, как в методе пропитывания по влагоемкости. Может также использоваться механическое смешивание во влажном состоянии (см. европейский патент № EP 2368628). В любом случае, вода затем обычно удаляется посредством высушивания, и продукт прокаливается, образуя легированный оксидом ниобия(V) или оксидом тантала(V) оксид церия(IV). Что касается примерного метода пропитывания, см. публикацию патентной заявки США № 2013/0121902, описание которой включается в настоящий документ посредством ссылки.

Подложка из легированного оксида церия(IV) может также изготавливаться посредством соосаждения оксида церия(IV) и оксида ниобия(V) или оксида тантала(V) из водной среды. В таком случае водный раствор, содержащий растворенные соли церия и ниобия или тантала объединяется с водным раствором, содержащим аммиак, карбонат аммония или другое основное соединение. Может добавляться пероксид водорода, который дополнительно способствует осаждению. Продукт выделяется, промывается, высушивается и прокаливается, и образуется легированный оксидом ниобия(V) или оксидом тантала(V) оксид церия(IV). Поскольку определенные соединения ниобия гидролизуется быстрее, чем соответствующие соединения церия, в результате соосаждения может получаться подложка, имеющая вставки оксида ниобия(V), разделенные оксидом церия(IV). Что касается примерных методов соосаждения, см. патент США № 6605264 и европейский патент № EP 2368628, описание которых включаются в настоящий документ посредством ссылки.

Содержащие легированный оксидом ниобия(V) или оксидом тантала(V) оксид церия(IV) катализаторы прокаливаются при температуре в пределах интервала от 600°C до 1000°C, предпочтительно от 700°C до 950°C и предпочтительнее от 750°C до 900°C. Прокаливание может осуществляться в течение короткого периода, составляющего, например, менее чем час, или этот период может быть более продолжительным, составляя, например, 24 часа. Авторы настоящего изобретения неожиданно обнаружили, что прокаливание активирует легированные оксидом ниобия(V) или оксидом тантала(V) оксиды церия(IV) по отношению к восстановлению NOx. Даже катализаторы, которые сдержат лишь 1 или 2 мас.% оксида ниобия(V) или оксида тантала(V), подвергаются значительной активации, когда они прокаливаются при повышенной температуре.

Катализаторы предпочтительно прокаливаются на воздухе. Однако если это желательно, они могут подвергаться гидротермической обработке. Таким образом, катализатор может подвергаться старению при одновременном воздействии тепла и влаги. Типичные условия для гидротермического старения могут представлять собой, например, температуру от 500°C до 900°C в присутствии вводимого водяного пара.

Для некоторых легированных оксидом ниобия(V) или оксидом тантала(V) оксидов церия(IV) прокаливание (и/или гидротермическое старение) может способствовать частичной миграции оксида ниобия(V) или оксида тантала(V) к поверхности катализатора. Степень этой миграции может измеряться с использованием рентгеновская фотоэлектронной спектроскопии или других подходящих методов. Согласно одному аспекту, содержащий легированный оксид церия(IV) катализатор имеет на своей поверхности молярное соотношение ниобия или тантала и церия, которое увеличивается, по меньшей мере, в два раза посредством прокаливания. Согласно другому аспекту, содержащий легированный оксид церия(IV) катализатор имеет на своей поверхности молярное соотношение ниобия или тантала и церия, составляющее более чем 0,2 и предпочтительно более чем 0,3.

Степень, в который оксид ниобия(V) или оксид тантала(V) мигрирует к поверхности катализатора, может быть выражена посредством коэффициента распределения Q, который определяется следующим выражением:

Q=(Eповерхность/Ceповерхность)/(Eобъем/Ceобъем)

В этом выражении Eповерхность/Ceповерхность представляет собой молярное соотношение ниобия или тантала и церия, измеренное на поверхности катализатора методом рентгеновской фотоэлектронной спектроскопии, и Eобъем/Ceобъем представляет собой молярное соотношение ниобия или тантала и церия в объемном образце катализатора. В случае легированных оксидом ниобия(V) и оксидом тантала(V) оксидов церия(IV), пригодных для использования согласно настоящему изобретению, Q предпочтительно составляет более чем 1,5 и предпочтительнее имеет значение в пределах интервала от 2 до 10.

Могут присутствовать дополнительные подложечные материалы, такие как цеолиты, глины, оксиды алюминия, двойные оксиды кремния и алюминия, оксид циркония(IV), оксид титана(IV) или подобные материалы, при том условии, что подложка включает, по меньшей мере, 91 мас.% оксида церия(IV) и от 0,1 до 9 мас.% оксида ниобия(V) или оксида тантала(V), легирующего оксид церия(IV). Согласно определенным вариантам осуществления, катализатор или каталитическое изделие согласно настоящему изобретению включает аккумулирующий аммиак материал, такой как цеолит. Аккумулирующий аммиак материал может присутствовать вместе с оксидом церия(IV) как смешанный оксид, как покрытие на частицах оксида церия(IV), как компонент пористого оксидного покрытия или экструдируемая паста, содержащая оксид церия(IV), и/или как дискретный пояс или слой, прилегающий или ближайший по отношению к поясу или слою, содержащему оксид церия(IV).

Согласно определенным вариантам осуществления, в подложке или катализаторе в целом отсутствует или практически отсутствует оксид циркония(IV). Согласно определенным вариантам осуществления, в подложке или катализаторе в целом отсутствует или практически отсутствует оксид алюминия или двойной оксид кремния и алюминия. Согласно определенным вариантам осуществления, в подложке или катализаторе в целом отсутствует или практически отсутствует оксид титана(IV). Согласно определенным вариантам осуществления, в подложке или катализаторе в целом отсутствуют или практически отсутствуют цеолиты. Согласно определенным вариантам осуществления, в подложке или катализаторе в целом отсутствуют или практически отсутствуют глины. При использовании в настоящем документе термин "практически отсутствующий компонент" означает, что содержание этого компонента в подложке или катализаторе составляет менее чем 0,1 мас.% или даже менее чем 0,01 мас.%.

Легированные оксиды церия(IV) являются пригодными для использования в процессах СКВ, в частности, NH3-СКВ, и особенно в процессах СКВ, где присутствуют большие количества серы. Согласно определенным вариантам осуществления, катализатор СКВ является пригодным для использования в очистке отработавшего газа, который образуется в результате сгорания топлива на углеводородной основе, в котором содержание серы составляет более чем 10 частей на миллион, например, более чем 15 частей на миллион, более чем 50 частей на миллион, более чем 100 частей на миллион, более чем 500 частей на миллион, более чем 1000 частей на миллион или более чем 5000 частей на миллион, и такой отработавший газ можно очищать, осуществляя меньшее число регенераций (например, по меньшей мере, на 20% меньше, по меньшей мере, на 35% меньше или, по меньшей мере, на 50% меньше регенераций) по сравнению с катализаторами СКВ на основе цеолитов, оксида ванадия(V) и/или нелегированного оксида церия(IV).

Катализатор включает, по меньшей мере, 80 мас.% оксида церия(IV) и от 0,1 до 20 мас.% оксида ниобия(V) или оксида тантала(V), легирующего оксид церия(IV). Катализатор прокаливается при температуре в пределах интервала от 600°C до 1000°C и предпочтительно от 700°C до 950°C. В нормальных условиях эксплуатации транспортного средства катализатор предпочтительно промотирует селективное каталитическое восстановление газообразных смесей, включающих оксиды азота, в присутствии восстановителя, и при этом диоксид азота сохраняется в достаточной концентрации, чтобы обеспечивать пассивное окисление сажи посредством катализатора. В предпочтительных системах очистки отработавших газов в качестве восстановителя используется азотистое соединение, предпочтительно аммиак. В предпочтительных системах очистки отработавших газов катализатор включает от 1 до 15 мас.%, предпочтительно от 1 до 10 мас.% и предпочтительнее от 1 до 5 мас.%, оксида ниобия(V) или оксида тантала(V).

Согласно определенным аспектам настоящего изобретения, предлагается каталитическое пористое оксидное покрытие. Пористое оксидное покрытие, включающее катализатор, описанный в настоящем документе, предпочтительно наносится посредством раствора, взвеси или суспензии. Помимо катализатора, пористое оксидное покрытие может включать некаталитические компоненты, такие как наполнители, связующие вещества, стабилизаторы, реологические модификаторы и другие добавки, в том числе одно или несколько веществ, представляющих собой оксид алюминия, диоксид кремния, non-цеолит диоксид кремния оксид алюминия, оксид титана(IV), оксид циркония(IV), оксид церия(IV). Согласно определенным вариантам осуществления, каталитическая композиция может включать порообразующие вещества, такие как графит, целлюлоза, крахмал, полиакрилат, полиэтилен и подобные вещества. Эти дополнительные компоненты не обязательно должны катализировать желательную реакцию, но вместо этого они повышают эффективность каталитического материала, например, посредством увеличения температурного интервала его эксплуатации, увеличения контактной удельной площади поверхности катализатора, увеличения адгезии катализатора по отношению к подложке и т. д. Согласно определенным вариантам осуществления, содержание пористого оксидного покрытия составляет более чем 0,3 г/дюйм3 (18,3 мг/см3), в том числе более чем 1,2 г/дюйм3 (73,2 мг/см3), более чем 1,5 г/дюйм3 (91,5 мг/см3), более чем 1,7 г/дюйм3 (103,7 мг/