Способ для двигателя (варианты) и система

Иллюстрации

Показать все

Изобретение может быть использовано в двигателях внутреннего сгорания. Способ для двигателя (10) заключается в том, что направляют воздух из компрессора (162) через теплообменник (166) в камеру (30) сгорания двигателя. Теплообменник (166) содержит емкость для накопления конденсата. Передают конденсат, накопленный в емкости через канал, присоединенный к камере сгорания (30). Накапливают часть сжатого воздуха в накопителе. При выходной мощности двигателя (10), меньшей заданной величины, направляют часть накопленного воздуха через канал в камеру сгорания (30). Накопленный воздух направляют через канал только при наличии конденсата и выходной мощности двигателя ниже заданной величины. Раскрыты варианты способа для двигателя и система. Технический результат заключается в предотвращении неровной работы двигателя и в предотвращении нежелательного охлаждения каталитического нейтрализатора. 4 н. и 11 з.п. ф-лы, 16 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Изобретение относится к выявлению загрязнений в конденсате, образованных естественным образом и накопленных в охладителе наддувочного воздуха, присоединенном к впускному воздушному тракту и/или выпускному воздушному тракту двигателя, в силу чего предпринимаются действия в ответ на выявление.

УРОВЕНЬ ТЕХНИКИ

Широко используются двигатели с наддувом, в которых воздух сжимается воздушным компрессором, механизированным турбиной, расположенной в выпуске двигателя, или механизированным коленчатым валом двигателя. Сжатие будет повышать температуру воздуха. Следовательно, сжатый воздух часто направляется через теплообменник, обычно указываемый ссылкой как охладитель наддувочного воздуха, перед поступлением в систему впуска воздуха двигателя. В условиях высокой влажности окружающего воздуха, конденсат будет формироваться в теплообменнике. В некоторых предшествующих подходах, конденсат всегда направляется в выпуск двигателя, а в других предшествующих подходах, конденсат всегда направляется в воздухозаборник двигателя.

Авторы в материалах настоящего описания выявили, что неизменное направление конденсата в выпуск или воздухозаборник независимо от условий работы двигателя и независимо от того, есть ли загрязнения в конденсате, приводили к нежелательной работе двигателя или каталитического нейтрализатора. Например, неизменное направление конденсата в систему впуска воздуха может приводить к неровной работе двигателя в некоторых условиях работы двигателя. А неизменное направление конденсата в выпуск выше по потоку от каталитического нейтрализатора на низких или средних нагрузках двигателя может приводить к нежелательному охлаждению каталитического нейтрализатора. Кроме того, если моторное масло присутствует в конденсате, направление конденсата в каталитический нейтрализатор может приводить к нежелательной работе каталитического нейтрализатора. Кроме того, выбрасывание моторного масла посредством его сбрасывания в выпуск двигателя ниже по потоку от каталитического нейтрализатора является нежелательным с ракурса выбросов или эффективности.

РАСКРЫТИЕ ИЗОБРЕТЕНИЯ

Авторы в материалах настоящего описания решили указанные проблемы способом, который, в одном из примеров, содержит: направление воздуха из компрессора через теплообменник в камеру сгорания двигателя; передачу конденсата, образованного в теплообменнике, через канал, присоединенный к камере сгорания; накапливают порцию сжатого воздуха в накопителе; и при выходной мощности двигателя, меньшей заданной величины, передачу части накопленного воздуха через канал в камеру сгорания. Если накопленный воздух не используется, конденсат имел бы тенденцию накапливаться на поверхностях, и могла бы происходить в результате плохая работа двигателя. На более высоких нагрузках, должна быть достаточная скорость воздуха для предотвращения такого накопления, поэтому, накопленный воздух может быть не нужен на высоких нагрузках.

В одном из вариантов предложен способ, в котором указанный накопленный воздух передают через указанный канал только при наличии указанного конденсата и указанной выходной мощности двигателя ниже указанной заданной величины.

В одном из вариантов предложен способ, в котором указанная заданная величина указанной выходной мощности двигателя соответствует условиям двигателя при высокой нагрузке.

В одном из вариантов предложен способ, в котором указанный теплообменник представляет собой теплообменник воздух-воздух и содержит емкость для накопления указанного конденсата.

В одном из вариантов предложен способ, в котором каждый из указанных перепускных каналов присоединен к одной из множества впускных направляющих, каждая из которых сообщается с соответствующей одной из указанных камер сгорания.

В одном из вариантов предложен способ, в котором указанная емкость сообщается с каждым из указанных перепускных каналов.

В одном из вариантов предложен способ, в котором указанный накопитель сообщается с указанной емкостью.

В одном из дополнительных аспектов предложен способ для двигателя, содержащего выпуск, присоединенный к первичному каталитическому нейтрализатору, включающий в себя этапы, на которых:

направляют воздух из воздушного компрессора через теплообменник в камеру сгорания двигателя;

собирают конденсат, образованный в указанном теплообменнике; и

накапливают часть указанного сжатого воздуха в накопителе;

передают указанный конденсат через канал в указанную камеру сгорания, когда указанный конденсат содержит загрязнение; и

при выходной мощности двигателя, меньшей заданной величины, передают часть указанного накопленного воздуха через канал в указанную камеру сгорания, чтобы вытолкнуть указанный конденсат в указанную камеру сгорания.

В одном из вариантов предложен способ, в котором указанный накопленный воздух передается через указанный канал, только при наличии конденсата в указанном канале.

В одном из вариантов предложен способ, дополнительно включающий в себя этапы, на которых передают указанный конденсат в первичный каталитический нейтрализатор, когда выходная мощность двигателя находится выше заданной величины, и указанный конденсат по существу свободен от указанного загрязнения, а первичный каталитический нейтрализатор находится выше заданной температуры.

В одном из вариантов предложен способ, в котором выходную мощность двигателя снижают, когда хладагент двигателя обнаружен в указанном конденсате.

В одном из вариантов предложен способ, в котором указанный компрессор приводится в движение турбиной, расположенной в выпуске двигателя.

В одном из вариантов предложен способ, в котором указанный компрессор приводится в движение механическим соединением с коленчатым валом или распределительным валом двигателя.

В одном из еще дополнительных аспектов предложена система, содержащая:

двигатель, содержащий множество камер сгорания, воздушный впускной коллектор и впускные направляющие, присоединяющие указанный коллектор к указанным впускным направляющим, и выпуск, присоединенный к первичному каталитическому нейтрализатору;

турбонагнетатель, содержащий турбину, присоединенную к указанному выпуску, и компрессор, приводимый в движение указанной турбиной;

теплообменник, содержащий впуск, присоединенный к указанному компрессору, и выпуск, присоединенный к указанным камерам сгорания через указанный впускной коллектор и указанные впускные направляющие;

емкость, присоединенную к указанному теплообменнику и множеству перепускных каналов, каждый присоединен между указанной емкостью и каждой из указанных впускных направляющих, чтобы направлять конденсат в указанные камеры сгорания;

накопитель, содержащий впуск, присоединенный к указанному компрессору, и выпуск, присоединенный к каждому из указанных перепускных каналов; и

контроллер, управляющий потоком воздуха от указанного накопителя через указанные перепускные каналы, при выходной мощности двигателя, меньшей заданной величины, чтобы нагнетать указанный конденсат в каждую из указанных впускных направляющих.

В одном из вариантов предложена система, в которой указанный контроллер прекращает поток воздуха от указанного аккумулятора через указанные перепускные каналы, когда указанная выходная мощность двигателя выше указанной заданной величины.

В одном из вариантов предложена система, дополнительно содержащая выпуск двигателя, присоединенный к выпуску одной или более указанных камер сгорания, и соединение между указанной емкостью и местоположением в указанном выпуске ниже по потоку от указанного каталитического нейтрализатора.

В одном из вариантов предложена система, в которой указанный контроллер передает указанный конденсат в указанное местоположение ниже по потоку от указанного каталитического нейтрализатора и прекращает указанный поток воздуха от указанного накопителя через указанные перепускные каналы при указанной выходной мощности двигателя ниже указанной заданной величины в конкретном рабочем состоянии.

В одном из вариантов предложена система, в котором указанное конкретное рабочее состояние включает в себя давление в указанном накопителе ниже порогового значения.

В одном из вариантов предложена система, дополнительно содержащий выпуск двигателя, присоединенный к выпуску одной или более указанных камер сгорания, и соединение между указанной емкостью и местоположением в указанном выпуске ниже по потоку от указанного каталитического нейтрализатора.

В одном из вариантов предложена система, в которой указанный контроллер передает указанный конденсат в указанное местоположение выше по потоку от указанного каталитического нейтрализатора и прекращает указанный поток воздуха из указанного накопителя через указанные перепускные каналы, когда указанная выходная мощность двигателя выше указанной заданной величины, а температура указанного каталитического нейтрализатора выше заданной величины.

В еще одном примере, когда масло не выявлено в конденсате, он может направляться в выпуск двигателя выше по потоку от каталитического нейтрализатора, чтобы охлаждать каталитический нейтрализатор. Когда масло присутствует в конденсате, он направляется в двигатель для сгорания. А на низких нагрузках двигателя, накопленный воздух также вводится с конденсатом.

Вышеприведенные преимущества и другие преимущества и признаки настоящего описания будут без труда очевидны из последующего подробного описания, когда воспринимаются по отдельности или в связи с прилагаемыми чертежами. Следует понимать, что раскрытие изобретения, приведенное выше, представлено для ознакомления с упрощенной формой подборки концепций, которые дополнительно описаны в подробном описании. Не предполагается идентифицировать ключевые или существенные признаки заявленного предмета изобретения, объем которого однозначно определен формулой изобретения, которая сопровождает подробное описание. Более того, заявленный предмет изобретения не ограничен вариантами осуществления, которые исключают какие-либо недостатки, отмеченные выше или в любой части этого описания.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Преимущества, описанные в материалах настоящего описания, будут полнее понятны по прочтению примера варианта осуществления, указанного в материалах настоящего описания как описание предпочтительных вариантов осуществления изобретения, когда воспринимаются по отдельности или со ссылкой на чертежи, на которых:

фиг. 1 - схематичное изображение примерной системы двигателя, содержащей охладитель наддувочного воздуха;

фиг. 2 - схематичное изображение по фиг. 1, показывающее примерные магистрали для конденсата;

фиг. 3 - примерная сдвоенная система впуска, содержащая теплообменник и емкость, согласно настоящему изобретению;

фиг. 4 показывает подробнее примерные емкость и дозирующий клапан.

фиг. 5 - блок-схема последовательности операций примерного способа переключения между режимами работы, чтобы регулировать местоположение, куда направляется конденсат, в ответ на условия работы двигателя;

фиг. 6 - блок-схема последовательности операций способа первого режима работы, иллюстрирующая примерный способ направления конденсата в воздухозаборник двигателя;

фиг. 7 - блок-схема последовательности операций способа второго и третьего режимов работы, иллюстрирующая примерный способ направления конденсата в выпуск двигателя;

фиг. 8 - график, показывающий примерные регулировки клапана, основанные на условиях работы двигателя;

фиг. 9-12 показывают примерную систему управления конденсатом согласно второму варианту осуществления, в которой накопитель включен в состав для содействия маршрутизации указанного конденсата;

фиг. 13 иллюстрирует примерный способ маршрутизации конденсата с использованием накопителя;

фиг. 14 иллюстрирует примерный способ заполнения накопителя сжатым газом; и

фиг. 15 и 16 показывают третий вариант осуществления системы управления конденсатом, в которой конденсат накапливается внутри впускного коллектора. Фиг. 3, 4, 9-12 и 15-16 начерчены приблизительно в масштабе, хотя могут использоваться и другие относительные размеры и расположение.

ОПИСАНИЕ ПРЕДПОЧТИТЕЛЬНЫХ ВАРИАНТОВ ОСУЩЕСТВЛЕНИЯ ИЗОБРЕТЕНИЯ

Последующее описание относится к системам и способам принятия мер в ответ на конденсат в охладителе наддувочного воздуха (CAC), в том числе, регулировки местоположения, куда конденсат направляется в системе двигателя, такой как система по фиг. 1. В этом отношении один или более клапанов могут регулироваться для управления местоположением, куда направляется конденсат, например, таким как направляющие тракты, показанные на фиг. 2. В одном из конкретных вариантов осуществления, показанных на фиг. 3 и 4, двигатель с двойным турбонаддувом выполнен с возможностью подавать конденсат в различные местоположения на основании типа загрязнения, присутствующего в конденсате, и других рабочих параметров двигателя или каталитического нейтрализатора. Например, условия работы двигателя могут включать в себя температуру каталитического нейтрализатора или двигателя и формирование конденсата в CAC, которые могут определяться с использованием способа, проиллюстрированного на фиг. 5. Примерные способы переключения между режимами работы двигателя для регулировки направляющего тракта подачи показаны на фиг. 6 и 7. Затем, фиг. 8 показывает примерный график для иллюстрации регулировок клапанов в примерной системе двигателя. Второй вариант осуществления системы управления конденсатом с накопителем для хранения и использования сжатого газа для содействия маршрутизации и перемещению указанного конденсата показан на фиг. 9-12 наряду с тем, чтобы фиг. 13 и 14 показывают примерные способы работы системы управления конденсатом с указанным накопителем. В дополнение, так как самая низкая точка в системе двигателя может находиться в местоположениях, иных чем охладитель наддувочного воздуха, фиг. 15 и 16 показывают третий вариант осуществления, в котором конденсат собирается во впускном коллекторе, который содержит самую низкую точку в системе впуска воздуха.

Далее, со ссылкой на фиг. 1, двигатель 10 внутреннего сгорания, содержащий множество цилиндров, один цилиндр которого показан на фиг. 1, управляется электронным контроллером 12 двигателя. Двигатель 10 включает в себя камеру 30 (цилиндр) сгорания и стенки 32 цилиндра с поршнем 36, расположенным в них и присоединенным к коленчатому валу 40. Камера 30 сгорания показана сообщающейся с впускным коллектором 47 через впускные направляющие (не показаны) и выпускным коллектором 48 через соответствующий впускной клапан 52 и выпускной клапан 54. Каждый впускной клапан и выпускной клапан может приводиться в действие кулачком 51 впускного клапана и кулачком 53 выпускного клапана. Время открывания и закрывания выпускного клапана 54 может регулироваться относительно положения коленчатого вала посредством фазировщика 58 кулачков. Время открывания и закрывания впускного клапана 52 может регулироваться относительно положения коленчатого вала посредством фазировщика 59 кулачков. Положение кулачка 51 впускного клапана может определяться датчиком 55 кулачка впускного клапана. Положение кулачка 53 выпускного клапана может определяться датчиком 57 кулачка выпускного клапана. Таким образом, контроллер 12 может управлять установкой фаз кулачкового распределения посредством фазировщиков 58 и 59. Регулируемая установка фаз кулачкового распределения (VCT) может подвергаться опережению или запаздыванию в зависимости от различных факторов, таких как нагрузка двигателя и скорость вращения двигателя (RPM).

Топливная форсунка 66 показана расположенной, чтобы впрыскивать топливо непосредственно в камеру 30 сгорания, что известно специалистам в данной области техники как непосредственный впрыск. В качестве альтернативы, топливо может впрыскиваться во впускное окно, что известно специалистам в данной области техники как оконный впрыск. Топливная форсунка 66 выдает жидкое топливо пропорционально длительности импульса сигнала FPW из контроллера 12. Топливо подается в топливную форсунку 66 топливной системой (не показана), включающей в себя топливный бак, топливный насос и направляющую-распределитель для топлива (не показана). Топливная форсунка 66 питается рабочим током из формирователя 68, который реагирует на действие контроллера 12. В одном из примеров, двухкаскадная топливная система высокого давления используется для формирования более высоких давлений топлива. В дополнение, впускной коллектор 47 показан сообщающимся с возможным электронным дросселем 62, который регулирует положение дроссельной заслонки 64 для регулирования потока воздуха из входной трубки 46 корпуса дросселя. Компрессор 162 втягивает воздух из воздухозаборника 42 для питания системы всасывания двигателя. Воздухозаборник 42 может быть частью системы впуска, которая втягивает воздух из одного или более воздуховодов (не показанных на фиг. 1). Один или более воздуховодов могут втягивать более холодный или более теплый воздух извне транспортного средства или из-под капота транспортного средства, соответственно. Клапан впуска (не показанный на фиг. 1), в таком случае, может управлять местоположением, из которого всасываемый воздух втягивается в систему впуска. Всасываемый воздух может двигаться ниже по потоку от клапана впуска в воздухозаборник, выходную трубку 44 компрессора, CAC 166, входную трубку 46 корпуса дросселя, впускной коллектор 47 и направляющие впуска воздуха в 30, которые передают воздух в каждую из камер сгорания и составляют систему впуска воздуха.

Выхлопные газы вращают турбину 164, которая присоединена к компрессору 162, который, в свою очередь, сжимает оставшийся преддроссельный объем воздушного тракта. Различные компоновки могут быть предусмотрены для осуществления привода компрессора. Что касается нагнетателя, компрессор 162 может по меньшей мере частично приводиться в движение двигателем и/или электрической машиной и может не включать в себя турбину. Таким образом, величина сжатия, обеспечиваемого для одного или более цилиндров двигателя посредством турбонагнетателя или нагнетателя, может регулироваться контроллером 12. Перепускная заслонка 171 турбонагнетателя является клапаном, который предоставляет выхлопным газам возможность обходить турбину 164 через перепускной канал 173, когда перепускная заслонка 171 турбонагнетателя находится в открытом состоянии. По существу все выхлопные газы проходят через турбину 164, когда перепускная заслонка 171 находится в полностью закрытом положении.

Кроме того, в раскрытых вариантах осуществления, система рециркуляции выхлопных газов (EGR) может направлять требуемую часть выхлопных газов из выпускного коллектора 48 во впускной коллектор 47, или другое положение в системе впуска воздуха, через канал 140 EGR. Величина EGR, выдаваемой во впускной коллектор 47, может регулироваться контроллером 12 посредством клапана 172 EGR. В некоторых условиях, система EGR может использоваться для регулирования температуры смеси воздуха и топлива в пределах камеры сгорания. Фиг. 1 показывает систему EGR высокого давления, где EGR направляется из выше по потоку от турбины турбонагнетателя в ниже по потоку от компрессора турбонагнетателя. В других вариантах осуществления, двигатель, дополнительно или в качестве альтернативы, может включать в себя систему EGR низкого давления, где EGR направляется из ниже по потоку от турбины турбонагнетателя в выше по потоку от компрессора турбонагнетателя. Когда работоспособна, система EGR может вызывать формирование конденсата из сжатого воздуха, особенно когда сжатый воздух охлаждается охладителем наддувочного воздуха, как подробнее описано ниже. Более точно, EGR содержит большое количество воды, так как она является побочным продуктом сгорания. Поскольку EGR находится под относительно высокой температурой и содержит существенные количества воды, температура конденсации также может быть относительно высокой. Следовательно, формирование конденсата из EGR может быть гораздо более интенсивным, чем формирование конденсата от сжатия воздуха и понижение его до температуры конденсации.

Система всасывания может включать в себя один или более охладителей 166 наддувочного воздуха (CAC) (например, промежуточный охладитель) для понижения температуры нагнетаемых турбонагнетателем или нагнетателем всасываемых газов. В некоторых вариантах осуществления, CAC 166 может быть теплообменником воздух-воздух наряду с тем, что, в других вариантах осуществления, CAC 166 может быть теплообменником воздух-жидкость. CAC 166 может включать в себя клапан для избирательной модуляции скорости потока всасываемого воздуха или жидкого теплоносителя, проходящего через охладитель 166 наддувочного воздуха, в ответ на формирование конденсата внутри охладителя наддувочного воздуха. Горячий наддувочный воздух из компрессора 162 поступает во впускное отверстие CAC 166, остывает, по мере того, как он проходит через CAC, а затем, выходит, чтобы проходить через дроссель 62 и во впускной коллектор 47 двигателя. Для содействия охлаждению наддувочного воздуха, поток окружающего воздуха извне транспортного средства может поступать в двигатель 10 через переднюю часть транспортного средства и проходить через CAC. Конденсат может дополнительно формироваться и накапливаться в CAC в ответ на снижение температуры окружающего воздуха, высокую влажность или дождливые погодные условия, когда наддувочный воздух охлаждается ниже температуры конденсации воды. На дне CAC 166 может накапливаться конденсат, который затем повторно вводится в систему двигателя во время события разгона в различных местах на основании типа загрязнения, считанного в конденсате, и рабочих параметров двигателя или каталитического нейтрализатора.

Как подробнее описано ниже, узел 202 входного резервуара расположен на дне CAC 166 в самой низкой точке, где собирается конденсат. Узел 202 входного резервуара присоединен к первому клапану 210 маршрутизации, который управляется модулем управления двигателем (например, контроллером 12) и может вводиться в действие на основании обратной связи с датчика, расположенного в части поддона входного резервуара, который контролирует уровни конденсата и/или загрязнения в нем. Что касается расположения части поддона входного резервуара, в одном из вариантов осуществления, часть поддона входного резервуара может быть расположена слегка ниже плоскости, параллельной земле, которая является касательной к самой низкой точке трубок входного резервуара CAC. Поэтому, конденсат может проходить через одну или более трубок, проложенных в систему двигателя. где он поступает в сопло, предназначенное для распыления конденсата перед вводом в систему двигателя. В частности, описанные способы включают в себя направление конденсата в систему впуска воздуха или местоположение в выпуске двигателя на основании выявления загрязнения в конденсате в дополнение к рабочим параметрам двигателя или каталитического нейтрализатора. Например, во время работы транспортного средства, маршрутизация может включать в себя направление конденсата в каждую из системы впуска воздуха и местоположение в системе выпуска в зависимости от считанных и/или оцененных параметров двигателя во время работы транспортного средства. Более того, описанное направление в различные места может происходить в отдельные моменты времени или, в некоторых случаях, может происходить одновременно. В дополнение, маршруты трубок откачки могут идти параллельно, прилегающими к и/или проходить иначе в непосредственной близости от существующих источников тепла под капотом, чтобы нагревать жидкие среды посредством переноса тепла, чтобы предварительно распылять указанные жидкие среды. Наоборот, маршруты трубок откачки могут идти возле источников холода (например), которые могут присутствовать вдоль траекторий маршрутов, чтобы обеспечивать дополнительное охлаждение перед поступлением в любое из местоположений точки впрыска. Например, конденсат может направляться в первое местоположение в воздухозаборнике двигателя в первом режиме работы и второе местоположение в выпуске двигателя во втором режиме работы, и третье местоположение в выпуске двигателя в третьем режиме работы, первый, второй и третий режимы работы все существуют во время работы транспортного средства, и все происходят в неперекрывающиеся периоды.

Посредством регулирования температуры на CAC (например, температур наддувочного воздуха на входе и выходе), формирование конденсата может снижаться, что понижает вероятность пропусков зажигания в двигателе. В одном из примеров, посредством повышения температуры наддувочного воздуха на входе CAC, воздух, проходящий через CAC, может быть дальше от точки конденсации, тем самым, уменьшая количество конденсата. Один из примеров повышения температуры воздуха на входе CAC может включать в себя регулирование температуры всасываемого воздуха из системы впуска. Например, клапан впуска может направлять более теплый воздух из-под капота в систему впуска и через выходную трубку 44 компрессора в CAC 166.

Система 88 зажигания без распределителя выдает искру зажигания в камеру 30 сгорания через свечу 92 зажигания в ответ на действие контроллера 12. Универсальный датчик 126 кислорода выхлопных газов (UEGO) показан присоединенным к выпускному коллектору 48 выше по потоку от турбины 164 и первичного каталитического нейтрализатора 70, который может быть первичным каталитическим нейтрализатором, имеющим меньший объем, чем каталитический нейтрализатор большего объема, который установлен под днищем кузова транспортного средства. Первичный каталитический нейтрализатор 70 присоединен вплотную к выпускному коллектору или турбонагнетателю (когда приложен к головке блока цилиндров IEM) и предназначен для более быстрого разогрева после запуска двигателя, чем каталитический нейтрализатор под днищем кузова. В этом конкретном примере, каталитический нейтрализатор под днищем кузова является трехкомпонентным каталитическим нейтрализатором, который окисляет углеводороды и окись углерода, и восстанавливает оксиды азота. В этом примере, каталитический нейтрализатор под днищем кузова включает в себя многочисленные брикеты. Другие формы каталитических нейтрализаторов также могут использоваться. Первичный каталитический нейтрализатор может быть окислительным каталитическим нейтрализатором, трехкомпонентным каталитическим нейтрализатором или другим пригодным каталитическим нейтрализатором. В качестве альтернативы, двухрежимный датчик кислорода выхлопных газов может использоваться вместо датчика 126 UEGO.

В некоторых примерах, двигатель может быть присоединен к системе электродвигателя/аккумуляторной батареи в транспортном средстве с гибридным приводом. Транспортное средство с гибридным приводом может иметь параллельную конфигурацию, последовательную конфигурацию, либо их варианты или комбинации. Кроме того, в некоторых примерах, могут применяться другие конфигурации двигателя, например, дизельный двигатель. Электрический двигатель может использоваться во время операций продувки, чтобы поддерживать водительское требование крутящего момента.

Во время работы, каждый цилиндр в двигателе 10 типично подвергается четырехтактному циклу: цикл включает в себя такт впуска, такт сжатия, такт расширения и такт выпуска. Как правило, во время такта впуска, выпускной клапан 54 закрывается, а впускной клапан 52 открывается. Воздух вовлекается в камеру 30 сгорания через впускной коллектор 47, поршень 36 перемещается к дну цилиндра, чтобы увеличивать объем внутри камеры 30 сгорания. Положение, в котором поршень 36 находится около дна цилиндра и в конце своего хода (например, когда камера 30 сгорания находится при своем наибольшем объеме), типично указывается специалистами в данной области техники ссылкой как нижняя мертвая точка (НМТ, BDC). Во время такта сжатия, впускной клапан 52 и выпускной клапан 54 закрыты. Поршень 36 перемещается к головке блока цилиндров, чтобы сжимать воздух внутри камеры 30 сгорания. Точка, в которой поршень 36 находится в конце своего хода и самой близкой к головке блока цилиндров (например, когда камера 30 сгорания находится при своем наименьшем объеме), типично указывается специалистами в данной области техники в качестве верхней мертвой точки (ВМТ, TDC). В процессе, в дальнейшем указываемом ссылкой как впрыск топлива, топливо вводится в камеру сгорания. В процессе, в дальнейшем указываемом ссылкой как воспламенение, впрыснутое топливо воспламеняется известным средством воспламенения, таким как свеча 92 зажигания, приводя к сгоранию. Установка момента искрового зажигания может управляться, чтобы искра возникала до (с опережением) или после (с запаздыванием) предписанного производителем момента времени. Например, установка момента зажигания может подвергаться запаздыванию от установки момента максимального тормозного момента (MBT) для борьбы с детонацией в двигателе или подвергаться опережению в условиях высокой влажности. В частности, MBT может подвергаться опережению, чтобы учитывать низкую скорость горения. Во время такта расширения, расширяющиеся газы толкают поршень 36 обратно в НМТ. Коленчатый вал 40 преобразует перемещение поршня в крутящий момент вращающегося вала. Коленчатый вал 40 может использоваться для приведения в движение генератора 168 переменного тока. В заключение, во время такта выпуска, выпускной клапан 54 открывается, чтобы выпускать подвергнутую сгоранию топливно-воздушную смесь в выпускной коллектор 48, и поршень возвращается в ВМТ. Отметим, что приведенное выше описание предоставлено только в качестве примера, и что установки момента открывания и/или закрывания впускного и выпускного клапанов могут меняться так, чтобы давать положительные или отрицательное перекрытие клапанов, позднее закрывание впускного клапана, или различные другие примеры.

На фиг. 1, контроллер показан в качестве микрокомпьютера, включающего в себя: микропроцессорный блок 102, порты 104 ввода/вывода, электронный запоминающий носитель для исполняемых программ и калибровочных значений, показанный в качестве постоянного запоминающего устройства 106, оперативное запоминающее устройство 108, энергонезависимую память 110 и традиционную шину данных. Контроллер 12 показан принимающим различные сигналы с датчиков, присоединенных к двигателю 10, в дополнение к тем сигналам, которые обсуждены ранее, в том числе: температуру хладагента двигателя (ECT) с датчика 112 температуры, присоединенного к патрубку 114 охлаждения; датчика 134 положения педали, присоединенного к педали 130 акселератора для считывания силы, приложенной водителем 132 транспортного средства; измерение абсолютного давления в коллекторе двигателя (MAP) с датчика 122 давления, присоединенного к впускному коллектору 47; измерение давления наддува (Наддув) с датчика 123 давления; измерение вводимого массового расхода воздуха (MAF) с датчика 120 массового расхода воздуха; измерение положения дросселя (TP) с датчика 5; и температуру на выпускном отверстии охладителя 166 наддувочного воздуха с датчика 124 температуры. Барометрическое давление также может считываться (датчик не показан) для обработки контроллером 12. В предпочтительном аспекте настоящего описания, датчик 118 положения двигателя вырабатывает сигнал профильного считывания зажигания (PIP). Это вырабатывает заданное количество равномерно разнесенных импульсов каждый оборот коленчатого вала, по которому может определяться скорость вращения двигателя (RPM, в оборотах в минуту). Отметим, что могут использоваться различные комбинации вышеприведенных датчиков, такие как датчик MAF без датчика MAP, или наоборот. Во время стехиометрической работы, датчик MAP может давать показание крутящего момента двигателя. Кроме того, этот датчик, наряду с выявленным скоростью вращения двигателя, может давать оценку заряда (включающего в себя воздух), введенного в цилиндр. Другие не изображенные датчики также могут присутствовать, например, такие как датчик для определения скорости всасываемого воздуха на входе охладителя наддувочного воздуха.

Более того, контроллер 12 может поддерживать связь с различными исполнительными механизмами, которые могут включать в себя исполнительные механизмы двигателя, такие как топливные форсунки ли форсунки для конденсата, впускная воздушная дроссельная заслонка с электронным управлением, свечи зажигания, распределительные валы, и т.д. Различные исполнительные механизмы двигателя могут управляться, чтобы обеспечивать или поддерживать требование крутящего момента, как предписано водителем 132 транспортного средства. Эти исполнительные механизмы могут регулировать определенные параметры управления двигателем, в том числе: регулируемую установку фаз кулачкового распределения (VCT), топливно-воздушное соотношение (AFR), нагрузку генератора переменного тока, установку момента зажигания, положение дросселя, и т.д. Например, когда указано увеличение PP (например во время нажатия педали акселератора) с датчика 134 положения педали, требование крутящего момента увеличивается.

Далее, с обращением к фиг. 2, показана упрощенная схематичное изображение по фиг. 1, которое включает в себя примерные направляющие тракты для конденсата согласно настоящему изобретению. Ради простоты, система 200 управления конденсатом показана присоединенной к единственной системе турбонагнетателя и единственной системе выпуска. Однако, в некоторых вариантах осуществления, двигатель 10 может включать в себя две или более систем турбонагнетателей и/или выпуска в сообщении с системой 200 управления конденсатом. Согласно настоящему изобретению, двигатель 10 включает в себя систему впуска воздуха и каталитический нейтрализатор, присоединенный к выпуску двигателя. Здесь, способ содержит направление воздуха через теплообменник и в систему впуска воздуха; формирование конденсата в теплообменнике; и направление конденсата в систему впуска воздуха или местоположение в выпуске двигателя на основании загрязнения в конденсате и рабочих параметров двигателя или каталитического нейтрализатора.

Например, как схематично иллюстрирует схема по фиг. 2, конденсат может накапливаться на дне CAC 166 в узле 202 входного резервуара. Затем, на основании состава и/или уровня конденсата, он может перемещаться через одну или более трубок перед впрыском обратно в двигатель 10. Таким образом, положение первого клапана 210 маршрутизации, который находится под управлением системы 12 управления, может регулироваться, чтобы направлять конденсат в первое местоположение в системе впуска воздуха двигателя (например, во впускной коллектор 47) в первом режиме работы, и в выпуск двигателя, когда не работает в первом режиме. В дополнение, второй клапан 212 маршрутизации включен в состав для направления конденсата во второе местоположение в выпуске двигателя выше по потоку от первичного каталитического нейтрализатора 70 во втором режиме работы, и в третье местоположение в выпуске двигателя ниже по потоку от первичного каталитического нейтрализатора в третьем режиме работы.

Что касается режимов двигателя, показанных в примерном варианте осуществления по фиг. 2, первое местоположение находится во впускном коллекторе 47 двигателя, а первый режим работы содержит работу двигателя на высокой нагрузке с загрязнением, включающим в себя моторное масло. Поэтому, когда датчик (например, датчик 410 конденсата, подробно описанный ниже) выявляет наличие моторного масла в конденсате, например, так как моторное масло выявлено датчиком, присоединенным к емкости для конденсата, первый клапан 210 маршрутизации, который показан в качестве двухходового клапана, может регулироваться, чтобы направлять конденсат, загрязненный моторным маслом, через первый направляющий тракт 220, где конденсат распыляется первым дозирующим клапаном 930 перед тем, как он поступает в поток всасываемого воздуха для подачи в цилиндр 30. В силу этого, моторное масло может сжигать