Система двигателя и способ для двигателя (варианты)
Иллюстрации
Показать всеИзобретение относится к двунаправленному снабженному клапаном аспиратору, обходящему компрессор системы впуска в системе двигателя. Предложены способы для двигателя. В одном случае регулируют интенсивность побудительного потока через снабженный клапаном аспиратор, обходящий компрессор системы впуска и имеющий первое окно вовлечения, соединяющее внешнюю сторону аспиратора с источником разрежения, и второе окно вовлечения, соединяющее сторону коллектора аспиратора с источником разрежения, причем первое окно вовлечения утоплено относительно номинального наклона аспиратора на основании требований в разрежении двигателя и давления во впускном коллекторе. Техническим результатом является пониженное энергопотребление, обусловленное использованием отсечного клапана аспиратора радиального течения, и формирование разрежения в условиях с наддувом и без наддува. 2 н. и 8 з.п. ф-лы, 8 ил.
Реферат
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящее изобретение относится к двунаправленному снабженному клапаном аспиратору, обходящему компрессор системы впуска в системе двигателя. В одном из примеров, интенсивность побудительного потока через аспиратор может регулироваться посредством отсечного клапана аспиратора, чтобы обеспечивать формирование разрежения в условиях без наддува, и чтобы обеспечивать поток рециркуляции компрессора наряду с формированием разрежения в условиях с наддувом.
УРОВЕНЬ ТЕХНИКИ
Турбонаддув двигателя предоставляет двигателю возможность выдавать мощность, подобную мощности двигателя с большим рабочим объемом. Таким образом, турбонаддув может расширять рабочую область двигателя. Турбонагнетатели действуют посредством сжатия всасываемого воздуха в компрессоре посредством турбины, приводимой в действие потоком выхлопных газов. В определенных условиях, скорость потока и коэффициент давления на компрессоре могут флуктуировать до уровней, которые могут иметь следствием шумовые возмущения, а в более серьезных случаях, проблемы исправной работы и ухудшение характеристик компрессора. Такой всплеск колебаний (помпаж) компрессора может ослабляться посредством одного или более перепускных клапанов компрессора (CBV). CBV могут подвергать рециркуляции сжатый воздух с выпуска компрессора на впуск компрессора и, таким образом, могут быть расположены в канале, который присоединен к впуску выше по потоку от компрессора и ниже по потоку от компрессора в некоторых примерах. В некоторых примерах, могут использоваться непрерывные CBV (CCBV), которые обеспечивают непрерывный и непрерывно переменный поток рециркуляции из ниже по потоку от компрессора в выше по потоку от компрессора. CCBV могут обеспечивать регулирование давления и предотвращение помпажа компрессора, а кроме того, могут предотвращать неприятный слышимый шум. Однако, включение в состав таких клапанов может добавлять значительные затраты на компоненты и эксплуатационные затраты в системы двигателя.
Двигатели также могут содержать один или более аспираторов, которые могут быть присоединены в системе двигателя, чтобы использовать поток воздуха двигателя для формирования разрежения, для использования различными потребляющими разрежение устройствами, которые приводятся в действие с использованием разрежения (например, усилителем тормозов). Аспираторы (которые, в качестве альтернативы, могут указываться ссылкой как эжекторы, диффузорные насосы, струйные насосы и эдукторы) являются пассивными устройствами, которые обеспечивают недорогое формирование разрежения, когда используются в системах двигателя. Величина разрежения, формируемого на аспираторе, может регулироваться посредством управления скоростью побудительного потока воздуха через аспиратор. Например, когда включены в систему впуска двигателя, аспираторы могут формировать разрежение с использованием энергии, которая иначе терялась бы на дросселирование, а сформированное разрежение может использоваться в устройствах с вакуумным силовым приводом, таких как усилители тормозов.
Несмотря на то, что аспираторы могут формировать разрежение с более низкой стоимостью и с улучшенной эффективностью по сравнению с вакуумными насосами с электроприводом или приводом от двигателя, может быть необходимым включать в состав отсечной клапан аспиратора для регулирования потока через аспиратор. Посредством регулирования величины открывания клапана, может меняться количество воздуха, текущего через аспиратор, и интенсивность потока воздуха, тем самым, регулируя формирование разрежения, по мере того, как меняются условия работы двигателя, такие как давление во впускном коллекторе. Однако, вновь, добавление клапанов в систему двигателя может добавлять значительные затраты на компоненты и на работу. Кроме того, несмотря на то, что створка или заслонка типичного отсечного клапана аспиратора может легко открываться во время одного направления потока через клапан, поток в противоположном направлении может прикладывать усилие в направлении, противоположном открыванию створки или заслонки, что может оказывать отрицательное влияние на работу клапана и/или повышать количество энергии, требуемой для открывания клапана.
Кроме того, обычно, аспираторы выполнены с кривой звукового/сверхзвукового расширения в одном направлении и с одиночным окном вовлечения для использования в максимальной мере разрежения, формируемого по мере того, как побудительный поток проходит через сходящееся-расходящееся сопло аспиратора. Для снижения затрат на производство, окно может быть создано посредством литьевого формования, и может иметь острые края (например, края, перпендикулярные оси побудительного потока аспиратора) вследствие вставки оснастки литьевого формования, которая формирует окно. Обратный поток через такой аспиратор может не добиваться того же самого звукового/сверхзвукового расширения вследствие срыва потока, вызванного острыми краями окна, а также вследствие аспиратора, проектируемого для звукового/сверхзвукового расширения только для одного направления потока.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Чтобы преодолеть некоторые из вышеприведенных проблем, авторы в материалах настоящего описания выявили, что аспиратор, присоединяющий впуск компрессора с впускным коллектором, может включать в себя первое окно вовлечения, соединяющее внешнюю сторону аспиратора с источником разрежения, и второе окно вовлечения, соединяющее сторону коллектора аспиратора с источником разрежения, и может быть выполнен, чтобы как кривая расширения от внешней стороны к стороне коллектора аспиратора, так и кривая расширения от стороны коллектора к внешней стороне аспиратора были кривыми звукового/сверхзвукового расширения. Например, кривая расширения от стороны коллектора к внешней стороне аспиратора может быть настроена на массовые плотности потока вблизи типичного состояния наддува двигателя. Соответственно, аспиратор может функционировать в качестве формирующего разрежение CBV в условиях с наддувом, чтобы специализированный CBV мог быть не включен в систему двигателя, чтобы преимущественно снижать затраты на комплектующие и производство. Чтобы минимизировать срыв потока, который, иначе, мог бы происходить в результате присоединения добавочного окна вовлечения в аспираторе, первое окно вовлечения может быть утопленным относительно номинального наклона аспиратора, и сторона первого окна вовлечения, более близкая к горловине аспиратора, может быть выступающей относительно номинального наклона аспиратора.
В одном из аспектов предложена система двигателя, содержащая:
аспиратор, соединяющий впуск компрессора с впускным коллектором и содержащий первое окно вовлечения, соединяющее внешнюю сторону аспиратора с источником разрежения, и второе окно вовлечения, соединяющее сторону коллектора аспиратора с источником разрежения, причем первое окно вовлечения утоплено относительно номинального наклона аспиратора; и
отсечной клапан аспиратора радиального течения, расположенный последовательно с аспиратором.
В одном из вариантов предложена система, в которой аспиратор содержит горловину между внешней стороной и стороной коллектора аспиратора, при этом сторона первого окна вовлечения ближе к горловине является выступающей относительно номинального наклона аспиратора.
В одном из вариантов предложена система, в которой второе окно вовлечения утоплено относительно номинального наклона аспиратора, при этом первое окно вовлечения утоплено на первую величину, а второе окно вовлечения утоплено на вторую величину, причем вторая величина меньше, чем первая величина.
В одном из вариантов предложена система, в которой при открытом отсечном клапане радиального течения направление потока, поступающего в клапан, является перпендикулярным направлению побудительного потока через аспиратор.
В одном из вариантов предложена система, в которой первый запорный клапан расположен в первом канале, соединяющем первое окно вовлечения с источником разрежения, при этом второй запорный клапан расположен во втором канале, соединяющем второе окно всасывания с источником разрежения.
В одном из вариантов предложена система, в которой третий канал соединяет источник разрежения с впускным коллектором через третий запорный клапан, при этом четвертый канал соединяет систему продувки паров топлива с первым и вторым каналами, при открытом клапане продувки бачка, расположенном в четвертом канале.
В одном из вариантов предложена система, в которой кривая расширения от стороны коллектора к внешней стороне аспиратора настроена на массовые плотности потока вблизи типичного состояния наддува двигателя.
В одном из вариантов предложена система, в которой длина конусообразной секции внешней стороны аспиратора больше, чем длина конусообразной секции стороны коллектора аспиратора, при этом обе из кривой расширения от внешней стороны к стороне коллектора аспиратора и кривой расширения от стороны коллектора аспиратора к внешней стороне аспиратора являются кривыми звукового/сверхзвукового расширения.
В одном из вариантов предложена система, в которой при открытом отсечном клапане аспиратора поток всасывания поступает в один или более из первого, второго и третьего каналов на основании давления во впускном коллекторе и давления в вакуумном резервуаре, при этом при открытом клапане продувки бачка и открытом отсечном клапане аспиратора, поток всасывания поступает в четвертый канал на основании давления во впускном коллекторе и давления в бачке для паров топлива.
В одном из вариантов предложена система, в которой при открытом отсечном клапане аспиратора поток всасывания поступает во второй канал, но не в первый канал, когда давление во впускном коллекторе меньше, чем пороговое значение, при этом поток всасывания поступает в первый канал, но не во второй канал, когда давление во впускном коллекторе больше, чем пороговое значение, при этом поток всасывания поступает в третий канал, когда давление в вакуумном резервуаре больше, чем давление во впускном коллекторе.
В одном из дополнительных аспектов предложен способ для двигателя, включающий в себя этап, на котором:
регулируют интенсивность побудительного потока через снабженный клапаном аспиратор, обходящий компрессор системы впуска и имеющий первое окно вовлечения, соединяющее внешнюю сторону аспиратора с источником разрежения, и второе окно вовлечения, соединяющее сторону коллектора аспиратора с источником разрежения, причем первое окно вовлечения утоплено относительно номинального наклона аспиратора, на основании требований в разрежении двигателя и давления во впускном коллекторе.
В одном из вариантов предложен способ, в котором регулировка интенсивности побудительного потока через аспиратор включает в себя этап, на котором регулируют отсечной клапан аспиратора радиального течения, расположенный последовательно с аспиратором выше по потоку от побудительного окна внешней стороны аспиратора, при этом побудительный поток поступает в отсечной клапан аспиратора в направлении, перпендикулярном оси побудительного потока аспиратора, когда отсечной клапан аспиратора открыт.
В одном из вариантов предложен способ, дополнительно включающий в себя этапы, на которых:
открывают в условиях без наддува отсечной клапан аспиратора, когда давление во впускном коллекторе больше, чем пороговое значение; и
открывают в условиях с наддувом отсечной клапан аспиратора, когда помпаж компрессора больше, чем пороговое значение.
В одном из вариантов предложен способ, дополнительно включающий в себя этап, на котором открывают отсечной клапан аспиратора в ответ на срочное требование в пополнении разрежения в условиях с наддувом и без наддува.
В одном из вариантов предложен способ, в котором аспиратор также обходит основной дроссель, расположенный ниже по потоку от компрессора системы впуска и выше по потоку от впускного коллектора, при этом способ дополнительно включает в себя этап, на котором регулируют основной дроссель на основании требуемой интенсивности потока воздуха двигателя.
В одном из еще дополнительных аспектах предложен способ для двигателя, включающий в себя этапы, на которых:
выключают наддув при неисправности дросселя и направляют всасываемый воздух через снабженный клапаном аспиратор, обходящий компрессор системы впуска и имеющий первое окно вовлечения, соединяющее внешнюю сторону аспиратора с источником разрежения, и второе окно вовлечения, соединяющее сторону коллектора аспиратора с источником разрежения, причем первое окно вовлечения утоплено относительно номинального наклона аспиратора.
В одном из вариантов предложен способ, в котором направление всасываемого воздуха через аспиратор включает в себя этап, на котором открывают отсечной клапан аспиратора радиального течения, расположенный последовательно с аспиратором выше по потоку от побудительного окна внешней стороны аспиратора, при этом побудительный поток поступает в отсечной клапан аспиратора в направлении, перпендикулярном оси побудительного потока аспиратора, когда отсечной клапан аспиратора открыт.
В одном из вариантов предложен способ, дополнительно включающий в себя этапы, на которых при правильной работе дросселя управляют отсечным клапаном аспиратора на основании требований в разрежении двигателя и давления во впускном коллекторе.
В одном из вариантов предложен способ, в котором управление отсечным клапаном аспиратора на основании требований в разрежении двигателя и давления во впускном коллекторе включает в себя этапы, на которых:
открывают в условиях без наддува отсечной клапан аспиратора, когда давление во впускном коллекторе больше, чем пороговое значение; и
открывают в условиях с наддувом отсечной клапан аспиратора, когда помпаж компрессора больше, чем пороговое значение.
В одном из вариантов предложен способ, дополнительно включающий в себя этап, на котором открывают отсечной клапан аспиратора в ответ на срочное требование в пополнении разрежения в условиях с наддувом и без наддува.
Кроме того, авторы в материалах настоящего описания выявили, что двунаправленный поток через аспиратор может усиливаться посредством использования отсечного клапана аспиратора радиального течения. Тогда как побудительный поток может поступать в типичные отсечные клапаны аспиратора, не отклоняясь от тракта побудительного потока через аспиратор (например, створка или заслонка этих клапанов может открываться, чтобы побудительный поток мог поступать в проем, который является соосным с осью побудительного потока аспиратора), побудительный поток может поступать в отсечной клапан радиального течения в направлении, перпендикулярном направлению побудительного потока через аспиратор. Соответственно, использование отсечного клапана радиального течения может снижать энергопотребление клапана, а также срыв/противодавление потока, которые могут возникать, когда используются отсечные клапаны аспиратора нерадиального течения.
Поэтому, некоторые из технических результатов, достигаемых системами двигателя и способами, описанными в материалах настоящего описания, включают в себя пониженные затраты на производство и комплектующие вследствие не включения в состав специализированного CBV, пониженное энергопотребление, обусловленное использованием отсечного клапана аспиратора радиального течения, и формирование разрежения в условиях с наддувом и без наддува.
Следует понимать, что раскрытие изобретения, приведенное выше, представлено для ознакомления с упрощенной формой подборки концепций, которые дополнительно описаны в подробном описании. Не предполагается идентифицировать ключевые или существенные признаки заявленного предмета изобретения, объем которого однозначно определен формулой изобретения, которая сопровождает подробное описание. Более того, заявленный предмет изобретения не ограничен вариантами осуществления, которые исключают какие-либо недостатки, отмеченные выше или в любой части этого описания.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг. 1 показывает схематичное изображение первого варианта осуществления примерной системы двигателя, содержащей двунаправленный снабженный клапаном аспиратор, обходящий устройство наддува.
Фиг. 2 показывает подробный схематичный вид двунаправленного снабженного клапаном аспиратора с двумя окнами всасывания, который может быть включен в систему двигателя по фиг. 1, в том числе, детализированный вид A окна вовлечения внешней стороны аспиратора и вид B в разрезе, показывающий поперечный разрез компоновки аспиратора непосредственно ниже по потоку от отсечного клапана аспиратора радиального течения.
Фиг. 3A показывает подробный схематичный вид потока всасывания в двунаправленный снабженный клапаном аспиратор по фиг. 2 в условиях с наддувом.
Фиг. 3B показывает подробный схематичный вид потока всасывания в двунаправленный снабженный клапаном аспиратор по фиг. 2 в условиях без наддува.
Фиг. 4 показывает высокоуровневую блок-схему последовательности операций способа, иллюстрирующую процедуру, которая может быть реализована вместе с системой двигателя по фиг. 1 и компоновкой аспираторов по фиг. 2 для управления работой отсечного клапана аспиратора и впускного дросселя, чтобы добиваться требуемого побудительного потока через двунаправленный снабженный клапаном аспиратор.
Фиг. 5 показывает высокоуровневую блок-схему последовательности операций способа, иллюстрирующую процедуру, которая может быть реализована для определения требуемой интенсивности побудительного потока через двунаправленный снабженный клапаном аспиратор в условиях без наддува, для использования вместе со способами по фиг. 4 и 7.
Фиг. 6 показывает высокоуровневую блок-схему последовательности операций способа, иллюстрирующую процедуру, которая может быть реализована для определения требуемой интенсивности побудительного потока через двунаправленный снабженный клапаном аспиратор в условиях с наддувом, для использования вместе со способами по фиг. 4 и 7.
Фиг. 7 показывает высокоуровневую блок-схему последовательности операций способа, иллюстрирующую процедуру, которая может быть реализована для управления отсечными клапанами аспиратора, который может использоваться вместе со способами по фиг. 4-6.
ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ
Предложены способы и системы для управления интенсивностью побудительного потока через двунаправленный снабженный клапаном аспиратор, обходящий устройство наддува, расположенное на впуске системы двигателя, такой как система двигателя, изображенная на фиг. 1. Подробный вид примерного аспиратора, который может быть включен в систему двигателя по фиг. 1, приведен на фиг. 2, и подробный вид аспиратора по фиг. 2 в условиях с наддувом и условий без наддува соответственно показан на фиг. 3A и 3B. В зависимости от условий работы двигателя, и от того, присутствуют ли условия неисправности дросселя, и активен ли наддув, различные средства управления могут приводиться в действие, чтобы добиваться требуемой интенсивности потока через двунаправленный снабженный клапаном аспиратор (например, смотрите способ по фиг. 4). Например, требуемая интенсивность побудительного потока через двунаправленный снабженный клапаном аспиратор может определяться в соответствии со способом по фиг. 5 в условиях без наддува и в соответствии со способом по фиг. 6 в условиях с наддувом. Требуемая интенсивность объединенного побудительного потока через компоновку аспиратора может зависеть от требований пополнения разрежения и MAP в условиях без наддува, тогда как она может зависеть от требований пополнения разрежения и уровня текущего или ожидаемого помпажа компрессора в условиях с наддувом. Состояние/положение отсечного клапана аспиратора (ASOV), расположенного последовательно с двунаправленным аспиратором, затем может управляться, чтобы добиваться требуемой интенсивности побудительного потока, например, изображенным в способе по фиг. 7 образом.
С обращением к фиг. 1, она показывает первый вариант осуществления системы 10 двигателя, включающей в себя двигатель 12. В представленном примере, двигатель 12 является двигателем с искровым зажиганием транспортного средства, двигатель включает в себя множество цилиндров (не показаны). События сгорания в каждом цилиндре приводят в движение поршень, который, в свою очередь, вращает коленчатый вал, как хорошо известно специалистам в данной области техники. Кроме того, двигатель 12 может включать в себя множество клапанов двигателя, для управления впуском и выпуском газов в множестве цилиндров.
Двигатель 12 включает в себя систему 46 управления. Система 46 управления включает в себя контроллер 50, который может быть любой электронной системой управления системы двигателя или транспортного средства, в котором установлена система двигателя. Контроллер 50 может быть выполнен с возможностью принимать управляющие решения по меньшей мере частично на основании впускного сигнала с одного или боле датчиков 51 в пределах системы двигателя и может управлять исполнительными механизмами 52 на основании управляющих решений. Например, контроллер 50 может хранить машиночитаемые команды в памяти, и исполнительные механизмы 52 могут управляться посредством выполнения команд.
Двигатель 12 включает в себя систему 23 впуска двигателя. Система 23 впуска двигателя включает в себя основной воздушный впускной дроссель 22, присоединенный по текучей среде к впускному коллектору 24 двигателя вдоль впускного канала 18. Воздух может поступать во впускной канал 18 из системы впуска воздуха, включающей в себя воздушный фильтр 33 в сообщении с окружающей средой транспортного средства. Положение основного дросселя 22 может меняться контроллером 50 посредством сигнала, выдаваемого на электродвигатель или привод, заключенный основным дросселем 22, конфигурацией, которая обычно указывается ссылкой как электронное управление дросселем. Таким образом, основной дроссель 22 может эксплуатироваться, чтобы менять всасываемый воздух, выдаваемый во впускной коллектор и множество цилиндров двигателя из ниже по потоку от устройства наддува, и чтобы менять долю всасываемого воздуха, втекающего обратно во впускной канал выше по потоку от устройства наддува во время определенных условий, как будет детализировано ниже.
Тогда как механизированные дроссели часто выполнены, чтобы устанавливаться по умолчанию в открытое положение 6° или 7°, когда без питания, например, так чтобы двигатель мог принимать достаточный поток воздуха, чтобы завершить текущую поездку даже в случае неисправности управления электронным дросселя (иногда указываемого ссылкой как операция «возврата в исходное положение»), дроссель 22 может иметь полностью закрытое положение по умолчанию. Полностью закрытое положение по умолчанию может использоваться вместе с двунаправленным снабженным клапаном аспиратором, описанным в материалах настоящей заявкой, так как побудительный поток через аспиратор может быть достаточным в случае неисправности управления электронным дросселем. Таким образом, может устраняться дорогостоящее частично открытое положение без питания дросселя.
В примерном варианте осуществления, показанном на фиг. 1, датчик 58 массового расхода воздуха (MAF) присоединен во впускном канале 18 для выдачи сигналов касательного массового расхода воздуха во впускном канале в контроллер 50. В изображенном примере, датчик 58 MAF выдает сигнал касательно массового расхода воздуха на впуске впускного канала 18 выше по потоку от воздушного фильтра 33. Однако, следует принимать во внимание, что датчики MAF могут быть присоединены где-нибудь еще в системе впуска или системе двигателя, а кроме того, может быть множество датчиков MAF, расположенных в системе впуска или системе двигателя.
Датчик 60 может быть присоединен к впускному коллектору 24 для выдачи сигнала касательно давления воздуха в коллекторе (MAP) и/или разрежения в коллекторе (MANVAC) в контроллер 50. Например, датчик 60 может быть датчиком давления или измерительным датчиком, считывающим разрежение, и может передавать данные в качестве отрицательного разрежения (например, давления) в контроллер 50. Датчик 59 может быть присоединен к впускному каналу 18 выше по потоку от компрессора для выдачи сигнала касательно барометрического давления (BP) в контроллер 50. Датчик 68 давления на впуске компрессора (CIP) может быть расположен ниже по потоку от места соединения впускного канала 18 и канала 95 и выше по потоку от компрессора. Датчик 68 CIP может выдавать сигнал касательно CIP в контроллер 50.
В некоторых примерах, дополнительные датчики давления/разрежения могут быть присоединены в другом месте в системе двигателя, чтобы выдавать сигналы касательно давления/разрежения на других участках системы двигателя в контроллер 50.
Как показано, система 10 двигателя является системой двигателя с наддувом, включающей в себя устройство наддува. В настоящем примере, устройство наддува является компрессором 90 для наддува заряда всасываемого воздуха, принятого по впускному каналу 18. Охладитель 26 наддувочного воздуха (или промежуточный охладитель) присоединен ниже по потоку от компрессора 90 для охлаждения подвергнутого наддуву заряда воздуха перед подачей во впускной коллектор. В вариантах осуществления, где устройство наддува является турбонагнетателем, компрессор 90 может быть присоединен к и приводиться в движение турбиной с приводом от выхлопной системы (не показана). Кроме того, компрессор 90 может, по меньшей мере частично, приводиться в действие электрическим двигателем или коленчатым валом двигателя.
Система 10 двигателя, кроме того, включает в себя систему 71 продувки паров топлива. Система 71 продувки паров топлива включает в себя топливный бак 61, который хранит летучее жидкое топливо, сжигаемое в двигателе 12. Чтобы избежать выделения паров топлива из топливного бака и в атмосферу, топливный бак вентилируется в атмосферу через бачок 63 для паров топлива. Бачок для паров топлива может содержать в себе адсорбирующий материал со значительной емкостью для накопления углеводородных, спиртовых и/или эфирных видов топлива в адсорбированном состоянии; например, он может быть наполнен гранулами активированного угля и/или другим материалом с большой площадью поверхности. Тем не менее, продолжительное поглощение паров топлива рано или поздно будет снижать емкость бачка для паров топлива для дальнейшего накопления. Поэтому, бачок для паров топлива может периодически продуваться от адсорбированного топлива, как дополнительно описано в дальнейшем. В конфигурации, показанной на фиг. 1, клапан 65 продувки бачка управляет продувкой паров топлива из бачка во впускной коллектор по каналу 86 всасывания, присоединенному к впускам вовлечения двунаправленного аспиратора, как будет описано ниже.
Когда удовлетворены условия продувки, такие как когда бачок насыщен, пары, накопленные в бачке 63 для паров топлива могут продуваться в систему впуска (во впускной канал выше по потоку от компрессора или во впускной коллектор 24, в зависимости от направления потока через двунаправленный аспиратор) посредством открывания клапана 65 продувки бачка в условиях, где открыт клапан, управляющий потоком через аспиратор. Несмотря на то, что показан одиночный бачок 63, следует принимать во внимание, что любое количество бачков может быть присоединено к системе 10 двигателя. В одном из примеров, клапан 65 продувки бачка может быть электромагнитным клапаном, при этом открывание или закрывание клапана выполняется посредством приведения в действие соленоида продувки бачка. Следует принимать во внимание, что клапан 65 может управляться на основании перепадов давления внутри системы двигателя; например, клапан 65 может закрываться, когда давление в канале 89 больше, чем давление в системе 71 продувки паров, для предотвращения обратного потока из канала 89 в систему 71 продувки паров. Давление в канале 89 может определяться на основании сигнала с датчика давления, расположенного в канале 89, или, в качестве альтернативы, давление в канале 89 может логически выводиться на основании сигналов с различных датчиков в пределах системы двигателя и/или на основании условий работы двигателя. Дополнительно или в качестве альтернативы, запорный клапан может быть расположен в канале 86, чтобы предотвращать обратный поток.
Бачок 63 дополнительно включает в себя в себя вентиляционный канал 67 для направления газов из бачка 63 в атмосферу при накоплении или улавливании паров топлива из топливного бака 26. Вентиляционный канал 67 также может предоставлять свежему воздуху возможность отбираться в бачок 63 для паров топлива при продувке накопленных паров топлива в систему впуска через канал 86. Несмотря на то, что этот пример показывает вентиляционный канал 67, сообщающийся со свежим ненагретым воздухом, также могут использоваться различные модификации. Вентиляционный канал 67 может включать в себя клапан 69 вентиляции бачка для регулирования потока воздуха и паров между бачком 63 и атмосферой. Как показано, датчик 49 давления может быть расположен в бачке 63 и может выдавать сигнал касательно давления в бачке в контроллер 50. В других примерах, датчик 49 давления может быть расположен где-нибудь еще, например, в канале 86.
Система 10 двигателя дополнительно включает в себя компоновку 180 двунаправленного снабженного клапаном аспиратора. В изображенном варианте осуществления, компоновка 180 двунаправленного снабженного клапаном аспиратора включает в себя аспиратор 150, который может быть эжектором, аспиратором, эдуктором, струйным насосом или подобным пассивным устройством. По сравнению с аспираторами, включенными в системы двигателя для формирования разрежения только в условиях без наддува, аспиратор 150 может быть относительно большим, чтобы обеспечивать высокий уровень обратного побудительного потока, который может происходить во время помпажа компрессора.
Канал 95 соединяет компоновку 180 аспиратора с впускным каналом 18 в точке ниже по потоку от фильтра 33 и выше по потоку от компрессора 90. Кроме того, как показано на фиг. 1, канал 87 соединяет компоновку 180 аспираторов с впускным коллектором 24. Аспиратор 150 является трехоконным устройством, включающим в себя побудительное окно внешней стороны, побудительное окно стороны коллектора, окно вовлечения внешней стороны и окно вовлечения стороны коллектора. Например, как может быть видно на подробном виде по фиг. 2, аспиратор 150 может включать в себя побудительное окно 153 внешней стороны, побудительное окно 157 стороны коллектора, окно 156 вовлечения внешней стороны, и окно 154 вовлечения стороны коллектора. Как дополнительно описано ниже, побудительный поток через аспиратор порождает поток всасывания на одном из окон вовлечения аспиратора (в зависимости от направления побудительного потока), тем самым, формируя разрежение, например, которое может накапливаться в вакуумном резервуаре и выдаваться в различные потребители разрежения системы двигателя. Аспиратор 150 может иметь геометрию течения, которая дает возможность формирования разрежения во время побудительного потока в обоих направлениях: побудительный поток из побудительного окна внешней стороны в побудительное окно стороны коллектора (который может указываться ссылкой как «прямой поток» через аспиратор) может формировать разрежение, вызывая поток всасывания в окно вовлечения стороны коллектора, тогда как побудительный поток из побудительного окна внешней стороны в побудительное окно внешней стороны (который может указываться ссылкой как «обратный поток» через аспиратор) может формировать разрежение, вызывая поток всасывания в окно вовлечения внешней стороны. Например, как видно на фиг. 2, аспиратор может иметь сходящуюся-расходящуюся геометрию, содержащую две секции в форме по существу усеченного конуса, расположенных соосно и соединенных друг с другом на своих соответствующих самых узких в поперечнике концах, чтобы формировать единую цельную сходящуюся-расходящуюся трубку Вентури. Область, где два самых узких в поперечнике конца секций в форме усеченного конуса соединяются вместе, может указываться ссылкой как горловина 155 аспиратора, максимальное сужение побудительного потока через аспиратор 150 может происходить на горловине 155, горловина 155 может быть точкой, в которой диаметр потока аспиратора является самым узким.
Сходящаяся часть типичных аспираторов, которые предназначены для дешевого и быстрого производства, и для использования в системах с однонаправленным потоком, может иметь форму прямоугольного раструба. Однако, такая геометрия течения может не быть уместной для двунаправленного аспиратора, описанного в материалах настоящего описания, который должен добиваться требуемого функционирования во время как прямого, так и обратного побудительного потока. Например, двунаправленный аспиратор, описанный в материалах настоящего описания, может требовать кривой звукового/сверхзвукового расширения для потока в обоих направлениях. Кривой для внешней (сходящейся) части аспиратора может быть необходимо тщательно регулироваться под массовые плотности потока вблизи типичного состояния наддува двигателя вследствие функционирования этой части аспиратора при обратном потоке через аспиратор (который может происходить в условиях с наддувом в зависимости от состояния ASOV). В одном из примеров, типичное состояние наддува двигателя может включать в себя приведение в движение двигателем от 1,0 до 1,5 литров с турбонаддувом транспортного средства среднего размера на скорости 100 километров в час.
Следует принимать во внимание, что, чтобы формировать разрежение сверх окружающей среды при обратном потоке через аспиратор, значительный наддув может требоваться для формирования достаточной скорости потока на стороне расширения. Требуемая величина наддува и величина наддува, которая обычно имеется в распоряжении, зависят от используемых двигателя и транспортного средства. Что касается большого транспортного средства с двигателем малого рабочего объема, транспортное средство будет часто эксплуатироваться с максимальным наддувом и, таким образом, регулировка внешней части аспиратора может быть одноэтапным процессом по той причине, что конструкция может быть основана на воздухе с единой плотностью, выходящем из отверстия, распространяясь со сверхзвуковой скоростью. Что касается транспортного средства с умеренным рабочим объемом, однако, технологический процесс должен размещать какой-нибудь согласующий стык на стороне двигателя (например, коллектора) аспиратора и должен избегать вторжения заусенцев в поток (например, вторжения заусенцев, которое может возникать, когда выполняется типичное литьевое формование). Кроме того, в таком транспортном средстве, форме выпуска отверстия нужно быть спроектированной так, чтобы она поддерживала идеальное увеличение общего уровня наддува в условиях крейсерского хода (например, при движении на 40-60 милях в час по дороге с небольшими уклонами). Так как звуковой поток лобовой атаки может не обеспечиваться, может быть необходимым осуществлять регулировку получения разрежения во время умеренных ускорений.
В изображенном примере, секция в форме усеченного конуса внешней стороны аспиратора имеет первую длину, представляющую собой расстояние от ее участка с наибольшим диаметром до его участка с наименьшим диаметром. Подобным образом, секция в форме усеченного конуса стороны коллектора аспиратора имеет вторую длину, представляющую расстояние от его самого широкого в поперечнике участка до его самого узкого в поперечнике участка, и первая длина может быть большей, чем вторая длина, как показано на фиг. 2. Кроме того, стороны секции в форме усеченного конуса, формирующей сходящуюся часть аспиратора, ориентированы под первым углом от оси 147 побудительного потока аспиратора, тогда как стороны секции в