Композиция пропилена, комбинирующая низкую температуру начала сваривания, низкую мутность, низкое содержание веществ, растворимых в гексане, улучшенное сопротивление раздиру и высокую температуру плавления

Иллюстрации

Показать все

Изобретение относится к композиции полипропилена, ее получению и применению. Композиция представляет собой бинарную смесь, в состав которой входит две фракции полимера пропилена. Первая фракция представляет собой сополимер пропилена и гексена, с содержанием сомономера в количестве от 0,5 до 2,5 мас.%, вторая фракция - терполимер пропилена, содержащий сомономер гексена в количестве от 4,0 до 10,0 мас.% и сомономер этилена в количестве от 0,1 до 1,0 мас.%. Соотношение содержания гексена второй полимерной фракции к его содержанию в первой полимерной фракции составляет от 2,5 до 8,0. Причем соотношение общего количества гексана композиции к количеству гексена в первой полимерной фракции составляет от 1,5 до 4,0. Композиция характеризуется скоростью течения расплава MFR2 (230°C) от 2,0 до 15,0 г/10 минут, температурой плавления Tm от 128°C до 145°C, температурой кристаллизации Тс от 82°C до 110°C и содержанием веществ, растворимых в гексане не более 1,0 мас. %. При этом количество фракции, растворимой в холодном ксилоле (XCS), находится в пределах от 10 до 40 мас.%. Композиция по изобретению обладает низким содержанием фракции, широким окном тепловой сварки при достаточно низкой температуре начала тепловой сварки (SIT), а также хорошими оптическими свойствами, такими как низкая мутность. 4 н. и 5 з.п. ф-лы, 5 табл.

Реферат

Изобретение относится к новой композиции полипропилена, которая комбинирует низкую температуру начала сваривания (SIT) и высокую температуру плавления (Tm). Дополнительно композиция по настоящему изобретению демонстрирует широкое окно сваривания, низкое содержание веществ, растворимых в гексане, и хорошие оптические свойства, такие как низкая мутность.

Дополнительно настоящее изобретение относится к получению такой композиции и ее применению.

Полипропилены подходят для множества применений.

Например, полипропилен (РР) применим в областях, где важную роль играют свойства сварного соединения, таких как область упаковки пищевых продуктов и медицинских продуктов и изделий.

Термосваривание является преобладающим способом получения гибких и полужестких упаковок. Важными характеристиками среди прочего являются хорошие показатели сваривания: а)низкая температура начала сваривания, которая необходима для поддержания высокой скорости упаковочных машин, b) широкое окно сваривания, которое по существу необходимо для интервала технологической обработки на HFFS (горизонтальный способ непрерывного упаковывания) упаковочных линиях и с) дополнительно высокая температура плавления, которая важна, в частности, для двуосноориентированной РР, во избежание слипания и блокировки и достижения высоких скоростей ВОРР линии.

Низкая SIT является преимуществом для обеспечения быстрого сваривания. При работе при более низкой температуре преимущество состоит в том, что свариваемое изделие не подвергается воздействию высоких температур. Также имеют место экономические преимущества, поскольку дешевле генерировать и поддерживать более низкую температуру.

Имеют место дополнительные преимущества избегания высоких температур сваривания, по существу при упаковывании товаров, чувствительных к температурам.

Дополнительно также желательно иметь упаковочный материал с удовлетворительными оптическими свойствами, такими как низкая мутность или высокая прозрачность.

Стерилизационная обработка необходима в некоторых применениях для пищевых продуктов, таких как стерилизуемые пакеты, или в некоторых медицинских применениях.

Самыми распространенными стерилизационными процедурами являются применение нагревания (пар), излучения (бета-излучением, электронами или гамма-излучением) или химических реагентов (как правило, оксида этилена). Стерилизацию паром, как правило, проводят при температуре в пределах от около 120 до 130°C. Следовательно, материал должен обладать достаточной термостабильностью, такой как температура плавления значительно выше, чем температура традиционной стерилизации паром, от около 120 до 130°C.

Конечно, обработка полимера при указанных выше условиях стерилизации может оказать влияние на его конечные свойства, в частности, оптические свойства, такие как светопропускание.

Независимо от типа полимера, полимер должен отвечать в лучшем случае всем заданным конечным свойствам и дополнительно должен быть легким в технологической обработке, то есть, должен противостоять стрессу. Однако конечные свойства и технологические свойства часто вступают между собой в конфликт.

Часто оказывается, что улучшение одного из заданных свойств достигается за счет других свойств.

Следовательно, продолжает существовать необходимость в создании материалов с улучшенным балансом между высокой температурой плавления и низкой температурой начала сваривания SIT, которые дополнительно имеют широкое окно сваривания, обладают хорошими оптическими свойствами, низким содержанием веществ, растворимых в гексане, и достаточной термической стабильностью для обеспечения стерилизационной обработки без оказания негативного воздействия на оптические свойства.

Настоящее изобретение основывается на находке, состоящей в том, что указанные выше требования для применения при термосваривании, то есть, одновременно наличие улучшенного баланса между высокой температурой плавления и низкой температурой начала сваривания SIT, широкое окно сваривания, хорошие оптические свойства, низкое содержание веществ, растворимых в гексане, и достаточная термическая стабильность для обеспечения стерилизационной обработки без оказания негативного воздействия на оптические свойства, могут быть достигнуты при использовании определенной композиции полиолефина.

Следовательно, в первом аспекте настоящее изобретение относится к композиции полипропилена, представляющей бинарную смесь, содержащую 2 фракции полипропиленового полимера Р1 и Р2:

От 35 до 60 масс. % (Р1), представляющего сополимер пропилена, содержащий сомономерные единицы из гексена в количестве от 0,5 до 2,5 масс. % и

От 65 до 40 масс. % (Р2), представляющего терполимер пропилена, содержащий сомономерные единицы из гексена в количестве от 4,0 до 10,0 масс. %, и сомономерные единицы из этилена в количестве от 0,1 до 1,0 масс. %,

И при этом композиция характеризуется:

(i) соотношением содержания гексена полимерной фракции Р2 к полимерной фракции Р1 от 2,5 до 8,0

(ii) соотношением общего количества гексана композиции к количеству гексена в полимерной фракции P1 от 1,5 до 4,0

(ii) скоростью течения расплава MFR2 (230°C), как измерено согласно ISO 1133, в пределах от 2,0 до 15,0 г/10 минут,

(iii) температурой плавления Tm, как определено при использовании DSC согласно ISO 11357, от 128°C до 145°C,

(iv) температурой кристаллизации Тс как определено при использовании DSC согласно ISO 11357, от 82°C до 110°C и

(v) содержанием веществ, растворимых в гексане, как определено согласно FDA часть 177.1520, максимум 1,0 масс. %, и

(vi) количеством фракции, растворимой в холодном ксилоле (XCS), в пределах от 10 до 40 масс. %, как определено при температуре 25°C согласно ISO 16152; first edition; 2005-07-01.

Во втором аспекте настоящее изобретение относится к композиции полипропилена, содержащей 2 полимерные фракции (Р1) и (Р2), при этом композиция может быть получена, предпочтительно получена в присутствии металлоценового катализатора.

В третьем аспекте настоящее изобретение относится к способу получения композиции полипропилена, содержащей 2 полимерные фракции (Р1) и (Р2), при использовании процесса последовательной полимеризации, включающего по меньшей мере два реактора последовательно соединенные в серию, где процесс включает стадии:

a) полимеризации в первом реакторе (R-1), представляющем суспензионный реактор (SR), предпочтительно циркуляционный реактор (LR), пропилена и гексена, с получением C3C6 неупорядоченного сополимера (Р1), как указано выше,

b) перемещения указанного С2С3 неупорядоченного сополимера (Р1) и непрореагировавших сомономеров из первого реактора во второй реактор (R-2), представляющий первый газофазный реактор (GPR-1),

c) подачи в указанный второй реактор (R-2) пропилена, гексена и этилена,

d) полимеризации в указанном втором реакторе (R-2) в присутствии указанного первого C3C6 неупорядоченного сополимера (Р1) пропилена, гексена и этилена с получением C3C6C2 фракции терполимера (Р2),

указанный C3C6 неупорядоченный сополимер (Р1), C3C6C2 фракция терполимера (Р2) образуют композицию полипропилена, как указано выше,

при этом полимеризация проходит в присутствии катализатора в форме твердых частиц с единым центром полимеризации на металле, который предпочтительно свободен от внешнего носителя, предпочтительно катализатор содержит (i) комплекс с формулой (I):

где

М представляет цирконий или гафний;

каждый X - сигма-лиганд;

L - двухвалентный мостик, выбранный из -R'2C-, -R'2C-CR'2-, -R'2Si-, -R'2Si-SiR'2-, -R'2Ge-, где каждый R' независимо представляет атом водорода, C1-C20-нециклический углеводородный остаток, три(С120-алкил)силил, C6-C20-арил, С7-C20-арилалкил или С7-C20-алкиларил;

R2 и R2' - каждый независимо представляет C1-C20 нециклический углеводородный радикал, необязательно содержащий один или более гетероатом из групп 14-16;

R5' - C1-20 группа нециклического углеводородного остатка, состоящего из одного или более гетероатома из групп 14-16, необязательно замещенного одним или более галоатомом;

R6 и R6' - каждый независимо представляет водород или С1-20 группу нециклического углеводородного остатка, необязательно содержащую один или более гетероатом из групп 14-16;

R7 и R7' - каждый независимо представляет водород или С1-20 группу нециклического углеводородного остатка, необязательно содержащую один или более гетероатом из групп 14-16;

Ar - независимо представляет арильную группу или гетероарильную группу, имеющую вплоть до 20 атомов водорода, необязательно замещенных одной или более группой R1;

Ar' - независимо представляет арильную группу или гетероарильную группу, имеющую вплоть до 20 атомов водорода, необязательно замещенных одной или более группой R1;

каждый R1 представляет С1-20 группу нециклического углеводородного остатка, или две R1 группы соседних атомов водорода вместе могут образовать слитое 5 или 6 членное не ароматическое кольцо с Ar группой, указанное кольцо само представляет необязательно замещенное одной или более группой R4;

каждый R4 представляет С1-20 группу нециклического углеводородного остатка;

и (ii) сокатализатор, содержащий соединение металла 13 группы, например, соединение Аl или соединение бора.

В четвертом аспекте настоящее изобретение относится к применению указанной выше композиции полипропилена для получения изделий.

В пятом аспекте настоящее изобретение относится к пленкам, содержащим указанную выше композицию полипропилена, при этом пленки характеризуются:

(i) температурой начала сваривания (SIT) (как определено согласно экспериментальной части) менее 110°C

(ii) удовлетворяют уравнению Tm - SIT≥25

(iii) мутностью (как определено согласно ASTM D1003-00 на поливных пленках толщиной 50 μm) максимально 1,5%

(iv) светопропусканием (как определено согласно ASTM D1003-00 на поливных пленках толщиной 50 μm) по меньшей мере 90,0%

(v) относительным сопротивлением раздиру в продольном направлении [Н/мм] согласно методу Элмендорфа (ISO 6383-2) для поливной пленки толщиной 50 μм по меньшей мере 20,0 Н/мм, и

(vi) относительным сопротивлением раздиру в поперечном направлении [Н/мм] согласно методу Элмендорфа (ISO 6383-2) для поливной пленки толщиной 50 μм по меньшей мере 170,0 Н/мм.

Далее настоящее изобретение (1ый, 2ой, 3ий и 4ый аспект) будет описано более подробно.

Композиция по настоящему изобретению представляет композицию С2С3 неупорядоченного сополимера, которая содержит, предпочтительно состоит из 2 различных полимерные фракции (Р1) и (Р2).

По существу хороший результат достигается в случае, когда отдельные компоненты (Р1) и (Р2) присутствуют в определенных количествах.

Следовательно, предпочтительно композиция полипропилена состоит из от 35 до 60 (Р1) и от 65 до 40 масс. % (Р2) от общей массы композиции полипропилена.

Предпочтительно фракция (Р1) присутствует в количестве от 40 до 55 масс. %, фракция (Р2) предпочтительно присутствует в количестве от 60 до 45 масс. %.

Композиция полипропилена по настоящему изобретению может быть получена при использовании смешивания (в расплаве) отдельных фракций, то есть, C3C6 неупорядоченного сополимера (Р1) и C3C6C2 терполимера (Р2). Во время смешивания могут быть дополнительно добавлены подходящие добавки. Для смешивания могут быть использованы традиционные устройства для компаундирования или смешивания, например, миксер Banbury, 2-вальцовый смолосмеситель, смеситель Buss или двухшнековый экструдер. Вышедший из экструдера полимерный композит, как правило, имеет форму гранул.

Предпочтительно композицию полипропилена по настоящему изобретению получают при использовании способа последовательной полимеризации, включающего по меньшей мере два реактора, соединенных в серию, как приведено ниже (in-situ смесь или реакторная смесь).

С3С6 неупорядоченный сополимер (Р1), то есть, фракция (Р1), имеет содержание гексена в пределах от 0,4 до 1,5 масс. % от общей массы фракции (Р1). Содержание гексена предпочтительно составляет в пределах от 0,7 до 2,3 масс. % от общей массы фракции (Р1).

С3С6С2 терполимер (Р2), то есть, фракция (Р2), имеет содержание гексена в пределах от 4,0 до 10,0 масс. %, от общей массы фракции (Р2). Содержание гексена предпочтительно составляет в пределах от 5,0 до 8,0 масс. % от общей массы фракции (Р2).

Содержание этилена во фракции (Р2) составляет в пределах от 0,1 до 1,5 масс. % от общей массы фракции (Р2), предпочтительно в пределах от 0,3 до 1,2 масс. % от общей массы фракции (Р2).

Соотношение содержания гексена 2 фракций Р2 и P1 (Р2/Р1) составляет от 2,5 до 8,0, предпочтительно от 3,0 до 5,0.

Соотношение общего количества гексена композиции к количеству гексена во полимерной фракции Р1 составляет от 1,5 до 4,0, предпочтительно от 1,8 до 3,0.

Общее количество гексена в композиции, содержащей фракцию полимера Р1 и Р2, составляет в пределах от 2,5 до 8,0 масс. %, предпочтительно в пределах от 3,0 до 6,0 масс. %.

Общее количество этилена в композиции, содержащей фракция полимера Р1 и Р2, составляет в пределах от 0,05 до 0,8 масс. %, предпочтительно в пределах от 0,1 до 0,7 масс. %.

Общая скорость течения расплава, то есть, скорость течения расплава MFR2 (230°C), как измерено согласно ISO 1133, композиции полипропилена может находиться в относительно широких пределах.

Соответственно, в одном варианте воплощения настоящего изобретения композиция полипропилена имеет скорость течения расплава MFR2 (230°C) по меньшей мере 2,0 г/10 минут вплоть до 15,0 г/10 минут, предпочтительно по меньшей мере 4,0 г/10 минут, вплоть до 12 г/10 минут и более предпочтительно по меньшей мере 5,0 г/10 минут, вплоть до 10 г/10 минут.

Композиция полипропилена по настоящему изобретению характеризуется довольно высокой температурой плавления.

Соответственно, понятно, что композиция С2С3 неупорядоченного сополимера полипропилена по настоящему изобретению имеет температуру плавления в пределах от более чем 128 до 145°C, предпочтительно в пределах от 130 до 142°C, и более предпочтительно в пределах от 132 до 140°C.

Дополнительно понятно, что композиция С2С3 неупорядоченного сополимера по настоящему изобретению имеет температуру кристаллизации в пределах от 82 до 110°C, предпочтительно в пределах от 84 до 105°C и более предпочтительно в пределах от 86 до 100°C.

Дополнительно композиция полипропилена по настоящему изобретению характеризуется низким содержанием веществ, растворимых в гексане. Следовательно, композиция полипропилена по настоящему изобретению имеет содержание веществ, растворимых в гексане, как определено согласно FDA часть 177.1520, максимально 1,0 масс. %, предпочтительно максимально 0,9 масс. % и более предпочтительно максимально 0,7 масс. %.

Содержание фракции, растворимой в холодном ксилоле (XCS), в композиции полипропилена по настоящему изобретению предпочтительно составляет в пределах от 10,0 до 40,0 масс. % (как определено при температуре 25°C согласно ISO 16152; first edition; 2005-07-01), предпочтительно в пределах от 15,0 до 30,0 масс. % и более предпочтительно в пределах от 18,0 до 25,0 масс. %.

Композиция полипропилена, содержащая 2 полимерные фракции (Р1) и (Р2), получаемая, как указано выше, предпочтительно получена в присутствии металлоценового катализатора.

Металлоценовый катализатор может представлять катализатор на подложке с использованием традиционных подложек или может быть свободен от внешнего носителя. Предпочтительно используют металлоценовые катализаторы, свободные от внешнего носителя.

Соответственно, композиция полипропилена представляет по существу получаемую, предпочтительно полученную, при использовании способа последовательной полимеризации, включающего по меньшей мере два реактора, соединенные в серию, где указанный способ включает стадии:

a) полимеризации в первом реакторе (R-1), представляющем суспензионный реактор (SR), предпочтительно циркуляционный реактор (LR), пропилена, гесена и этилена с получением C3C6 неупорядоченного сополимера (Р1), как указано выше,

b) перемещения указанного С3С6 неупорядоченного сополимера (Р1) и не прореагировавших сомономеров из первого реактора во второй реактор (R-2), представляющий первый газофазный реактор (GPR-1),

c) подачи в указанный второй реактор (R-2) пропилена, гексена и этилена,

d) полимеризации в указанном втором реакторе (R-2) в присутствии указанного первого C3C6 неупорядоченного сополимера (Р1) пропилена, гексена и этилена с получением C3C6C2 фракции терполимера (Р2),

указанный C3C6 неупорядоченный сополимер (Р1), и указанный терполимер C3C6C2 фракции (Р2) образуют композицию С2С3 неупорядоченного сополимера, как указано выше,

при этом полимеризация проходит в присутствии катализатора в форме твердых частиц с единым центром полимеризации на металле, который предпочтительно свободен от внешнего носителя, предпочтительно катализатор содержит (i) комплекс с формулой (I):

где

М представляет цирконий или гафний;

каждый X - сигма-лиганд;

L - двухвалентный мостик, выбранный из -R'2C-, -R'2C-CR'2-, -R'2Si-, -R'2Si-SiR'2-, -R'2Ge-, где каждый R' независимо представляет атом водорода, C1-C20-нециклический углеводородный остаток, три(С1-C20-алкил)силил, C6-C20-арил, С7-C20-арилалкил или С720-алкиларил;

R2 и R2' - каждый независимо представляет C1-C20 нециклический углеводородный радикал, необязательно содержащий один или более гетероатом из групп 14-16;

R5' - С1-20 группа нециклического углеводородного остатка, состоящего из одного или более гетероатома из групп 14-16, необязательно замещенного одним или более галоатомом;

R6 и R6' - каждый независимо представляет водород или С1-20 группу нециклического углеводородного остатка, необязательно содержащую один или более гетероатом из групп 14-16;

R7 и R7' - каждый независимо представляет водород или С1-20 группу нециклического углеводородного остатка, необязательно содержащую один или более гетероатом из групп 14-16;

Ar - независимо представляет арильную группу или гетероарильную группу, имеющую вплоть до 20 атомов водорода, необязательно замещенных одной или более группой R1;

Ar' - независимо представляет арильную группу или гетероарильную группу, имеющую вплоть до 20 атомов водорода, необязательно замещенных одной или более группой R1;

каждый R1 представляет С1-20 группу нециклического углеводородного остатка, или две R1 группы соседних атомов водорода вместе могут образовать слитое 5 или 6 членное не ароматическое кольцо с Ar группой, указанное кольцо само представляет необязательно замещенное одной или более группой R4;

каждый R4 представляет С1-20 группу нециклического углеводородного остатка;

и (ii) сокатализатор, содержащий соединение металла 13 группы, например, соединение Аl или соединение бора.

Используемый в описании настоящей патентной заявки термин «способ последовательной полимеризации» указывает на то, что композиция полипропилена получена по меньшей мере в двух реакторах, последовательно соединенных в серию. Соответственно, решающим аспектом способа по настоящему изобретению является получение композиции полипропилена в двух отдельных реакторах. Соответственно, способ по настоящему изобретению включает по меньшей мере первый реактор (R-1) и второй реактор (R-2). Необязательно может быть использован третий реактор (R-3). В одном конкретном варианте осуществления настоящего изобретения способ по настоящему изобретению состоит из двух полимеризационных реакторов (R-1) и (R-2). Используемый в описании настоящей патентной заявки термин «полимеризационный реактор» относится к месту, в котором происходит основная полимеризация. Следовательно, в случае, когда способ состоит из трех полимеризационных реакторов, это определение не исключает возможности того, что общий способ включает, например, стадию предварительной полимеризации в реакторе предварительной полимеризации. Используемый в описании настоящей патентной заявки термин «состоит из» относится только к закрытой формулировке, с точки зрения реакторов основной полимеризации.

Первый реактор (R-1) представляет суспензионный реактор (SR) и может представлять любой реактор непрерывного действия или простой реактор с мешалкой периодического действия, или циркуляционный реактор для проведения полимеризации в массе или в суспензии. В массе - означает полимеризацию в реакционной среде, включающей по меньшей мере 60% (масса/масса) мономера, предпочтительно 100% мономера. В настоящем изобретении суспензионный реактор предпочтительно представляет циркуляционный реактор (LR) (для полимеризации в массе).

Второй реактор (R-2) и третий реактор (R-3) представляют газофазные реакторы (GPR). Такие газофазные реакторы (GPR) могут представлять любые реакторы с механическим перемешиванием или реакторы с псевдоожиженным слоем.

Предпочтительно газофазные реакторы (GPR) включают реактор с псевдоожиженным слоем с механическим перемешиванием со скоростью потока газа по меньшей мере 0,2 м/секунду. Следовательно, понятно, что газофазный реактор представляет реактор с псевдоожиженным слоем предпочтительно с механической мешалкой.

Условия (температура, давление, время реакции, подача мономера) в каждом реакторе зависят от заданного продукта и находятся в компетенции специалиста в области техники, к которой относится настоящее изобретение.

Предпочтительный многостадийный способ представляет способ «циркуляционно-газофазный», такой как предложенный Borealis (известный, как технология BORSTAR®), описанный, например, в патентной литературе, такой как ЕР 0887379 или WO 92/12182.

Предпочтительно в способе получения указанной выше композиции полипропилена по настоящему изобретению, как было указанно выше, условия для первого реактора (R-1), то есть суспензионного реактора (SR), такого как циркуляционный реактор (LR), на стадии (а) могут быть следующими:

- температура составляет в пределах от 40°C до 110°C, предпочтительно составляет в пределах от 60°C до 100°C, в пределах от 65°C до 95°C,

- давление составляет в пределах от 20 бар до 80 бар, предпочтительно в пределах от 40 бар до 70 бар,

- для контроля молярной массы может быть добавлен водород при использовании известного способа per se.

Затем реакционную смесь из первого реактора (R-1) перемещают во второй реактор (R-2), то есть газофазный реактор (GPR-1), при этом условия предпочтительно являются следующими:

- температура составляет в пределах от 50°C до 130°C, предпочтительно в пределах от 60°C до 100°C,

- давление составляет в пределах от 5 бар до 50 бар, предпочтительно в пределах от 15 бар до 35 бар,

- для контроля молярной массы может быть добавлен водород при использовании известного способа per se.

Условия в третьем реакторе (R-3), то есть, газофазном реакторе (GPR-2), аналогичны таковым во втором реакторе.

Время выдержки в трех реакторах может варьировать.

В одном варианте воплощения способа получения композиции полипропилена время выдержки в реакторе полимеризации в массе, например циркуляционном, составляет в пределах от 0,1 до 2,5 часов, например, от 0,15 до 1,5 часов, и время пребывания в газофазном реакторе, как правило, составляет от 0,2 до 6,0 часов, такое как от 0,3 до 4,0 часов.

Если требуется, полимеризация может быть проведена известным способом при сверхкритических условиях в первом реакторе, то есть суспензионном реакторе, таком как циркуляционный реактор, и/или конденсацией в газофазных реакторах.

Далее будет более подробно описан каталитический компонент. Предпочтительно катализатор содержит (i) комплекс с формулой (I):

(i) соединение переходного металла с формулой (I):

где

М представляет цирконий или гафний;

каждый X - сигма-лиганд;

L - двухвалентный мостик, выбранный из -R'2C-, -R'2C-CR'2-, -R'2Si-, -R'2Si-SiR'2, -R'2Ge-, где каждый R' независимо представляет атом водорода, С120-нециклический углеводородный остаток, три(С120-алкил)силил, C6-C20-арил, С7-C20-арилалкил или С720-алкиларил;

R2 и R2' - каждый независимо представляет C1-C20 нециклический углеводородный радикал, необязательно содержащий один или более гетероатом из групп 14-16;

R5' - С1-20 группа нециклического углеводородного остатка, состоящего из одного или более гетероатома из групп 14-16, необязательно замещенного одним или более галоатомом;

R6 и R6' - каждый независимо представляет водород или С1-20 группу нециклического углеводородного остатка, необязательно содержащую один или более гетероатом из групп 14-16;

R7 и R7' - каждый независимо представляет водород или С1-20 группу нециклического углеводородного остатка, необязательно содержащую один или более гетероатом из групп 14-16;

Ar - независимо представляет арильную группу или гетероарильную группу, имеющую вплоть до 20 атомов водорода, необязательно замещенных одной или более группой R1;

Ar' - независимо представляет арильную группу или гетероарильную группу, имеющую вплоть до 20 атомов водорода, необязательно замещенных одной или более группой R1;

каждый R1 представляет С1-20 группу нециклического углеводородного остатка, или две R1 группы соседних атомов водорода вместе могут образовать слитое 5 или 6 членное не ароматическое кольцо с Ar группой, указанное кольцо само представляет необязательно замещенное одной или более группой R4;

каждый R4 представляет С1-20 группу нециклического углеводородного остатка;

и (ii) сокатализатор, содержащий соединение металла 13 группы, например, соединение Аl или соединение бора.

Катализатор, используемый в способе по настоящему изобретению, находится в форме твердых частиц свободных от внешнего носителя. Как указано выше, он может представлять катализатор на подложке на традиционном носителе, известном специалисту в области техники, к которой относится настоящее изобретение. Предпочтительно используемый катализатор свободен от внешнего носителя.

В идеале катализатор получают способом, в котором:

(a) получают эмульсионную систему жидкость/жидкость, указанная эмульсионная система жидкость/жидкость содержит раствор катализирующих компонентов (i) и (ii), диспергированных в растворителе, с образованием, таким образом, диспергированных капель; и

(b) твердые частицы получают отверждением диспергированных капель.

Следовательно, с точки зрения другого аспекта, настоящее изобретение относится к указанному выше способу получения композиции С2С3 неупорядоченного сополимера полипропилена в котором указанный катализатор получают с получением комплекса (i) с формулой (I) и указанного выше сокатализатора (ii) формированием эмульсионной системы жидкость/жидкость, которая содержит раствор каталитических компонентов (i) и (ii), диспергированных в растворителе, и отверждением указанных диспергированных капель с образованием твердых частиц.

Используемый в описании настоящей патентной заявки термин группа С1-20 нециклического углеводородного остатка включает С1-20 алкил, С2-20 алкенил, С2-20 алкинил, С3-20 циклоалкил, С3-20 циклоалкенил, C6-20 арильные группы, С7-20 алкиларильные группы или С7-20 арилалкильные группы или, конечно же, смеси из этих групп, таких как циклоалкил, замещенный алкилом.

Если ясно не указано иное, предпочтительные группы С1-20 нециклических углеводородных остатков представляют С1-20 алкил, С4-20 циклоалкил, С5-20 циклоалкил-алкильные группы, С7-20 алкиларильные группы, С7-20 арилалкильные группы или C6-20 арильные группы, по существу С1-10 алкильные группы, C6-10 арильные группы, или С7-12 арилалкильные группы, например, С1-8 алкильные группы. Наиболее предпочтительными группами нециклических углеводородных остатков являются метильная, этильная, пропильная, изопропильная, третбутильная, изобутильная, C5-6-циклоалкильная, циклогексилметильная, фенильная или бензильная.

Используемый в описании настоящей патентной заявки термин гало включает фторо, хлоро, бромо и йодогруппы, в частности хлорогруппы, когда он относится к определению комплекса.

Степень окисления иона металла главным образом определяется природой указанного иона металла и стабильностью индивидуальных степеней окисления каждого иона металла.

Понятно, что в комплексах по настоящему изобретению ион металла М соединен координационно лигандами X, удовлетворяя, таким образом, валентности иона металла и заполняя его доступные координационные узлы. Природа этих σ-лигандов может сильно варьировать.

Такие катализаторы описаны в WO 2013/007650, который введен здесь ссылкой. Следовательно, предпочтительные применяемые комплексы по настоящему изобретению имеют формулу (II’) или (II):

где

М представляет цирконий или гафний;

каждый X - сигма-лиганд, предпочтительно каждый X независимо представляет атом водорода, атом галогена, С1-6 алкокси группу, С1-6 алкильную, фенильную или бензильную группу;

L - двухвалентный мостик, выбранный из -R'2C-, -R'2C-CR'2-, -R'2Si-, -R'2Si-SiR'2-, -R'2Ge-, где каждый R' независимо представляет атом водорода, С120-нециклический углеводородный остаток, три(С1-C20-алкил)силил, C620-арил, С720-арилалкил или С720-алкиларил;

каждый R2 или R2' представляет C1-10 алкильную группу;

R5' представляет C1-10 алкильную группу или Z'R3' группу;

R6 - водород или C1-10 алкильную группу;

R6' представляет С1-10 алкильную группу или C6-10 арильную группу;

R7 - водород, C1-6 алкильную группу или ZR3 группу;

R7' - водород или С1-10 алкильную группу;

Z и Z' независимо представляют О или S;

R3' представляет C1-10 алкильную группу, или C6-10 арильную группу, необязательно замещенную одной или более галогруппой;

R3 представляет C1-10-алкильную группу;

каждый n независимо представляет 0-4, например, 0, 1 или 2;

и каждый R1 независимо представляет группу С1-20 нециклического углеводородного остатка, например, C1-10 алкильную группу.

Дополнительные предпочтительные для применения комплексы по настоящему изобретению имеют формулу (III’) или (III):

М представляет цирконий или гафний;

каждый X - сигма-лиганд, предпочтительно каждый X независимо представляет атом водорода, атом галогена, С1-6 алкокси группу, C1-6 алкильную, фенильную или бензильную группу;

L - двухвалентный мостик, выбранный из -R'2C-, -R'2C-CR'2, -R'2Si-, -R'2Si-SiR'2-, -R'2Ge-, где каждый R' независимо представляет атом водорода, С1-C20-нециклический углеводородный остаток, или С3-C10-циклоалкинил;

R6 - водород или C1-10 алкильную группу;

R6' представляет C1-10 алкильную группу или C6-10 арильную группу;

R7 - водород, C1-6 алкил или ОС1-6 алкил;

R7' - водород или C1-10 алкильную группу;

Z' представляют О или S;

R3' представляет C1-10 алкильную группу, или C6-10 арильную группу, необязательно замещенную одной или более галогруппой;

n независимо представляет 0-4, например, 0, 1 или 2;

и каждый R1 независимо представляет C1-10 алкильную группу.

Дополнительные предпочтительные для применения комплексы по настоящему изобретению имеют формулу (IV’) или (IV):

М представляет цирконий или гафний;

каждый X - сигма-лиганд, предпочтительно каждый X независимо представляет атом водорода, атом галогена, С1-6 алкокси группу, C1-6 алкильную, фенильную или бензильную группу;

каждый R' независимо представляет атом водорода, С1-10 алкил или С3-7 циклоалкил;

R6 - водород или C1-10 алкильную группу;

R6' представляет С1-10 алкильную группу или C6-10 арильную группу;

R7 - водород, С1-6 алкил или OC1-6 алкил;

Z' представляют О или S;

R3' представляет С1-10 алкильную группу, или C6-10 арильную группу, необязательно замещенную одной или более галогруппой;

n независимо представляет 0, 1-2; и

и каждый R1 независимо представляет С3-8 алкильную группу.

Наиболее предпочтительные для применения комплексы по настоящему изобретению имеют формулу (V’) или (V):

где

каждый X - сигма-лиганд, предпочтительно каждый X независимо представляет атом водорода, атом галогена, C1-6 алкокси группу, С1-6 алкильную, фенильную или бензильную группу;

R' независимо представляет а С1-6 алкил или С3-10 циклоалкил;

R1 независимо представляет С3-8 алкил;

R6 - водород или С3-8 алкильную группу;

R6' представляет С3-8 алкильную группу или C6-10 арильную группу;

R3' представляет C1-6 алкильную группу или С6-C10 арильную группу, необязательно замещенную одной или более галогруппой; и

n независимо представляет 0, 1 или 2.

Конкретные соединения по настоящему изобретению включают:

Наиболее предпочтительно используют рац-анти-Me2Si(2-Me-4-(p-tBuPh)-Ind)(2-Me-4-Ph-5-OMe-6-tBu-Ind)ZrCl2.

Синтез этих материалов описан в WO 2013/007650.

Сокатализатор

Из предшествующего уровня техники хорошо известно, что для получения частиц активного катализатора в норме требуется использование сокатализатора. Для применения в настоящем изобретении подходят сокатализаторы, содержащие одно или более соединение металла 13 группы, такое как алюминийорганические соединения или бораты, используемые для активации металлоценовых катализаторов. Следовательно, сокатализатор предпочтительно представляет алюмоксан, такой как МАО. Также могут быть использованы боратные сокатализаторы. По существу предпочтительным является использование В(C6F5)3, C6H5N(CH3)2H:B(C6F5)4, (С6Н5)3С:В(C6F5)4 или Ni(CN)4[B(C6F5)3]42-. Подходящие сокатализаторы описаны в WO 2013/007650.

Подходящие количества сокатализаторов известны специалисту в области техники, к которой относится настоящее изобретение.

Получение

Катализатор, используемый для получения гетерофазных сополимеров по настоящему изобретению, в идеале обеспечивается в форме твердых частиц, но без подложки, то есть без использования внешнего носителя. Для обеспечения катализатора по настоящему изобретению в форме твердого вещества, но без использования внешнего носителя, предпочтительно использование эмульсионной системы жидкость-жидкость. Способ включает формирование диспергируемых каталитических компонентов (i) и (ii) в растворителе, и отверждение указанных диспергированных капель с получением твердых частиц.

В частности, способ включает получение раствора одного или более каталитического компонента; диспергирование указанного раствора в растворителе с получением эмульсии, в которой указанный один или более каталитический компонент присутствует в каплях дисперсной фазы; иммобилизацию каталитических компонентов в диспергированных каплях в отсутс