Аппарат и способ улучшения аудиосигнала, система улучшения звука

Иллюстрации

Показать все

Изобретение относится к обработке аудиосигналов, в частности к аудиообработке моно- или двойного моносигнала. Технический результат – повышение качества звука аудиосигналов. Аппарат для улучшения аудиосигнала содержит процессор сигналов для обработки аудиосигнала, для того чтобы уменьшать или удалять переходные и тональные части обработанного сигнала, и декоррелятор для генерации первого декоррелированного сигнала и второго декоррелированного сигнала из обработанного сигнала. Аппарат дополнительно содержит объединитель для взвешенного объединения первого и второго декоррелированных сигналов и аудиосигнала или сигнала, получаемого из аудиосигнала посредством улучшения когерентности, с использованием изменяющихся во времени весовых коэффициентов и для получения двухканального аудиосигнала. Аппарат дополнительно содержит контроллер для управления изменяющимися во времени весовыми коэффициентами посредством анализа аудиосигнала таким образом, что различные части аудиосигнала умножают на различные весовые коэффициенты, и двухканальный аудиосигнал имеет изменяющуюся во времени степень декорреляции. 4 н. и 11 з.п. ф-лы, 20 ил.

Реферат

Изобретение относится к обработке аудиосигналов и, в частности, к аудиообработке моно- или двойного моносигнала.

Акустическую обстановку можно моделировать как смесь прямых и окружающих звуков. Прямые (или направленные) звуки испускаются источниками звука, например музыкальным инструментом, вокалистом или громкоговорителем, и доходят до приемника, например уха слушателя или микрофона, кратчайшим возможным путем. При захвате прямого звука с помощью набора разнесенных в пространстве микрофонов принимаемые сигналы являются когерентными. Напротив, окружающие (или диффузные) звуки испускаются множеством разнесенных в пространстве источников звука или отражающих звук экранов, которые вносят вклад, например, в реверберацию в помещении, аплодисменты или невнятный шум. При захвате окружающего звукового поля с помощью набора разнесенных в пространстве микрофонов принимаемые сигналы являются по меньшей мере частично некогерентными.

Монофоническое воспроизведение звука можно считать целесообразным в некоторых сценариях воспроизведения (например, в танцевальных клубах) или для некоторых типов сигналов (например, записей речи), но большинство музыкальных записей, звук фильмов и телевизионный звук представляют собой стереофонические сигналы. Стереофонические сигналы могут создавать ощущение окружающих (или диффузных) звуков и направлений и габаритов источников звука. Это достигается с помощью стереофонической информации, которая закодирована с помощью пространственных характеристик. Наиболее важными пространственными характеристиками являются межканальная разница уровней (ICLD), межканальная временная разница (ICTD) и межканальная когерентность (ICC). Следовательно, стереофонические сигналы и соответствующие системы воспроизведения звука имеют больше одного канала. ICLD и ICTD вносят вклад в восприятие направления. ICC вызывает восприятие ширины звука и, в случае окружающих звуков, того, что звук расценивается приходящим со всех направлений.

Хотя существует многоканальное воспроизведение звука в различных форматах, большинство аудиозаписей и систем воспроизведения звука по-прежнему имеют два канала. Двухканальный стереофонический звук является стандартом для развлекательных систем, и слушатели привыкли к нему. Тем не менее, стереофонические сигналы не ограничены только двухканальными сигналами, но могут иметь сигнал больше чем с одним каналом. Аналогично, монофонические сигналы не ограничены сигналом только с одним каналом, но могут иметь сигналы с несколькими, но идентичными каналами. Например, аудиосигнал, содержащий сигналы с двумя идентичными каналами, может быть назван двойным моносигналом.

Существуют различные причины того, что слушателям доступны монофонические сигналы вместо стереофонических сигналов. Во-первых, старые записи являются монофоническими, поскольку стереофонические технологии в то время не использовались. Во-вторых, ограничения ширины полосы передачи или среды для хранения могут приводить к потере стереофонической информации. Известным примером является радиовещание с использованием частотной модуляции (FM). В этом случае мешающие источники, многолучевые искажения или другие нарушения передачи могут приводить к зашумлению стереофонической информации, которая для передачи двухканальных сигналов, как правило, закодирована в виде сигнала разности между обоими каналами. Обычной практикой является частичное или полное отбрасывание стереофонической информации при плохих условиях приема.

Потеря стереофонической информации может приводить к снижению качества звука. Обычно аудиосигнал, содержащий большее количество каналов, может иметь более высокое качество звука по сравнению с аудиосигналом, содержащим меньшее количество каналов. Слушатели могут предпочитать слушать аудиосигналы, имеющие высокое качество звука. По причинам эффективности, таким как скорости передачи данных, качество передаваемого или сохраненного в средах звука часто снижено.

Поэтому, существует потребность в повышении (улучшении) качества звука аудиосигналов.

Целью настоящего изобретения поэтому является предоставление аппарата или способа для улучшения аудиосигналов и/или повышения восприятия воспроизводимых аудиосигналов.

Эта цель достигается с помощью аппарата для улучшения аудиосигнала по п. 1, способа улучшения аудиосигнала по п. 14 и системы улучшения звука по п. 13 или компьютерной программы по п. 15.

Настоящее изобретение основано на обнаружении того, что принимаемый аудиосигнал может быть улучшен посредством искусственной генерации пространственных характеристик посредством разделения принимаемых аудиосигналов на по меньшей мере две доли и посредством декорреляции по меньшей мере одной из долей принимаемого сигнала. Взвешенная комбинация долей обеспечивает прием аудиосигнала, воспринимаемого как стереофонический и, следовательно, улучшенного. Управление применяемыми весами обеспечивает изменяющуюся степень декорреляции и, следовательно, изменяющуюся степень улучшения таким образом, что уровень улучшения может быть низким, когда декорреляция может приводить к неприятным эффектам, которые снижают качество звука. Таким образом, изменяющийся аудиосигнал может быть улучшенным, содержа части или интервалы времени, в которых применяют низкую декорреляцию или не применяют декорреляцию, как например для речевых сигналов, и содержа части или интервалы времени, в которых применяют большую или высокую степень декорреляции, как например для музыкальных сигналов.

Вариант осуществления настоящего изобретения предлагает аппарат для улучшения аудиосигнала. Аппарат содержит процессор сигналов для обработки аудиосигнала, для того чтобы уменьшать или удалять переходные и тональные части обработанного сигнала. Аппарат дополнительно содержит декоррелятор для генерации первого декоррелированного сигнала и второго декоррелированного сигнала из обработанного сигнала. Аппарат дополнительно содержит объединитель и контроллер. Объединитель выполнен с возможностью взвешенного объединения первого декоррелированного сигнала, второго декоррелированного сигнала и аудиосигнала или сигнала, получаемого из аудиосигнала посредством улучшения когерентности, с использованием изменяющихся во времени весовых коэффициентов и получения двухканального аудиосигнала. Контроллер выполнен с возможностью управления изменяющимися во времени весовыми коэффициентами посредством анализа аудиосигнала таким образом, что различные части аудиосигнала умножают на различные весовые коэффициенты, и двухканальный аудиосигнал имеет изменяющуюся во времени степень декорреляции.

Аудиосигнал, имеющий мало или не имеющий стереофонической (или многоканальной) информации, например, сигнал, имеющий один канал, или сигнал, содержащий сигналы с несколькими, но почти идентичными каналами, могут после применения улучшения восприниматься как многоканальный, например стереофонический, сигнал. Принимаемый моно- или двойной моноаудиосигнал может быть обработан различным образом в различный трактах, причем в одном тракте переходные и/или тональные части аудиосигнала уменьшают или удаляют. Сигнал, обработанный таким образом, является декоррелированным, и декоррелированный сигнал, взвешенным образом объединенный со вторым трактом, содержащим аудиосигнал или сигнал, получаемый из него, позволяет получить два сигнальных канала, которые могут иметь высокий коэффициент декорреляции друг по отношению к другу, так что два канала воспринимаются как стереофонический сигнал.

Посредством управления весовыми коэффициентами, используемыми для взвешенного объединения декоррелированного сигнала и аудиосигнала (или сигнала, получаемого из него), можно получать изменяющуюся во времени степень декорреляции, так что в ситуациях, в которых улучшение аудиосигнала будет, возможно, приводить к нежелательным эффектам, улучшение может быть уменьшено или опущено. Например, сигнал радиодинамика или другие выделяющиеся сигналы источников звука нежелательно улучшать, поскольку восприятие динамика из нескольких местоположений источников может приводить к неприятным эффектам для слушателя.

В соответствии с дополнительным вариантом осуществления аппарат для улучшения аудиосигнала содержит процессор сигналов для обработки аудиосигнала, для того чтобы уменьшать или удалять переходные и тональные части обработанного сигнала. Аппарат дополнительно содержит декоррелятор, объединитель и контроллер. Декоррелятор выполнен с возможностью генерации первого декоррелированного сигнала и второго декоррелированного сигнала из обработанного сигнала. Объединитель выполнен с возможностью взвешенного объединения первого декоррелированного сигнала и аудиосигнала или сигнала, получаемого из аудиосигнала посредством улучшения когерентности, с использованием изменяющихся во времени весовых коэффициентов и для получения двухканального аудиосигнала. Контроллер выполнен с возможностью управления изменяющимися во времени весовыми коэффициентами посредством анализа аудиосигнала таким образом, что различные части аудиосигнала умножают на различные весовые коэффициенты, и двухканальный аудиосигнал имеет изменяющуюся во времени степень декорреляции. Это делает возможным восприятие моносигнала или сигнала, похожего на моносигнал (такого как двойной моно или мультимоно), как стереоканальный аудиосигнал.

Для обработки аудиосигнала контроллер и/или процессор сигналов могут быть выполнены с возможностью обработки представления аудиосигнала в частотной области. Представление может содержать множество или совокупность полос частот (подполос), причем каждая содержит участок, то есть часть аудиосигнала спектра аудиосигнала, соответственно. Для каждой из полос частот контроллер может быть выполнен с возможностью предсказания воспринимаемого уровня декорреляции в двухканальном аудиосигнале. Контроллер может дополнительно быть выполнен с возможностью увеличения весовых коэффициентов для частей (полос частот) аудиосигнала, что делает возможной более высокую степень декорреляции, и уменьшения весовых коэффициентов для частей аудиосигнала, что делает возможной более низкую степень декорреляции. Например, часть, содержащая невыделяющийся сигнал источника звука, такой как аплодисменты или невнятный шум, может быть объединена с помощью весового коэффициента, который обеспечивает более высокую декорреляцию, чем часть, которая содержит выделяющийся сигнал источника звука, причем термин "выделяющийся сигнал источника звука" используется для частей сигнала, которые воспринимаются как прямые звуки, например речь, музыкальный инструмент, вокалист или громкоговоритель.

Процессор может быть выполнен с возможностью определения для каждой из некоторых или всех полос частот, содержит ли данная полоса частот переходные или тональные компоненты, и для определения спектральных взвешиваний, которые обеспечивают уменьшение переходных или тональных частей. Каждый из спектральных весов и коэффициентов масштабирования может иметь множество возможных значений, так что неприятные эффекты из-за бинарных решений могут быть уменьшены и/или предотвращены.

Контроллер может дополнительно быть выполнен с возможностью масштабирования весовых коэффициентов таким образом, что воспринимаемый уровень декорреляции в двухканальном аудиосигнале остается в пределах диапазона около целевого значения. Диапазон может доходить, например, до ±20%, ±10% или ±5% от целевого значения. Целевое значение может представлять собой, например, ранее определенное значение для величины тональной и/или переходной части, так что, например, для аудиосигнала, содержащего изменяющиеся переходные и тональные части, получают изменяющееся целевое значение. Это обеспечивает осуществление низкой декорреляции или даже неосуществление декорреляции, когда аудиосигнал является декоррелированным, или декорреляция нежелательна, как например для выделяющихся сигналов источника звука, таких как речь, и высокой декорреляции, если сигнал не является декоррелированным, и/или декорреляция желательна. Весовые коэффициенты и/или спектральные веса могут быть определены и/или выставлены на множество значений или даже почти непрерывно.

Декоррелятор может быть выполнен с возможностью генерации первого декоррелированного сигнала на основании реверберации или задержки аудиосигнала. Контроллер может быть выполнен с возможностью генерации тестового декоррелированного сигнала также на основании реверберации или задержки аудиосигнала. Реверберация может быть осуществлена посредством задержки аудиосигнала и посредством объединения аудиосигнала и его варианта с задержкой, аналогично структуре фильтра с конечной импульсной характеристикой, причем реверберация может также быть реализована как фильтр с бесконечной импульсной характеристикой. Время задержки и/или количество задержек и объединений могут изменяться. Время задержки для задержки или реверберации аудиосигнала для тестового декоррелированного сигнала может быть меньше, чем время задержки, что, например, приводит к меньшим коэффициентам фильтра в фильтре задержки, для задержки или реверберации аудиосигнала для первого декоррелированного сигнала. Для предсказания воспринимаемой интенсивности декорреляции могут быть достаточными более низкая степень декорреляции и, следовательно, меньшее время задержки, так что посредством уменьшения времени задержки и/или коэффициентов фильтра могут быть уменьшены вычислительные затраты и/или вычислительная мощность.

Далее предпочтительные варианты осуществления настоящего изобретения описаны в связи с прилагаемыми чертежами, на которых:

фиг. 1 показывает схематическую блок-схему аппарата для улучшения аудиосигнала;

фиг. 2 показывает схематическую блок-схему другого аппарата для улучшения аудиосигнала;

фиг. 3 показывает пример таблицы, показывающей вычисление коэффициентов масштабирования (весовых коэффициентов) на основании уровня предсказанной воспринимаемой интенсивности декорреляции;

фиг. 4A показывает схематическую блок-схему последовательности операций части способа, которая может быть выполнена для частичного определения весовых коэффициентов;

фиг. 4B показывает схематическую блок-схему последовательности операций дополнительных этапов способа с фиг. 4A, изображающую случай, когда величину воспринимаемого уровня декорреляции сравнивают с пороговыми значениями;

фиг. 5 показывает схематическую блок-схему декоррелятора, который может быть выполнен с возможностью работы в качестве декоррелятора на фиг. 1;

фиг. 6A показывает схематическую диаграмму, содержащую спектр аудиосигнала, содержащего по меньшей мере одну переходную (кратковременную) часть сигнала;

фиг. 6B показывает схематический спектр аудиосигнала, содержащего тональный компонент;

фиг. 7A показывает схематическую таблицу, иллюстрирующую возможную переходную обработку, осуществляемую ступенью переходной обработки;

фиг. 7B показывает пример таблицы, которая иллюстрирует возможную тональную обработку, как она может быть выполнена ступенью тональной обработки.

Фиг. 8 показывает схематическую блок-схему системы улучшения звука, содержащей аппарат для улучшения аудиосигнала;

фиг. 9A показывает схематическую блок-схему обработки входного сигнала, соответствующую обработке основного/фонового сигнала.

Фиг. 9B иллюстрирует разделение входного сигнала на основной и фоновый сигнал;

фиг. 10 показывает схематическую блок-схему, а также аппарат, выполненный с возможностью применения спектральных весов к входному сигналу;

фиг. 11 показывает блок-схему последовательности операций способа улучшения аудиосигнала;

фиг. 12 иллюстрирует аппарат для определения величины воспринимаемого уровня реверберации/декорреляции в смешанном сигнале, содержащем компонент прямого сигнала или компонент необработанного сигнала и компонент сигнала реверберации;

фиг. 13A-C показывают реализации процессора моделирования громкости; и

фиг. 14 иллюстрирует реализацию процессора моделирования громкости, который уже был в некоторых аспектах рассмотрен по отношению к фиг. 12, 13A, 13B, 13C.

Одинаковые или эквивалентные элементы или элементы с одинаковой или эквивалентной функциональностью обозначены в нижеследующем описании одинаковыми или эквивалентными ссылочными позициями даже на различных фигурах.

В нижеследующем описании изложено множество подробностей для предоставления более полного объяснения вариантов осуществления настоящего изобретения. Тем не менее, специалистам в данной области техники будет ясно, что варианты осуществления настоящего изобретения могут быть осуществлены без этих конкретных подробностей. В других случаях хорошо известные структуры и устройства показаны в форме блок-схемы, а не подробно, для того чтобы избежать затруднения понимания вариантов осуществления настоящего изобретения. Кроме того, признаки различных вариантов осуществления, описанных ниже в данном документе, могут быть объединены друг с другом, если специально не оговорено иное.

Далее будет рассмотрена обработка аудиосигнала. Аппарат или его компонент могут быть выполнены с возможностью приема, предоставления и/или обработки аудиосигнала. Соответствующий аудиосигнал может быть принят, предоставлен или обработан во временной области и/или в частотной области. Представление аудиосигнала во временной области может быть преобразовано в частотное представление аудиосигнала, например посредством преобразований Фурье или тому подобного. Частотное представление может быть получено, например, посредством использования кратковременного преобразования Фурье (STFT), дискретного косинусного преобразования и/или быстрого преобразования Фурье (FFT). В качестве альтернативы или дополнения, частотное представление может быть получено с помощью банка фильтров, который может содержать квадратурные зеркальные фильтры (QMF). Представление аудиосигнала в частотной области может содержать множество кадров, причем каждый содержит множество подполос, что известно из преобразований Фурье. Каждая подполоса содержит часть аудиосигнала. Поскольку временное представление и частотное представление аудиосигнала могут быть преобразованы друг в друга, нижеследующее описание не будет ограничено аудиосигналом в представлении во временной области или в представлении в частотной области.

Фиг. 1 показывает схематическую блок-схему аппарата 10 для улучшения аудиосигнала 102. Аудиосигнал 102 представляет собой, например, моносигнал или моноподобный сигнал, такой как двойной моносигнал, представленный в частотной области или во временной области. Аппарат 10 содержит процессор 110 сигналов, декоррелятор 120, контроллер 130 и объединитель 140. Процессор 110 сигналов выполнен с возможностью приема аудиосигнала 102 и обработки аудиосигнала 102 для получения обработанного сигнала 112, для того чтобы уменьшать или удалять переходные и тональные части обработанного сигнала 112 по сравнению с аудиосигналом 102.

Декоррелятор 120 выполнен с возможностью приема обработанного сигнала 112 и генерации первого декоррелированного сигнала 122 и второго декоррелированного сигнала 124 из обработанного сигнала 112. Декоррелятор 120 может быть выполнен с возможностью генерации первого декоррелированного сигнала 122 и второго декоррелированного сигнала 124 посредством, по меньшей мере частично, реверберации обработанного сигнала 112. Первый декоррелированный сигнал 122 и второй декоррелированный сигнал 124 могут иметь различные времена задержки для реверберации, так что первый декоррелированный сигнал 122 имеет меньшее или большее время задержки (время реверберации), чем второй декоррелированный сигнал 124. Первый или второй декоррелированный сигнал 122 или 124 могут также быть обработаны без фильтра задержки или реверберации.

Декоррелятор 120 выполнен с возможностью предоставления первого декоррелированного сигнала 122 и второго декоррелированного сигнала 124 на объединитель 140. Контроллер 130 выполнен с возможностью приема аудиосигнала 102 и управления изменяющимися во времени весовыми коэффициентами a и b посредством анализа аудиосигнала 102 таким образом, что различные части аудиосигнала 102 умножают на различные весовые коэффициенты a или b. Поэтому контроллер 130 содержит блок 132 управления, выполненный с возможностью определения весовых коэффициентов a и b. Контроллер 130 может быть выполнен с возможностью работы в частотной области. Блок 132 управления может быть выполнен с возможностью преобразования аудиосигнала 102 в частотную область посредством использования кратковременного преобразования Фурье (STFT), быстрого преобразования Фурье (FFT) и/или обычного преобразования Фурье (FT). Представление аудиосигнала 102 в частотной области может содержать множество подполос, как известно из преобразований Фурье. Каждая подполоса содержит часть аудиосигнала. В качестве альтернативы, аудиосигнал 102 может представлять собой представление сигнала в частотной области. Блок 132 управления может быть выполнен с возможностью управления и/или определения пары весовых коэффициентов a и b для каждой подполосы цифрового представления аудиосигнала.

Объединитель выполнен с возможностью взвешенного объединения первого декоррелированного сигнала 122, второго декоррелированного сигнала 124, сигнала 136, получаемого из аудиосигнала 102, с использованием весовых коэффициентов a и b. Сигнал 136, получаемый из аудиосигнала 102, может быть предоставлен контроллером 130. Поэтому контроллер 130 может содержать необязательный блок 134 получения. Блок 134 получения может быть выполнен с возможностью, например, адаптации, модификации или улучшения частей аудиосигнала 102. В частности, блок 110 получения может быть выполнен с возможностью усиления частей аудиосигнала 102, которые ослаблены, уменьшены или удалены процессором 110 сигналов.

Процессор 110 сигналов может быть также выполнен с возможностью работы в частотной области и обработки аудиосигнала 102 таким образом, что процессор 110 сигналов уменьшает или удаляет переходные и тональные части для каждой подполосы спектра аудиосигнала 102. Это может приводить к меньшей обработке или даже отсутствию обработки для подполос, содержащих мало или не содержащих переходных или содержащих мало или не содержащих тональных (то есть шумовых) частей. В качестве альтернативы, объединитель 140 может вместо получаемого сигнала принимать аудиосигнал 102, то есть контроллер 130 может быть реализован без блока 134 получения. Тогда сигнал 136 может быть равен аудиосигналу 102.

Также объединитель 140 выполнен с возможностью приема сигнала 138 взвешивания, содержащего весовые коэффициенты a и b. Объединитель 140 дополнительно выполнен с возможностью получения выходного аудиосигнала 142, содержащего первый канал y1 и второй канал y2, то есть аудиосигнал 142 представляет собой двухканальный аудиосигнал.

Процессор 110 сигналов, декоррелятор 120, контроллер 130 и объединитель 140 могут быть выполнены с возможностью обработки аудиосигнала 102, сигнала 136, получаемого из него, и/или обработанных сигналов 112, 122 и/или 124 по кадрам и по подполосам таким образом, что процессор 110 сигналов, декоррелятор 120, контроллер 130 и объединитель 140 могут быть выполнены с возможностью выполнения вышеописанных операций для каждой полосы частот посредством обработки одной или нескольких полос частот (частей сигнала) в один момент времени.

Фиг. 2 показывает схематическую блок-схему аппарата 200 для улучшения аудиосигнала 102. Аппарат 200 содержит процессор 210 сигналов, декоррелятор 120, контроллер 230 и объединитель 240. Декоррелятор 120 выполнен с возможностью генерации первого декоррелированного сигнала 122, обозначенного r1, и второго декоррелированного сигнала 124, обозначенного r2.

Процессор 210 сигналов содержит ступень 211 обработки переходных частей, ступень 213 обработки тональных частей и объединяющую ступень 215. Процессор 210 сигналов выполнен с возможностью обработки представления аудиосигнала 102 в частотной области. Представление аудиосигнала 102 в частотной области содержит множество подполос (полос частот), причем ступень 211 обработки переходных частей и ступень 213 обработки тональных частей выполнены с возможностью обработки каждой из полос частот. В качестве альтернативы, спектр, полученный посредством преобразования частоты аудиосигнала 102, может быть уменьшен, то есть обрезан, для исключения из дальнейшей обработки некоторых диапазонов частот или полос частот, таких как полосы частот ниже 20 Гц, 50 Гц или 100 Гц и/или выше 16 кГц, 18 кГц или 22 кГц. Это может позволить снизить вычислительные затраты и, следовательно, получить более быструю и/или более точную обработку.

Ступень 211 переходной обработки выполнена с возможностью определения для каждой из обработанных полос частот, содержит ли данная полоса частот переходные части. Ступень 213 тональной обработки выполнена с возможностью определения для каждой из полос частот, содержит ли аудиосигнал 102 тональные части в данной полосе частот. Ступень 211 переходной обработки выполнена с возможностью определения по меньшей мере для полос частот, содержащих переходные части, спектральных весовых коэффициентов 217, причем спектральные весовые коэффициенты 217 связаны с соответствующей полосой частот. Как будет показано на фиг. 6A и 6B, переходные и тональные характеристики могут быть идентифицированы с помощью спектральной обработки. Уровень переходности и/или тональности может быть измерен с помощью ступени 211 переходной обработки и/или ступени 213 тонально обработки и преобразован в спектральный вес. Ступень 213 тональной обработки выполнена с возможностью определения спектральных весовых коэффициентов 219 по меньшей мере для полос частот, содержащих тональные части. Спектральные весовые коэффициенты 217 и 219 могут иметь множество возможных значений, причем величина спектральных весовых коэффициентов 217 и/или 219 указывает на количество переходных и/или тональных частей в полосе частот.

Спектральные весовые коэффициенты 217 и 219 могут иметь абсолютное или относительное значение. Например, абсолютное значение может иметь значение энергии переходного и/или тонального звука в полосе частот. В качестве альтернативы, спектральные весовые коэффициенты 217 и/или 219 могут иметь относительное значение, такое как значение между 0 и 1, причем значение 0 указывает на то, что полоса частот не содержит или почти не содержит переходных или тональных частей, и значение 1 указывает на то, что полоса частот содержит большое количество или полностью состоит из переходных и/или тональных частей. Спектральные весовые коэффициенты могут иметь одно из множества значений, таких как число, равное 3, 5, 10, или больше значений (шагов), например (0, 0,3 и 1), (0,1, 0,2,..., 1) или тому подобное. Размер шкалы, число шагов между минимальным значением и максимальным значением, может составлять по меньшей мере нуль, но, предпочтительно, по меньшей мере один и больше, предпочтительно по меньшей мере пять. Предпочтительно, множество значений спектральных весов 217 и 219 содержит по меньшей мере три значения, включая минимальное значение, максимальное значение и значение, которое лежит между минимальным значением и максимальным значением. Большее число значений между минимальным значением и максимальным значением может обеспечивать более непрерывное взвешивание каждой из полос частот. Минимальное значение и максимальное значение могут быть приведены к масштабу между 0 и 1 или другим значениям. Максимальное значение может указывать на самый высокий или самый низкий уровень переходности и/или тональности.

Объединяющая ступень 215 выполнена с возможностью объединения спектральных весов для каждой из полос частот, как описано далее. Процессор 210 сигналов выполнен с возможностью применения объединенных спектральных весов к каждой из полос частот. Например, спектральные веса 217 и/или 219 или значение, получаемое из них, могут быть умножены на спектральные значения аудиосигнала 102 в обработанной полосе частот.

Контроллер 230 выполнен с возможностью приема спектральных весовых коэффициентов 217 и 219 или информации, ссылающейся на них, от процессора 210 сигналов. Получаемая информация может представлять собой, например, индексный номер таблицы, причем индексный номер связан со спектральными весовыми коэффициентами. Контроллер выполнен с возможностью улучшения аудиосигнала 102 для когерентных частей сигнала, то есть для частей, не уменьшенных или удаленных или только частично уменьшенных или удаленных ступенью 211 переходной обработки и/или ступенью 213 тональной обработки. Проще говоря, блок 234 получения может усиливать части, не уменьшенные или удаленные процессором 210 сигналов.

Блок 234 получения выполнен с возможностью предоставления сигнала 236, получаемого из аудиосигнала 102, обозначенного z. Объединитель 240 выполнен с возможностью приема сигнала z (236). Декоррелятор 120 выполнен с возможностью приема обработанного сигнала 212, обозначенного s, от процессора 210 сигналов.

Объединитель 240 выполнен с возможностью объединения декоррелированных сигналов r1 и r2 с весовыми коэффициентами (коэффициентами масштабирования) a и b для получения сигнал y1 первого канала и сигнал y2 второго канала. Сигнальные каналы y1 и y2 могут быть объединены с выходным сигналом 242 или выводиться по-отдельности.

Другими словами, выходной сигнал 242 представляет собой комбинацию (как правило) коррелированного сигнала z (236) и декоррелированного сигнала s (r1 или r2, соответственно). Декоррелированный сигнал получают в два этапа, первый - подавление (уменьшение или удаление) переходных и тональных компонентов сигнала, а второй - декорреляцию. Подавление переходных компонентов сигнала и тональных компонентов сигнала осуществляют посредством спектрального взвешивания. Сигнал обрабатывают по кадрам в частотной области. Спектральные веса вычисляют для каждого частотного элемента (полосы частот) и временного кадра. Таким образом, аудиосигнал представляет собой полную обработанную полосу, то есть обработаны все части, которые должны быть рассмотрены.

Входной сигнал обработки может представлять собой одноканальный сигнал x (102), выходной сигнал может представлять собой двухканальный сигнал y=[y1,y2], где индексы обозначают первый и второй канал, например левый и правый канал стереосигнала. Выходной сигнал y может быть вычислен с помощью линейного объединения двухканального сигнала r=[r1,r2] с одноканальным сигналом z с коэффициентами масштабирования a и b в соответствии с уравнениями

y1=a x z+b x r1 (1)

y2=a x z+b x r2 (2)

где "x" обозначает оператор умножения в уравнениях (1) и (2).

Уравнения (1) и (2) следует интерпретировать качественно, они указывают, что долей сигналов z, r1 и r2 можно управлять (изменять ее) с помощью изменяющихся весовых коэффициентов. Посредством формирования, например, обратных операций, таких как деление на обратное значение, те же или эквивалентные результаты могут быть получены с помощью осуществления других операций. В качестве альтернативы или дополнения, для получения двухканального сигнала y можно использовать справочную таблицу, содержащую коэффициенты масштабирования a и b и/или значения для y1 и/или y2.

Коэффициенты масштабирования a и/или b могут быть вычислены как монотонно убывающие с возрастанием воспринимаемой интенсивности корреляции. Предсказанное скалярное значение для воспринимаемой интенсивности можно использовать для управления коэффициентами масштабирования.

Декоррелированный сигнал r, содержащий r1 и r2, может быть вычислен в два этапа. Во-первых, ослабление переходных и тональных компонентов сигнала дает сигнал s. Во-вторых, может быть осуществлена декорреляция сигнала s.

Ослабление переходных компонентов сигнала и тональных компонентов сигнала осуществляют, например, посредством спектрального взвешивания. Сигнал обрабатывают по кадрам в частотной области. Для каждого частотного элемента и временного кадра вычисляют спектральные веса. Ослабление преследует двойную цель:

1. Переходные или тональные компоненты сигнала, как правило, принадлежат к так называемым основным сигналам, и при этом их положение в стереофоническом образе часто находится в центре.

2. Декорреляция сигналов, имеющих сильные переходные компоненты сигнала, приводит к воспринимаемым артефактам. Декорреляция сигналов, имеющих сильные тональные компоненты сигнала, также приводит к воспринимаемым артефактам, когда тональные компоненты (то есть синусоиды) модулированы по частоте, по меньшей мере когда частотная модуляция достаточно медленна для того, чтобы она воспринималась как изменение частоты, а не как изменение тембра из-за обогащения спектра сигнала (возможно негармоническими) обертонами.

Коррелированный сигнал z может быть получен посредством применения обработки, которая улучшает переходные и тональные компоненты сигнала, например, качественно, обратного преобразования подавления для вычисления сигнала s. В качестве альтернативы, входной сигнал, например необработанный, можно использовать, как есть. Следует отметить, что может иметь место случай, когда z также представляет собой двухканальный сигнал. Фактически, многие среды для хранения (например, компакт-диск) используют два канала, даже если сигнал является монофоническим. Сигнал, имеющий два идентичных канала, называется "двойным моно". Также может иметь место случай, когда входной сигнал z представляет собой стереосигнал, и целью обработки может быть повышение стереофонического эффекта.

Воспринимаемая интенсивность декорреляции может быть предсказана аналогично предсказанной воспринимаемой интенсивности поздней реверберации с использованием вычислительных моделей громкости, как описано в EP 2541542 A1.

Фиг. 3 показывает пример таблицы, показывающей вычисление коэффициентов масштабирования (весовых коэффициентов) a и b на основании уровня предсказанной воспринимаемой интенсивности декорреляции.

Например, воспринимаемая интенсивность декорреляции может быть предсказана таким образом, что ее значение имеет скалярное значение, которое может изменяться между значением, равным 0, указывающим на низкий уровень воспринимаемой декорреляции, нулевой, соответственно, и значением, равным 10, указывающим на высокий уровень декорреляции. Уровни могут быть определены, например, на основании тестирования слушателей или предиктивного моделирования. В качестве альтернативы, значение уровня декорреляции может содержать диапазон между минимальным значением и максимальным значением. Значение воспринимаемого уровня декорреляции может иметь возможность принимать более чем минимальное и максимальное значение. Предпочтительно, воспринимаемый уровень корреляции может принимать по меньшей мере три различных значения и, более предпочтительно, по меньшей мере семь различных значений.

Весовые коэффициенты a и b, которые должны применяться на основании определенного уровня воспринимаемой декорреляции, могут быть сохранены в памяти и доступны для контроллера 130 или 230. При повышении уровней воспринимаемой декорреляции коэффициент масштабирования a, который должен быть умножен на аудиосигнал или сигнал, получаемый из него с помощью объединителя, также может возрастать. Повышение уровня воспринимаемой декорреляции можно интерпретировать как "сигнал уже (частично) декоррелирован", так что при повышении уровней декорреляции аудиосигнал или сигнал, получаемый из него, имеет более высокую долю в выходном сигнале 142 или 242. При повышении уровней декорреляции весовой коэффициент b имеет возможность уменьшения, то есть сигналы r1 и r2, генерируемые декоррелятором на основании выходного сигнала процессора сигналов, могут иметь более низкую долю при объединении в объединителе 140 или 240.

Хотя весовой коэффициент a изображен имеющим скалярное значение, равное самое меньшее 1 (минимальное значение) и самое большее 9 (максимальное значение). Хотя весовой коэффициент b изображен имеющим скалярное значе