Устройство и способ проверки свойства поверхности

Иллюстрации

Показать все

Предлагается способ для проверки свойства поверхности, обеспечивающий проверку состояния обработки поверхности обработанного материала, подвергнутого обработке поверхности. Устройство 1 для проверки свойства поверхности включает источник 10 питания переменного тока, мостовую схему 20 переменного тока и устройство 30 анализа, и мостовая схема 20 переменного тока образована переменным резистором 21, имеющим соотношение γ распределения, эталонным детектором 22 и проверочным детектором 23. Проверочный детектор 23 включает катушку 23b, намотанную таким образом, чтобы она располагалась напротив зоны проверки свойства поверхности тестового объекта М; в тестовом объекте М при подаче мощности переменного тока в катушку 23b возбуждается вихревой ток. Для предотвращения воздействия окружающих условий при проверке в эталонном детекторе 22 установлен эталонный тестовый объект S с той же структурой, что и у тестового объекта М. Технический результат при реализации заявленного технического решения - значительное повышение точности проверки состояния поверхности обработанного материала с уменьшением влияния измерения температуры или других параметров среды, в которой происходит проверка. 8 з.п. ф-лы, 15 ил.

Реферат

Область техники

Настоящее изобретение относится к устройству для проверки свойства поверхности и способу проверки свойства поверхности, предназначенным для неразрушающей проверки состояния обработки поверхности обработанного материала, подвергнутого такой обработке поверхности, как дробеструйная обработка, термическая обработка или азотирование.

Уровень техники

Обработка поверхности, например, поверхностное упрочнение за счет термической обработки, азотирования и т.д., либо дробеструйная обработка или тому подобное, применяется для стальных деталей, например, зубчатых колес и валов, используемых в качестве деталей автомобиля или тому подобного, чтобы улучшить сопротивление трению, усталостную прочность или тому подобное.

Обычно анализ свойств поверхности, например, остаточных механических напряжений и твердости, после обработки поверхности таких изделий выполняют путем проверки образцов с разрушением. Это приводит к возникновению проблемы, заключающейся в том, что не все изделия можно проверять непосредственным образом, и проверенные изделия становится невозможно использовать, так как контроль был разрушающим.

Это привело к росту потребности в создании устройства, позволяющего осуществлять неразрушающую проверку свойств поверхности изделия. В качестве примера такого устройства, в Патентном документе 1 описано устройство для неразрушающей проверки поверхности, обработанной дробью, в котором сигнал переменного тока с изменением частоты подается в проверочную электрическую схему, содержащую катушку, расположенную над поверхностью, обработанной дробью, и возникновение остаточных механических напряжений в проверяемом объекте определяется с использованием результирующей частотной характеристики полного сопротивления проверочной схемы.

Литература по известному уровню техники

Патентная литература

Патентный документ 1: Опубликованная непроверенная заявка на японский патент 2008-2973

Сущность изобретения

Проблемы, решаемые изобретением

Однако, так как на элементы, используемые при измерении в электромагнитном поле магнитной проницаемости, проводимости и т.д., изменяющихся в зависимости от обработки поверхности, влияет изменение условий окружающей среды, проблема, связанная с устройством, рассмотренным в опубликованной непроверенной заявке на японский патент 2008-2973, заключалась в следующем: если среда, в которой проводилось измерение для эталонного тестового объекта, отличалась от среды, в которой проводилось измерение для тестового объекта, в частности, когда происходило изменение температуры, легко могли возникнуть ошибки измерения. Кроме того, не описан способ калибровки измеренных значений таким образом, чтобы учесть эти ошибки измерения.

Поэтому задачей настоящего изобретения является предложить устройство для проверки свойства поверхности и способ проверки свойства поверхности, позволяющие проверять состояние поверхности обработанного материала, подвергнутого такой обработке поверхности, как дробеструйная обработка, термическая обработка, азотирование и т.п., с уменьшением влияния изменения температуры или других параметров среды, в которой происходит проверка, и с хорошей точностью.

Средства решения проблем

Чтобы выполнить указанную задачу, согласно пункту 1 Формулы изобретения, предлагается техническое решение, представляющее собой устройство для проверки свойства поверхности, предназначенное для проверки свойства поверхности тестового объекта, подвергнутого обработке поверхности, содержащее: мостовую схему переменного тока; источник питания переменного тока, предназначенный для подачи мощности переменного тока в мостовую схему переменного тока; и устройство анализа, предназначенное для анализа свойства поверхности тестового объекта на основе выходного сигнала мостовой схемы переменного тока, причем мостовая схема переменного тока имеет переменный резистор, выполненный с возможностью изменения соотношения распределения между первым резистором и вторым резистором, проверочный детектор, содержащий катушку, выполненную с возможностью возбуждать магнетизм, вызванный переменным током, и изготовленный таким образом, что катушка возбуждает вихревой ток в тестовом объекте, и эталонный детектор, выполненный с возможностью возбуждения вихревого тока в эталонном тестовом объекте, имеющем ту же структуру, что и тестовый объект, для определения эталонного состояния, служащего эталоном для сравнения с выходной информацией проверочного детектора, при этом первый резистор, второй резистор, эталонный детектор и проверочный детектор образуют мостовую схему; причем устройство анализа анализирует свойство поверхности тестового объекта путем сравнения выходного сигнала мостовой схемы переменного тока с заранее определенным пороговым значением при подаче мощности переменного тока в мостовую схему переменного тока, проверочный детектор измеряет электромагнитное свойство тестового объекта, и эталонный детектор определяет эталонное состояние.

Согласно пункту 1 Формулы изобретения, в тестовом объекте при помощи катушки проверочного детектора возбуждают вихревой ток, и свойства поверхности тестового объекта анализируют путем сравнения выходного сигнала, поступившего от мостовой схемы переменного тока, с пороговым значением. Это делает возможной проверку состояния поверхности с высокой точностью при использовании схемы с простой конфигурацией. Применяют способ, в котором для проверки свойства поверхности в тестовом объекте возбуждают вихревой ток, поэтому можно уменьшить влияние изменений температуры на среду проведения проверки. Так как для определения эталонного состояния в эталонном детекторе используют эталонный тестовый объект с той же структурой, что и у тестового объекта, колебания выходных значений из-за изменений в среде проведения проверки, например, температуры, влажности и магнитных явлений, для эталонного детектора будут теми же, что и для тестового объекта. Таким образом, колебания выходных значений, вызванные изменениями в среде проведения проверки, например, температуры, влажности или магнитных явлений, могут не учитываться, что повышает точность измерений. Здесь выражение "та же структура" означает те же материалы и форму, вне зависимости от того, применена ли обработка поверхности.

Кроме того, "свойства поверхности" означают "свойства в слое от поверхности до того уровня по глубине, где есть воздействие".

Согласно пункту 2 Формулы изобретения, предлагается техническое решение, в соответствии с которым в устройстве для проверки свойства поверхности по пункту 1 проверочный детектор содержит катушку, намотанную вокруг зоны проверки свойства поверхности тестового объекта, и вихревой ток возбуждают в тестовом объекте путем подачи мощности переменного тока в катушку от источника питания переменного тока, чтобы измерить электромагнитное свойство тестового объекта.

Согласно пункту 2 Формулы изобретения в тестовом объекте можно устойчивым образом вызывать реакцию на магнитные явления, и зону проверки свойства поверхности в тестовом объекте можно проверять за один проход. Кроме того, можно ограничить распространение вихревых токов и тепла от поверхности тестового объекта, в результате чего можно уменьшить температурные изменения в тестовом объекте и обеспечить проверку с более высокой точностью.

Согласно пункту 3 Формулы изобретения, предлагается техническое решение, в соответствии с которым в устройстве для проверки свойства поверхности по пунктам 2 или 3 эталонный тестовый объект представляет собой необработанный объект, к которому не была применена обработка поверхности.

В соответствии с пунктом 3 Формулы изобретения, использование в качестве эталонного тестового объекта необработанной детали, к которой не была применена обработка поверхности, позволяет увеличить выходной сигнал, в основе которого лежит отличие в состоянии поверхности относительно тестового объекта, в результате чего можно еще больше повысить точность измерений, и легче задавать пороговое значение, что является предпочтительным.

Согласно пункту 4 Формулы изобретения, предлагается техническое решение, в соответствии с которым устройство для проверки свойства поверхности по любому из пунктов с 1 по 3 содержит множество проверочных детекторов и дополнительно содержит переключающее устройство, выполненное с возможностью переключения между проверочными детекторами, причем каждый из упомянутых детекторов соединен с мостовой схемой.

В соответствии с пунктом 4 формулы изобретения, имеется множество проверочных детекторов, и проверку тестируемых объектов можно проводить последовательно, используя переключающее устройство, путем переключения между проверочными детекторами, входящими в состав мостовой схемы, в результате можно сократить требуемое время от транспортировки до завершения проверки. В дополнение к этому, можно уменьшить стоимость оборудования, так как источник питания переменного тока и устройство анализа используются как общий ресурс, и не требуется предусматривать множество стоек под устройства для проверки свойства поверхности.

Согласно пункту 5 формулы изобретения, предлагается техническое решение, представляющее собой способ проверки свойства поверхности, содержащий следующие этапы: обеспечение устройства для проверки свойства поверхности по любому из пп. 1-4; этап установки, для установки проверочного детектора в заранее определенном положении относительно тестового объекта, таким образом, чтобы в тестовом объекте возбуждался вихревой ток во время подачи мощности переменного тока от источника питания переменного тока в мостовую схему переменного тока; и этап анализа для анализа свойства поверхности тестового объекта путем сравнения выходного сигнала, поступившего от мостовой схемы переменного тока, с пороговым значением при размещении эталонного тестового объекта в эталонном детекторе, причем этап установки и этап анализа выполняют для каждого тестового объекта.

Согласно пункту 5 Формулы изобретения, обеспечивают устройство для проверки свойства поверхности по любому из пп 1-4, в тестовом объекте возбуждают вихревой ток при помощи проверочного детектора, и выходной сигнал, поступивший от мостовой схемы переменного тока, сравнивают с пороговым значением (при этом эталонный тестовый объект находится в эталонном детекторе), чтобы проанализировать свойства поверхности тестового объекта. Так как для определения эталонного состояния в эталонном детекторе используют эталонный тестовый объект с той же структурой, что и у тестового объекта, колебания выходных значений из-за изменений в среде проведения проверки, например, температуры, влажности и магнитных явлений, будут для эталонного детектора теми же, что и для тестового объекта. Таким образом, можно не учитывать колебания выходных значений, вызванные изменениями в среде проведения проверки, например, температуры, влажности или магнитных явлений, что повышает точность измерений.

Согласно пункту 6 Формулы изобретения, предлагается техническое решение, в соответствии с которым в способе проверки свойства поверхности по пункту 5 в качестве порогового значения в начале анализа тестового объекта используют первоначальное пороговое значение Ethi, которое определяют на основе выходного сигнала ЕА, полученного, когда необработанный объект размещен в проверочном детекторе, и на основе выходного сигнала ЕВ, полученного, когда объект с обработанной поверхностью, имеющий хорошее состояние поверхности, размещенв проверочном детекторе.

Согласно пункту 7 Формулы изобретения, предлагается техническое решение, в соответствии с которым в способе проверки свойства поверхности по пункту 6 первоначальное пороговое значение Ethi определяют на основе среднего значения EAav, полученного путем усреднения выходных сигналов, когда множество необработанных объектов соответственно размещенов проверочном детекторе, и на основе среднего значения EBav, полученного путем усреднения выходных сигналов, когда множество обработанных объектов с хорошим состоянием поверхности размещено в проверочном детекторе.

Согласно пункту 8 Формулы изобретения, предлагается техническое решение, в соответствии с которым в способе проверки свойств поверхности по пункту 7 первоначальное пороговое значение Ethi вычисляют по приведенной далее формуле, где σА - стандартное отклонение выходных сигналов ЕА, и σВ - стандартное отклонение выходных сигналов ЕВ:

Ethi=(EAav ⋅ σB+EBav ⋅ σA)/( σA+σB).

Согласно пункту 8 Формулы изобретения, подходящее первоначальное пороговое значение, имеющее высокую точность, можно задавать, используя небольшое число измерений.

Согласно пункту 9 Формулы изобретения, предлагается техническое решение, в соответствии с которым в способе проверки свойства поверхности по любому из пунктов с 5 по 8 устройство анализа содержит запоминающее устройство, предназначенное для хранения каждого выходного сигнала, полученного при проверке свойства поверхности каждого тестового объекта, и пороговое значение обновляют на основе сохраненных выходных сигналов.

Согласно пункту 9 Формулы изобретения, пороговые значения обновляют на основе выходных сигналов, накопленных в ходе большого числа проверок тестовых объектов, в результате чего можно повысить точность порогового значения, что делает возможной проверку с высокой точностью.

Согласно пункту 10 Формулы изобретения, предлагается техническое решение, в соответствии с которым способ проверки свойства поверхности по любому из пунктов с 5 по 9 дополнительно содержит следующие этапы: этап сохранения смещения, для сохранения выходного сигнала в качестве первоначальных значений смещения, выходной сигнал получают, когда в проверочном детекторе не установлен тестовый объект, причем этап установки включает этап получения выходных сигналов в качестве проверочного значения смещения до установки тестового объекта в проверочный детектор, и на этапе анализа свойство поверхности тестового объекта анализируют путем коррекции выходного сигнала, поступившего от мостовой схемы переменного тока, на основе первоначального значения смещения и проверочного значения смещения, при нахождении эталонного тестового объекта в эталонном детекторе.

Согласно пункту 10 Формулы изобретения, измерение, имеющее высокую точность, из которого удалены указанные влияния, можно выполнять, даже если напряжение смещения изменяется из-за изменений в среде проведения измерений, например, температуры, влажности и магнитных явлений.

Согласно пункту 11 Формулы изобретения, предлагается техническое решение, в соответствии с которым в способе проверки свойств поверхности по пункту 10 не выполняют проверку свойства поверхности тестового объекта, когда разность напряжений, представляющая собой разность между первоначальным значением смещения и значением смещения при проверке, превышает допустимую величину, определенную на основе условий эксплуатации устройства для проверки свойства поверхности.

Согласно пункту 11 Формулы изобретения, состояние проверки можно отслеживать с использованием разности напряжений между первоначальным значением смещения и проверочным значением смещения, и конфигурация такова, что проверка свойств поверхности тестового объекта не выполняется, когда разность напряжений превышает допустимую величину, заданную на основе условий эксплуатации устройства для проверки свойства поверхности.

Согласно пункту 12 Формулы изобретения, предлагается техническое решение, в соответствии с которым в способе проверки свойства поверхности по любому из пунктов с 5 по 11 устройство анализа содержит запоминающее устройство, и идентификационную информацию для каждого тестового объекта и данные проверки свойства поверхности для тестовых объектов коррелируют и сохраняют в запоминающем устройстве.

Согласно пункту 12 Формулы изобретения, идентификационную информацию для каждого тестового объекта, такую как партия, заводской номер и история, можно сохранять таким образом, что их коррелируют с данными проверки, такими как измеренное значение, результаты оценки "приемка/отбраковка", дата измерения и состояние проверки, в результате чего состояние обработки поверхности тестового объекта, которое проверено при помощи устройства для проверки свойства поверхности, можно отслеживать после дистрибуции, что гарантирует отслеживаемость.

Согласно пункту 13 Формулы изобретения, предлагается техническое решение, в соответствии с которым в способе проверки свойства поверхности по любому из пунктов с 5 по 12, этап анализа включает этап обнаружения установки т тестового объекта в проверочном детекторе на основе изменений в сигнале, поступающем от мостовой схемы переменного тока, и анализ свойства поверхности тестового объекта выполняют после того, как обнаружена установка тестового объекта в проверочном детекторе.

Согласно пункту 13 Формулы изобретения, так как анализ свойств поверхности тестового объекта можно начать после обнаружения состояния установки тестового объекта в проверочном детекторе, условия проведения измерений можно сделать однородными, и можно получить устойчивые измеренные значения, в результате чего можно уменьшить изменчивость, обусловленную действиями операторов, и выполнить измерение с высокой точностью.

Согласно пункту 14 Формулы изобретения, предлагается техническое решение, в соответствии с которым в способе проверки свойств поверхности по пункту 13 устройство для проверки свойства поверхности содержит множество проверочных детекторов и переключающее устройство, и переключающее устройство переключает проверочный детектор после определения того, что тестовый объект удален из проверочного детектора, с которым соединена мостовая схема переменного тока, причем удаление тестового объекта определяют на основе изменений в выходном сигнале от мостовой схемы переменного тока.

Согласно пункту 14 Формулы изобретения, так как переключение проверочного детектора выполняют после определения того, что тестовый объект удален из проверочного детектора, входящего в состав мостовой схемы, на основе изменений в сигнале, поступившем от мостовой схемы переменного тока, проверочный детектор можно переключить быстрым и надежным образом, и проверка выполняется эффективным и точным образом.

Согласно пункту 15 Формулы изобретения, предлагается техническое решение, в соответствии с которым в способе проверки свойства поверхности по любому из пунктов с 5 по 14 устройство для проверки свойства поверхности содержит множество проверочных детекторов и переключающее устройство, устройство анализа содержит запоминающее устройство, и запоминающее устройство коррелирует идентификационную информацию для проверочных детекторов, которые выполнили проверку тестового объекта, с данными проверки свойства поверхности для тестового объекта, и сохраняет эту информацию.

Согласно пункту 15 Формулы изобретения, можно коррелировать и сохранять идентификационную информацию по проверочному детектору, который выполнил проверку тестового объекта, и данные проверки свойства поверхности для тестового объекта.

Таким образом, можно обновлять калибровку измеренных значений и пороговые значения для каждого из соответствующих проверочных детекторов.

Краткое описание чертежей

Фиг.1(А) представляет собой пояснительный чертеж, на котором показана конфигурация электрической схемы устройства для проверки свойства поверхности.

Фиг.(1(В) представляет собой пояснительный чертеж в форме общего вида, иллюстрирующий конструкцию проверочного детектора.

На Фиг.2 приведена эквивалентная принципиальная электрическая схема, поясняющая выходной сигнал мостовой схемы переменного тока.

На Фиг.3 приведена блок-схема способа проверки свойства поверхности.

На Фиг.4 приведен график, поясняющий способ задания первоначального порогового значения.

На Фиг.5 приведена блок-схема способа калибровки измеренных значений.

На Фиг.6(А) приведен график, поясняющий изменение выходного значения в период от установки тестового объекта до начала измерения.

На Фиг.6(В) приведен график, поясняющий изменения выходного значения в период от завершения измерения до удаления тестового объекта.

На Фиг.7(А) приведена блок-схема, иллюстрирующая этапы от установки тестового объекта до начала измерения.

На Фиг.7(В) приведена блок-схема, иллюстрирующая этапы от завершения измерения до удаления тестового объекта.

Фиг.8 представляет собой пояснительный чертеж, на котором показана конфигурация электрической схемы устройства для проверки свойства поверхности, соответствующего второму варианту.

На Фиг.9(А) приведена блок-схема способа переключения проверочных детекторов, выполняемого в порядке (А) → (В) → (С) на Фиг.9.

На Фиг.9(В) приведена блок-схема способа переключения проверочных детекторов, выполняемого в порядке (А) → (В) → (С) на Фиг.9.

На Фиг.9(С) приведена блок-схема способа переключения проверочных детекторов, выполняемого в порядке (А) → (В) → (С) на Фиг.9.

Фиг.10 представляет собой пояснительный чертеж, схематично иллюстрирующий транспортировку тестируемых объектов к нескольким проверочным детекторам.

Подробное описание предпочтительных вариантов реализации

Первый вариант

Устройство для проверки свойства поверхности

Как показано на Фиг.1(А), устройство 1 для проверки свойства поверхности, соответствующее варианту изобретения, содержит источник 10 питания переменного тока, мостовую схему 20 переменного тока и устройство 30 анализа.

Источник 10 питания переменного тока выполнен с возможностью подавать мощность переменного тока с переменной частотой в мостовую схему 20 переменного тока.

Мостовая схема 20 переменного тока снабжена переменным резистором 21, проверочным детектором 23, выполненным с возможностью установки катушки для возбуждения вихревого тока в тестовом объекте М, и эталонным детектором 22, выполненным с возможностью установки эталонного тестового объекта S с той же структурой, что и у тестового объекта М, для определения эталонного состояния, служащего основой для сравнения с выходной информацией проверочного детектора 23. Здесь выражение "та же структура, что и у тестового объекта М" означает те же материалы и форму, вне зависимости от того, проводилась обработка поверхности или нет.

Переменный резистор 21 выполнен с возможностью изменять соотношение γ распределения сопротивления RA для резисторов R1 и R2. Резистор R1 и резистор R2 вместе с эталонным детектором 22 и проверочным детектором 23 образуют мостовую схему. В представленном варианте точка А, разделяющая резистор R1 и резистор R2, и точка В между эталонным детектором 22 и проверочным детектором 23 соединены с источником 10 питания переменного тока для устройства 30 анализа, а точка С между резистором R1 и эталонным детектором 22 и точка D между резистором R2 и проверочным детектором 23 соединены с усилителем 31. Чтобы уменьшить шум, эталонный детектор 22 и проверочный детектор 23 с одной стороны заземлены.

Узел 30 анализа снабжен усилителем 31, предназначенным для усиления сигнала напряжения на выходе мостовой схемы 20 переменного тока, схемой 32 определения абсолютного значения, фильтром 33 низких частот (ФНЧ), фазовым компаратором 34, предназначенным для сравнения фаз переменного напряжения, подаваемого источником 10 питания переменного тока, и напряжения на выходе усилителя 31, частотным корректором 35, предназначенным для регулирования частоты переменного напряжения, подаваемого источником 10 питания переменного тока, средством 36 оценки, предназначенным для регулирования неравновесного состояния с целью оптимизации соотношения R1 и R2 и оценки состояния "приемка/отбраковка" поверхности тестового объекта М на основе выходного сигнала ФНЧ 33, средством 37 отображения, предназначенным для отображения результатов оценки, выполненной средством 36 оценки, и выдачи предупреждающей информации по ним, и средством 38 измерения температуры, предназначенным для измерения температуры в положении анализа. Также обеспечено запоминающее устройство, внутри средства 36 оценки или в зоне, которая не показана.

Усилитель 31 соединен с точками С и D и принимает входной сигнал, представляющий собой разность электрических потенциалов между точками С и D. Схема 32 определения абсолютного значения и ФНЧ 33 соединены в указанном порядке со средством 36 оценки. Фазовый компаратор 34 соединен с источником 10 питания переменного тока, усилителем 31 и средством 36 оценки. Частотный корректор 35 соединен с источником 10 питания переменного тока и усилителем 31. Средство 36 оценки, выводя управляющий сигнал, может изменять положение точки А в мостовой схеме 20 переменного тока, т.е., может изменять соотношение γ распределения между резистором R1 и резистором R2, таким образом выполняется этап настройки переменного резистора, который описан ниже.

Средство 38 измерения температуры содержит бесконтактный инфракрасный датчик или термопару и выводит в средство 36 оценки сигнал температуры для поверхности тестового объекта М. Когда температура тестового объекта М, определенная средством 38 измерения температуры, находится в пределах заранее определенного диапазона, средство 36 оценки выносит оценку "приемка/отбраковка" для состояния обработки поверхности тестового объекта М; когда температура, определенная средством 38 измерения температуры, находится вне заранее определенного диапазона, оценка "приемка/отбраковка" для состояния обработки поверхности тестового объекта М не выносится. Это позволяет не проводить оценку "приемка/отбраковка" для состояния обработки поверхности тестового объекта, когда температура тестового объекта М влияет на точность проверки, в результате чего эту проверку можно выполнить с высокой точностью. При этом положение Ts анализа можно измерить при помощи термопары или тому подобного, и принимается решение, считать ли оценку "приемка/отбраковка" для состояния свойства поверхности тестового объекта М репрезентативным значением для температуры тестового объекта М.

В качестве эталонного детектора 22, имеющего ту же конструкцию, что и проверочный детектор 23, выступает детектор, в котором катушка намотана по внешней периферии сердечника, внутрь которого можно установить анализируемую часть тестового объекта М, причем катушка расположена напротив поверхности тестового объекта М, в непосредственной близости от нее, в результате чего в тестовом объекте М можно возбудить вихревой ток. То есть, катушка намотана таким образом, чтобы она окружала зону проверки свойства поверхности тестового объекта и располагалась напротив нее. Здесь выражение "окружает зону проверки свойства поверхности тестового объекта" подразумевает возбуждение вихревого тока в зоне проверки свойства поверхности в результате заключения внутри (оборачивания вокруг), по меньшей мере, части зоны проверки свойства поверхности.

Здесь в качестве тестового объекта М мы рассматриваем тестовый объект, содержащий зубчатую область, например, проверочный детектор 23 используется для проверки свойства поверхности зубчатого колеса G, зубчатая область которого была подвергнута обработке поверхности. Проверочный детектор 23, как показано на Фиг.1(В), содержит цилиндрический сердечник 23а, охватывающий зубчатую область зубчатого колеса G, и катушку 23b, намотанную вокруг внешней периферийной поверхности сердечника 23а. Сердечник 23а состоит из немагнитного материала, например, полимера. Отметим, что форма сердечника 23а может быть не только цилиндрической, пока внутри него можно расположить зубчатое колесо G. Также отметим, что при установке эталонного тестового объекта S для проверки, предназначенного для создания эталонного выходного сигнала, не требуется установка тестового объекта М.

Особенностью проверочного детектора 23 является то, что при оценке свойств поверхности он с высокой точностью определяет реакцию на вихревой ток, поэтому в предпочтительном случае он должен быть расположен относительно тестового объекта М таким образом, чтобы в зоне, где должны быть проверены свойства поверхности, возникали вихревые токи. То есть, предпочтительно, чтобы направление обмоток в катушке 23b совпадало с требуемым направлением протекания вихревых токов.

При дробеструйной обработке зубчатого колеса G в зубчатой области возникает слой с остаточными механическими напряжениями. При выполнении анализа для зубчатого колеса G как тестового объекта М, предпочтительно анализировать свойства не только для поверхности вершин зубьев, но также и для боковых поверхностей зубьев и поверхности канавок между зубьями. Чтобы это сделать, направление намотки катушки 23b задают, по существу, перпендикулярным оси вращения зубчатого колеса G. Так как в направлении вращения возникает магнитная петля, это позволяет возбуждать вихревой ток в направлении вращения зубчатого колеса G, в результате чего можно оценить не только поверхность вершины зуба, но также боковую поверхность зуба и поверхность канавки между зубьями. В случае обычных контактных детекторов требуется изготовление множества типов детекторов, соответствующих формам проверяемых зубьев, и нельзя проверить свойства поверхности поблизости от области контакта, но, в случае проверочного детектора 23, можно с использованием одного детектора проверять за один раз свойства большого диапазона поверхностей.

Не обязательно снабжать проверочный детектор 23 сердечником 23а, если катушка 23b может сохранять форму. Такая катушка 23b может быть создана, например, путем склеивания эмалированной медной проволоки, "намотанной" вокруг воздушного сердечника, с использованием отверждаемой эпоксидной смолы или тому подобного, или путем "наматывания" вокруг воздушного сердечника медной проволоки с теплоотверждаемой расплавляемой эмалью с последующим отверждением за счет нагрева горячим воздухом или в сушильной печи.

Проверочный детектор 23 установлен таким образом, что катушка 23b расположена напротив проверяемой поверхности тестового объекта М и окружает ее; при подаче мощности переменного тока с заранее определенной частотой в катушку 23b при помощи источника 10 питания переменного тока возникает переменное магнитное поле, и на поверхности тестового объекта М возбуждается вихревой ток, протекающий в направлении, поперечном переменному магнитному полю. Так как вихревые токи изменяются в зависимости от электромагнитных свойств слоя с остаточными механическими напряжениями, фаза и амплитуда ( импеданс) выходного сигнала, поступающей от усилителя 31, изменяются в зависимости от свойств слоя с остаточными механическими напряжениями (состояния обработки поверхности). Для выполнения проверки, с использованием этих изменений в выходном сигнале могут быть измерены электромагнитные свойства обработанного поверхностного слоя.

Также можно обеспечить магнитный экран 23с, установленный снаружи проверочного детектора 23 и окружающий тестовый объект М. При использовании магнитного экрана 23с блокируется внешнее магнитное поле, в результате чего можно повысить чувствительность при измерении электромагнитных свойств, и повышается чувствительность при измерении электромагнитных свойств, соответствующих состоянию обработки поверхности, поэтому можно более точным образом проанализировать состояние обработки поверхности для тестового объекта М.

Выходной сигнал мостовой схемы переменного тока

Далее со ссылкой на эквивалентную электрическую схему, приведенную на Фиг.2, будет рассмотрен выходной сигнал мостовой схемы 20 переменного тока, переведенной в неравновесное состояние. Эталонный тестовый объект S, предназначенный для получения эталонного выходного сигнала, установлен в непосредственной близости от эталонного детектора 22, а тестовый объект М, для которого требуется определение "приемка/отбраковка" для состояния обработки поверхности, установлен в непосредственной близости от проверочного детектора 23. При этом эталонный тестовый объект S имеет ту же структуру, что и тестовый объект М, и в предпочтительном случае используется необработанная деталь, для которой не выполнялась обработка поверхности.

Если соотношение распределения переменного сопротивления RA равно γ, то сопротивление резистора R1 равно RA/(1+γ), и сопротивление резистора R2 равно RAγ/(1+γ). Полное сопротивление эталонного детектора 22 принимается равным RS+jωLS, и полное сопротивление проверочного детектора 23 принимается равным RT+jωLT.

Предположим, что в точке А имеется электрический потенциал Е; токи возбуждения, протекающие на каждой стороне моста, когда тестовые образцы (эталонный тестовый объект S и тестовый объект М) не установлены в непосредственной близости от эталонного детектора 22 и проверочного детектора 23, соответственно, равны i1 и i2; степень проявления магнитных явлений изменяется при установке тестовых объектов в непосредственной близости к эталонному детектору 22 и проверочному детектору 23; и токи, возникающие в ответ на величину этого изменения, соответственно, равны iα и iβ. Тогда электрические потенциалы Е1, Е2 и токи i1, i2 возбуждения в эталонном детекторе 22 и проверочном детекторе 23 можно выразить следующими формулами в Выражениях 1-4:

Выражение 1

(1)

Выражение 2

(2)

Выражение 3

(3)

Выражение 4

(4)

Напряжение, подаваемое в усилитель 31, представляет собой разность между Е1 и Е2 и выражается следующей формулой:

Выражение 5

(5)

Из Выражений 3-5 получаем следующее выражение:

Выражение 6

(6)

Рассмотрим каждый компонент разности напряжений путем разделения правой стороны Выражения 6 на следующие компоненты А и В:

Компонент А

Компонент В

Компонент А содержит оба компонента детекторов (RS+jωLS), (RT+jωLT), и величины электрических токов, которые изменяются при установке каждого из тестовых объектов в непосредственной близости от каждого детектора, iα и iβ. Величины iα и iβ изменяются с величиной магнитных явлений, возникающих в тестовом объекте из-за электромагнитных свойств, таких как магнитная проницаемость и электрическая проводимость. По этой причине величину iα и iβ можно изменять путем изменения токов i1 и i2 возбуждения, которые управляют величиной магнитных явлений, созданных каждым детектором. Согласно Выражениям 3 и 4, токи i1 и i2 возбуждения изменяются в соответствии с соотношением γ распределения в переменном резисторе, поэтому можно изменять величину компонента А путем регулирования соотношения γ распределения в переменном резисторе.

Компонент В содержит оба компонента детекторов (RS+jωLS), (RT+jωLT), и параметр сопротивления, деленный на соотношение γ распределения в переменном резисторе. Поэтому величину компонента В можно изменять путем регулирования соотношения γ распределения в переменном резисторе тем же путем, что и для компонента А.

Когда тестовый объект М находится в заранее определенном положении, и в катушку 23b в проверочном детекторе 23 источником 10 питания переменного тока подается мощность переменного тока заранее определенной частоты, на поверхности тестового объекта М возбуждается вихревой ток, протекающий в направлении, поперечном переменному магнитному полю. Так как вихревые токи изменяются в зависимости от электромагнитных с