Способ определения макрорельефа поверхности и внутренних включений объекта и устройство для его реализации

Иллюстрации

Показать все

Изобретение относится к неразрушающим методам исследования твердых материалов и может быть использовано для контроля заданных параметров объектов и определения их физических характеристик. Предлагается способ определения макрорельефа поверхности и внутренних включений, дефектов объекта, и устройство, реализующее указанный способ, причем способ заключается в освещении объекта исследования лазерным излучением в иммерсионной среде и регистрации акустических волн, возникающих от лазерного воздействия двумя разнесенными акустическими приемниками, расположенными со стороны освещения, при одновременной регистрации акустических импульсов, прошедших через образец, также двумя акустическими приемниками. 2 н. и 2 з.п. ф-лы, 1 ил.

Реферат

Предлагаемое изобретение относится к неразрушающим методам исследования твердых материалов и может быть использовано для контроля заданных параметров объектов и определения их физических характеристик.

Известен способ определения макрорельефа поверхности объекта, заключающийся в освещении его лазерным излучением в иммерсионной среде в сосуде и регистрации отраженных оптических волн (Патент РФ №2075883, опубликовано: Бюл. №33, 2001 г.).

Недостатками данного способа являются невозможность исследовать внутреннюю структуру объекта и ограниченные возможности в определении других параметров.

Известен лазерно-ультразвуковой дефектоскоп, содержащий, импульсный лазер, акустические приемники, помещенные в корпус и компьютер (Патент РФ №2381496, опубликовано: 10.02.2010 Бюл. №4). Это техническое решение рассматривается авторами в качестве прототипа.

Данное устройство, позволяет исследовать только внутреннюю структуру объекта, имеет низкую разрешающую способность и может работать только в контакте с объектом.

Технический результат предполагаемого изобретения - создание способа для одновременного исследования макрорельефа поверхности объекта и его внутренней структуры с сохранением при этом высокой точности измерений.

Технический результат достигается за счет того, что сначала производят импульсное освещение объекта с использованием лазера, регистрируют акустические импульсы, возникшие от теплового лазерного воздействия, двумя разнесенными акустическими приемниками, расположенными со стороны освещения, и одновременно регистрируют акустические импульсы, прошедшие через объект с противоположной стороны освещаемой поверхности, также, по меньшей мере, двумя акустическими приемниками.

Кроме того, производят последовательное вращение объекта на разных высотах его нахождения в иммерсионной среде, а также при помощи лазерных интерферометров регистрируют акустические колебания, прошедшие сквозь объект.

Для осуществления указанного способа предлагается устройство. Предлагаемое устройство имеет механический привод, связанный с объектом, позволяющий производить вращение исследуемого объекта внутри сосуда с иммерсионной средой, импульсного лазера, пар акустических приемников, установленных с противоположных сторон данного сосуда, и компьютера, который соединен с устройством управления, которое подключено к импульсному лазеру, акустическим приемникам и механическому приводу, производящему перемещение объекта.

Сущность осуществления предлагаемого технического решения показана на Фиг. 1, где изображена блок-схема устройства, где 1 - блок управления, 2 - импульсный лазер, 3 - механический привод, 4 - компьютер, 5 - исследуемый объект, 6 - сосуд, 7 - акустический приемник, 8 - интерферометр.

Устройство для реализации предлагаемого способа включает в себя блок управления 1, который посредством проводов соединен с импульсным лазером 2, механическим приводом 3 и компьютером 4. Механический привод 3 вращает и перемещает по вертикали исследуемый объект 5, находящийся в сосуде 6 с иммерсионной жидкостью. В сосуде 6 со стороны освещения лазером 2, расположены два акустических приемника 7, подключенные к компьютеру 4. С противоположной стороны сосуда 6 могут быть установлены такие же два приемника 7, или как вариант, два лазерных интерферометра 8, способные регистрировать непосредственно гидроакустические колебания поверхности объекта 5. В этом случае, они также подключены к компьютеру 4.

Способ реализуется следующим образом. Блок управления 1 инициирует лазер 2, с одновременной подачей сигнала на компьютер 4. Излучение лазера через прозрачное окно в корпусе 6 направляется на поверхность объекта исследования 5. Поперечный размер оптического пучка в фокальной плоскости составляет 50 мкм. Акустическая волна возбуждается на поверхности исследуемого образца 5 при поглощении оптического излучения и последующим за ним термоупругим расширением нагретой области. Форма и амплитуда акустического импульса, возбуждаемого в результате термоупругого эффекта, определяются интенсивностью оптического пучка, его пространственно-временными характеристиками, коэффициентом поглощения среды и граничными условиями.

Акустическая волна регистрируется с помощью двух широкополосных приемников 7, сигнал с которых подается на компьютер 4. Время распространения акустической волны от точки генерации на поверхности образца до приемника определяется расстоянием между данной точкой и приемником, а также скоростью распространения акустической волны в иммерсионной жидкости. Можно получить значение координаты точки объекта по измеренному времени задержки между лазерным и акустическим импульсами при известных условиях, как положение приемника и скорость упругой волны. Измерения формы поверхностей твердых тел базируются на возбуждении коротких акустических импульсов лазером и измерении времени задержки между лазерным и акустическим сигналами.

Вращая образец в горизонтальной плоскости, получают изображение поперечного сечения образца. При его перемещении в вертикальной плоскости и вращении получают набор сечений, что позволяет получить полную информацию об исследуемом образце. Блок управления 1 может быть выделен отдельно либо объединен с компьютером 4, где имеется программа, определяющая алгоритм работы устройства и хранятся полученные данные.

Таким образом, определяется макрорельеф поверхности исследуемого образца 5. Принимая во внимание, что акустический импульс, возбужденный термоупругим расширением, распространяется в теле образца 5, создает фазовую картину колебаний противоположной стороны образца, то в сочетании с сигналами приемников 7 получаем информацию о его структуре, дефектах и прочих характеристиках. В случае использования лазерных интерферометров 8, информация будет на порядок точнее.

Таким образом, предлагаемый способ и устройство позволяют исследовать макрорельеф поверхности объекта и его внутреннюю структуру с сохранением при этом высокой точности измерений. Все признаки, отличающие предлагаемое изобретение необходимы и достаточны для его осуществления и получения заявляемого технического результата.

1. Способ определения макрорельефа поверхности и внутренних включений, дефектов объекта, заключающийся в освещении его лазерным излучением в иммерсионной среде и регистрации отраженных оптических волн, отличающийся тем, что производят импульсное освещение объекта, регистрируют акустические импульсы, возникшие от теплового лазерного воздействия двумя разнесенными акустическими приемниками, расположенными со стороны освещения, и одновременно регистрируют акустические импульсы, прошедшие через объект с противоположной стороны освещаемой поверхности, также по меньшей мере двумя акустическими приемниками.

2. Способ по п. 1, отличающийся тем, что производят последовательное вращение объекта на разных высотах его нахождения в иммерсионной среде.

3. Способ по п. 1, отличающийся тем, что акустические колебания, прошедшие сквозь объект, регистрируют лазерными интерферометрами.

4. Устройство для реализации способа определения макрорельефа поверхности и внутренних включений, дефектов объекта, содержащее импульсный лазер, освещающий поверхность исследуемого объекта, помещенного в сосуд с иммерсионной средой, акустические датчики и компьютер, отличающееся тем, что оно имеет механический привод, связанный с объектом, при этом с противоположных сторон сосуда установлены две пары разнесенных акустических приемников, одна из которых расположена со стороны освещения объекта, соединенные с компьютером, который также соединен с устройством управления, подключенным к импульсному лазеру и механическому приводу.