Система управления форсажной камерой сгорания

Иллюстрации

Показать все

Изобретение относится к области автоматического регулирования газотурбинного двигателя (ГТД), а именно к системам управления режимами работы форсажной камеры сгорания с адаптивной системой подачи топлива. Техническим результатом изобретения является повышение эффективности управления рабочим процессом камеры сгорания, за счет измерения величины полного давления газового потока на выходе из форсажной камеры сгорания и корректировки положения топливного коллектора перед стабилизатором пламени. Система управления форсажной камерой сгорания, в которой дополнительно введены последовательно соединенные третье программно-задающее устройство, третья схема сравнения, третий регулятор, выход которого является третьим выходом системы и датчик полного давления газового потока на выходе из форсажной камеры сгорания, установленный на штоке гидроцилиндра управления критическим сечением сопла, выход которого соединен со вторым входом третьей схемы сравнения. При этом второй выход датчика температуры воздуха на входе двигателя соединен с первым входом третьего программно-задающего устройства, а второй выход датчика положения рычага управления двигателем со вторым входом третьего программно-задающего устройства. 3 ил.

Реферат

Изобретение относится к области автоматического регулирования газотурбинного двигателя (ГТД), а именно к системам управления режимами работы форсажной камеры сгорания с адаптивной системой подачи топлива.

Наиболее близким по технической сущности заявляемому изобретению является система управления форсажной камерой сгорания, содержащая последовательно соединенные датчик положения рычага управления двигателем, первое программно-задающее устройство, первую схему сравнения, первый регулятор, выход которого соединен со вторым входом первой схемы сравнения и является первым выходом из системы, последовательно соединенные датчик полного давления воздуха за компрессором, второе программно-задающее устройство, вторую схему сравнения и второй регулятор, выход которого соединен со вторым входом второй схемы сравнения и является вторым выходом из системы, а также датчик температуры воздуха на входе двигателя, первый выход которого соединен со вторым входом второго программно-задающего устройства [Турбореактивный двигатель с форсажной камерой сгорания АЛ-31Ф: Учебное пособие / Под редакцией А.П. Назарова. - М.: ВВИА, 1987, с. 313].

Недостатком данной системы является низкая эффективность управления рабочим процессом камеры сгорания [Кудрявцев А.В., Медведев В.В. Форсажные камеры и камеры сгорания ПВРД. Инженерные методики расчета характеристик. - М.: ЦИАМ, 2013. 131 с.], обусловленная влиянием условий внешней среды на полноту сгорания топлива в циркуляционной зоне потока форсажной камеры сгорания [Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. - М.: Машиностроение, 2002, с. 132].

Техническим результатом изобретения является повышение эффективности управления рабочим процессом камеры сгорания, за счет измерения величины полного давления газового потока на выходе из форсажной камеры сгорания и корректировки положения топливного коллектора перед стабилизатором пламени.

Указанный технический результат достигается тем, что в известной системе управления форсажной камерой сгорания газотурбинного двигателя летательного аппарата, содержащей последовательно соединенные датчик положения рычага управления двигателем, первое программно-задающее устройство, первую схему сравнения, первый регулятор, выход которого соединен со вторым входом первой схемы сравнения и является первым выходом из системы, последовательно соединенные датчик полного давления воздуха за компрессором, второе программно-задающее устройство, вторую схему сравнения и второй регулятор, выход которого соединен со вторым входом второй схемы сравнения и является вторым выходом из системы, а также датчик температуры воздуха на входе двигателя, первый выход которого соединен со вторым входом второго программно-задающего устройства, согласно изобретению дополнительно введены последовательно соединенные третье программно-задающее устройство, третья схема сравнения, третий регулятор, выход которого является третьим выходом системы и датчик полного давления газового потока на выходе из форсажной камеры сгорания, установленный на штоке гидроцилиндра управления площадью критического сечения сопла, выход которого соединен со вторым входом третьей схемы сравнения, при этом второй выход датчика температуры воздуха на входе двигателя соединен с первым входом третьего программно-задающего устройства, а второй выход датчика положения рычага управления двигателем со вторым входом третьего программно-задающего устройства.

Сущность изобретения заключается в том, что дополнительно введены последовательно соединенные третье программно-задающее устройство, третья схема сравнения, третий регулятор, выход которого является третьим выходом системы и датчик полного давления газового потока на выходе из форсажной камеры сгорания, установленный на штоке гидроцилиндра управления площадью критического сечения сопла, выход которого соединен со вторым входом третьей схемы сравнения, при этом второй выход датчика температуры воздуха на входе двигателя соединен с первым входом третьего программно-задающего устройства, а второй выход датчика положения рычага управления двигателем со вторым входом третьего программно-задающего устройства.

Известно [Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. - М.: Машиностроение, 2002. 616 с.], что значение положения рычага управления двигателем является режимным параметром и обуславливает количество подаваемого топлива в форсажную камеру сгорания.

На фиг. 1 приведена программа управления величиной подаваемого топлива в форсажную камеру сгорания в зависимости от режима работы двигателя, где обозначено: αруд min - минимальное значение положения рычага управления двигателем; αруд max - максимальное значение положения рычага управления двигателем; Т*в max - линия максимального расхода топлива при максимальном значение температуры воздуха на входе двигателя; Т*в - линия расчетного количества топлива при расчетном значении температуры воздуха на входе двигателя; Т*в min - линия минимального расхода топлива при минимальном значении температуры воздуха на входе двигателя; Gтф мф - величина расчетного количества топлива на режиме работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ»; Gтф мф max - величина расчетного количества топлива на режиме работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ» при минимальном значении температуры воздуха на входе двигателя; Gтф мф min - величина расчетного количества топлива на режиме работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ» при максимальном значении температуры воздуха на входе двигателя; Gтф мф max - величина расчетного количества топлива на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ» при максимальном значении температуры воздуха на входе двигателя; Gтф пф - величина расчетного количества топлива на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ»; Gтф пф min - величина расчетного количества топлива на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ» при минимальном значении температуры воздуха на входе двигателя.

Из фиг. 1 видно, что каждому значению величины положения рычага управления двигателем соответствует заданное значение величины подаваемого топлива. При изменении положения рычага управления двигателем от режима работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ» до режима работы двигателя «ПОЛНЫЙ ФОРСАЖ» расход топлива в форсажную камеру сгорания увеличивается, обеспечивая заданный режим работы двигателя. Из фиг. 1 также видно, что в зависимости от температуры воздуха на входе двигателя, чем выше температура на входе двигателя, тем больше расход топлива.

Известно [Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. - М.: Машиностроение, 2002. 616 с.], что для заданного количества подаваемого топлива при сохранении постоянного расхода топлива, на выходе из форсажной камеры сгорания изменяется величина полного давления в зависимости от условий внешней среды, как описано в Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. - М.: Машиностроение, 2002. с. 165-168. Повышение полного давления на выходе из форсажной камеры сгорания при сохранении неизменного расхода топлива свидетельствует о снижении эффективности сжигания топлива, за счет ухудшения образования топливовоздушной смеси перед стабилизатором пламени и снижении коэффициента полноты сгорания топлива в циркуляционной зоне потока форсажной камеры сгорания.

В ходе исследований эффективности организации рабочего процесса в форсажной камере сгорания, проводимых в Военном научно-исследовательском центре Военно-воздушных сил «Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина» установлено, что требуемое значение коэффициента полноты сгорания топлива в циркуляционной зоне потока форсажной камеры сгорания обеспечивается корректировкой положения топливного коллектора относительно стабилизатора пламени, которое зависит от величины полного давления газового потока на выходе из форсажной камеры сгорания, что обусловлено влиянием параметров газового потока на образование топливовоздушной смеси.

Поэтому согласно изобретению измеряют величину полного давления газового потока на выходе из форсажной камеры сгорания и в зависимости от его значения и количества подаваемого топлива управляют положением топливного коллектора. На фиг. 2 представлена программа управления положением топливного коллектора в зависимости от количества подаваемого топлива в форсажную камеру сгорания, где обозначено: Gтф пф max - величина расчетного количества топлива на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ» при максимальном значении температуры воздуха на входе двигателя; Gтф мф min - величина расчетного количества топлива на режиме работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ» при максимальном значении температуры воздуха на входе двигателя; Р*ф min - линия положения топливного коллектора при минимальном значении полного давления газового потока на выходе из форсажной камеры сгорания; Р*ф max - линия положения топливного коллектора при максимальном значении полного давления газового потока на выходе из форсажной камеры сгорания; Р*ф - линия положения топливного коллектора при расчетном значении полного давления газового потока на выходе из форсажной камеры сгорания; Lкол мф min - значение положения топливного коллектора при минимальном значении полного давления газового потока на выходе из форсажной камеры сгорания на режиме работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ»; Lкол мф - значение положения топливного коллектора при расчетном значении полного давления газового потока на выходе из форсажной камеры сгорания на режиме работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ»; Lкол мф max - значение положения топливного коллектора при максимальном значении полного давления газового потока на выходе из форсажной камеры сгорания на режиме работы двигателя «МИНИМАЛЬНЫЙ ФОРСАЖ»; Lкол пф max - значение положения топливного коллектора при максимальном значении полного давления газового потока на выходе из форсажной камеры сгорания на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ»; Lкол пф - значение положения топливного коллектора при расчетном значении полного давления газового потока на выходе из форсажной камеры сгорания на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ»; Lкол пф min - значение положения топливного коллектора при минимальном значении полного давления газового потока на выходе из форсажной камеры сгорания на режиме работы двигателя «ПОЛНЫЙ ФОРСАЖ».

Для обеспечения корректировки положения топливного коллектора по величине полного давления газового потока на выходе из форсажной камеры сгорания в третьем программно-задающем устройстве по сигналам от датчика положения рычага управления двигателем и датчика температуры воздуха на входе двигателя согласно зависимости, описанной на фиг. 1, осуществляется расчет количества подаваемого топлива в форсажную камеру сгорания. Затем вычисляется относительный расход топлива как указано в Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. - М.: Машиностроение, 2002. с. 131. Согласно зависимостям, приведенным в Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. - М.: Машиностроение, 2002. с. 135, определяется подогрев газового потока, зависящий от относительного расхода топлива. Величина полного давления на выходе из форсажной камеры сгорания зависит от подогрева газового потока согласно приведенным зависимостям в Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник. Основы теории ГТД. Рабочий процесс и термогазодинамический анализ. Кн. 1. - М.: Машиностроение, 2002, с. 167. Тем самым заложенный алгоритм расчета обеспечивает выработку заданного значения величины полного давления на выходе из форсажной камеры сгорания.

Таким образом на основании рассчитанного количества, подаваемого в форсажную камеру сгорания топлива, определяется заданное значение полного давления газового потока на выходе из форсажной камеры сгорания, и передается в третью схему сравнения, на второй вход которой поступает сигнал с датчика полного давления газового потока на выходе из форсажной камеры сгорания. В качестве датчика полного давления газового потока на выходе из форсажной камеры сгорания может быть использован, например, пьезоэлектрический датчик давления EL-SCADA RAV [https://el-scada.ru/davlenie/dinamicheskoe-davlenie/pezoelektricheskie-datchiki-dinamicheskogo-davleniya дата обращения 31.05.2017]. Если действительное значение полного давления газового потока на выходе из форсажной камеры сгорания отличается от заданного, третья схема сравнения вырабатывает сигнал для третьего регулятора, в котором формируется управляющее воздействие на корректировку положения топливного коллектора перед стабилизатором пламени форсажной камеры сгорания. При изменении положения топливного коллектора обеспечивается эффективное образование топливовоздушной смеси и высокое значение полноты сгорания топлива в циркуляционной зоне потока. Заданное значение коэффициента полноты сгорания топлива в циркуляционной зоне находится в пределах от 0,8 до 0,85 [см., например, Кулагин В.В. Теория, расчет и проектирование авиационных двигателей и энергетических установок: Учебник для студентов вузов / В.В. Кулагин. - М.: Машиностроение, 2003, с. 161].

Этим достигается указанный в изобретении технический результат.

Структурная схема системы управления форсажной камерой сгорания приведена на фиг. 3, где обозначено: 1.1 - датчик положения рычага управления двигателем; 1.2 - датчик полного давления воздуха за компрессором; 1.3 - датчик температуры воздуха на входе двигателя; 1.4 - датчик полного давления газового потока за форсажной камерой сгорания; 2.1 - первое программно-задающее устройство; 2.2 - второе программно-задающее устройство; 2.3 - третье программно-задающее устройство; 3.1 - первая схема сравнения; 3.2 - вторая схема сравнения; 3.3 - третья схема сравнения; 4.1 - первый регулятор; 4.2 - второй регулятор; 4.3 - третий регулятор.

Назначение датчиков положения рычага управления двигателем 1.1, датчика полного давления воздуха за компрессором 1.2, датчика температуры воздуха на входе двигателя 1.3, датчика полного давления газового потока за форсажной камерой сгорания 1.4 ясны из их названия. Первое программно-задающее устройство 2.1, первая схема сравнения 3.1, первый регулятор 4.1, второе программно-задающее устройство 2.2, вторая схема сравнения 3.2, второй регулятор 4.2 работают аналогично прототипу. Для выработки управляющего воздействия в первом программно-задающем устройстве 2.1 по сигналу от датчика положения рычага управления двигателем 1.1 вырабатывается сигнал заданного значения перемещения золотника дозирующего крана, который поступает в первую схему сравнения 3.1, на второй вход которой поступает сигнал о текущем значении положения золотника дозирующего крана. Если величина текущего значения положения отличается от заданного, то в первом регуляторе 4.1 вырабатывается управляющее воздействие для перемещения золотника дозирующего крана в требуемое положение для обеспечения заданной величины подаваемого топлива. При этом во втором программно-задающем устройстве 2.2 по сигналу от датчика температуры на входе двигателя 1.3, где изменение температуры воздуха происходит за счет изменения условий внешней среды (высоты и скорости полета летательного аппарата), вырабатывается заданное значение поворота золотника дозирующего крана и поступает на первый вход второй схемы сравнения 3.2, на второй вход которой поступает текущее значение положения угла поворота золотника дозирующего крана, если заданное значение не соответствует текущему положению во втором регуляторе 4.2 вырабатывается управляющее воздействие на изменение угла поворота золотника дозирующего крана. От датчика полного давления воздуха за компрессором 1.2 поступает сигнал на второй вход второго программно-задающего устройства 2.2, который обеспечивает контроль возможности перехода системы управления от режима «МАКСИМАЛЬНЫЙ» на «МИНИМАЛЬНЫЙ ФОРСАЖ». Таким образом, осуществляется коррекция величины подаваемого топлива в форсажную камеру сгорания при изменении условий внешней среды.

Третье программно-задающее устройство 2.3 предназначено для выработки заданного значения величины полного давления газового потока на выходе из форсажной камеры сгорания на основании получаемых данных от датчика положения рычага управления двигателем 1.1, датчика температуры воздуха на входе двигателя 1.3 и расчета по численным зависимостям величины полного давления газового потока на выходе из форсажной камеры сгорания от количества подаваемого в форсажную камеру сгорания топлива. Третья схема сравнения 3.3 на основании получаемых сигналов о величине заданного, третьим программно-задающим устройством 2.3 и текущего, получаемого от датчика полного давления газового потока за форсажной камерой сгорания 1.4 значения полного давления газового потока на выходе из форсажной камеры сгорания вырабатывает сигнал корректировки положения топливного коллектора. Третий регулятор 4.3 на основании полученного сигнала производит корректировку положения топливного коллектора.

Система управления форсажной камерой сгорания, содержащая последовательно соединенные датчик положения рычага управления двигателем, первое программно-задающее устройство, первую схему сравнения, первый регулятор, выход которого соединен со вторым входом первой схемы сравнения и является первым выходом системы, последовательно соединенные датчик полного давления воздуха за компрессором, второе программно-задающее устройство, вторую схему сравнения и второй регулятор, выход которого соединен со вторым входом второй схемы сравнения, и является вторым выходом системы, а также датчик температуры воздуха на входе двигателя, первый выход которого соединен со вторым входом второго программно-задающего устройства, отличающаяся тем, что дополнительно введены последовательно соединенные третье программно-задающее устройство, третья схема сравнения, третий регулятор, выход которого является третьим выходом системы, и датчик полного давления газового потока на выходе из форсажной камеры сгорания, установленный на штоке гидроцилиндра управления критическим сечением сопла, выход которого соединен со вторым входом третьей схемы сравнения, при этом второй выход датчика температуры воздуха на входе двигателя соединен с первым входом третьего программно-задающего устройства, а второй выход датчика положения рычага управления двигателем со вторым входом третьего программно-задающего устройства.