Протоколы, устройство и способы для передачи данных при направленном бурении

Иллюстрации

Показать все

Изобретение относится к области направленного бурения и может быть использовано для передачи данных. Техническим результатом является увеличение пропускной способности при передаче данных. В частности, предложено устройство для получения и передачи рабочих параметров находящегося под землей инструмента для совместного использования с системой для выполнения операции под землей, в которой бурильная колонна продолжается от бурового станка до находящегося под землей инструмента таким образом, что протягивание и отвод бурильной колонны приводят к соответствующим движениям находящегося под землей инструмента во время операции под землей. При этом указанное устройство содержит: передатчик, выполненный с возможностью его перемещения рядом с находящимся под землей инструментом для определения множества рабочих параметров, относящихся к находящемуся под землей инструменту, и для детектирования, является ли рабочий статус находящегося под землей инструмента неподвижным или движущимся, а также изменений рабочего статуса, и для передачи данных, характеризующих одни или более рабочих параметров, с более высоким разрешением, когда находящийся под землей инструмент находится в неподвижном состоянии, и с более низким разрешением, когда находящийся под землей инструмент движется; и приемник для установки в местоположение над землей для приема сигнала данных и для получения рабочих параметров. 7 н. и 26 з.п. ф-лы, 6 ил., 3 табл.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к протоколам, устройству и способам для передачи данных при направленном бурении.

Уровень техники

Настоящее изобретение, в общем, относится к области направленного бурения и, более конкретно, к усовершенствованным протоколам, устройству и способам для передачи данных при направленном бурении.

Технология, которая часто называется горизонтальным направленным бурением (ГНБ), может использоваться с целью установки коммунального оборудования без необходимости рыть траншею. Типичная установка коммунального оборудования подразумевает использование бурового станка, имеющего бурильную колонну, на которой установлен бурильный инструмент на дистальном конце или на подземном конце бурильной колонны. Буровой станок проталкивает бурильный инструмент сквозь землю, прикладывая осевую силу к бурильной колонне. Бурильным инструментом управляют по мере удлинения бурильной колонны для формирования направляющей скважины. После завершения направляющей скважины дистальный конец бурильной колонны прикрепляют к устройству обратной тяги, которое, в свою очередь, прикреплено к переднему концу коммунального оборудования. Устройство обратной тяги и коммунальное оборудования затем протягивают через направляющую скважину путем отвода бурильной колонны, для завершения установки. В некоторых случаях устройство обратной тяги может содержать обратный развертывающий инструмент, который используется для расширения диаметра направляющей скважины перед коммунальным оборудованием, при этом устанавливаемое коммунальное оборудование может быть большего диаметра, чем оригинальный диаметр направляющей скважины.

Наведение бурильного инструмента может выполняться хорошо известным способом путем ориентирования асимметричной стороны бурильного инструмента для отклонения в требуемом направлении в земле, в соответствии с движением вперед. Для управления таким наведением желательно отслеживать ориентацию бурильного инструмента на основе показаний датчика, получаемых с помощью датчиков, которые формируют часть электронного блока, который установлен на бурильном инструменте. Показания датчика, например, могут быть модулированы на сигнал определения местоположения, который передается электронным блоком, для приема над землей с помощью портативного локатора или другого соответствующего, находящегося над землей, устройства. В некоторых системах электронный блок может подавать сигнал несущей, модулированный показаниями датчика, в бурильную колонну с тем, чтобы затем передавать сигнал в буровой станок, используя бурильную колонну в качестве электрического проводника. Независимо от способа передачи данных датчика и от заданной величины мощности передачи, существует ограничение дальности передачи, на которой данные датчика могут быть получены с достаточной точностью. Дальность передачи может все еще быть дополнительно ограничена таким факторами, как, например, электромагнитные помехи, которые присутствуют в области работы. В одном из подходов предшествующего уровня техники, при попытке увеличения дальности передачи, просто увеличивали мощность передачи. Заявители, однако, считают, что такой подход может иметь ограниченное значение, в частности, когда электронный блок, находящийся под землей, работает от батареи, как дополнительно будет описано ниже. Другой подход состоит в уменьшении скорости передачи данных или скорости, с которой данные модулируют на сигнал определения местоположения. К сожалению, такой подход приводит к уменьшению пропускной способности при передаче данных.

Представленные выше примеры предшествующего уровня техники и ограничений, связанных с ними, должны быть иллюстративными, а не исключающими. Другие ограничения предшествующего уровня техники будут понятны для специалистов в данной области техники после чтения описания и изучения чертежей.

Раскрытие изобретения

Следующие варианты осуществления и их аспекты описаны и представлены совместно с системами, инструментами и способами, которые считаются примерными и иллюстративными, а не ограничивающими объем. В различных вариантах осуществления одна или больше из описанных выше проблем были уменьшены или устранены, в то время как другие варианты осуществления направлены на другие улучшения.

В одном аспекте раскрытия, описаны устройство и соответствующий способ для использования совместно с системой, предназначенной для выполнения операции под землей, в которой бурильная колонна продолжается от бурового станка до находящегося под землей инструмента таким образом, что протягивание и отвод бурильной колонны, в общем, приводят к соответствующим движениям находящегося под землей инструмента во время операции под землей. Передатчик выполнен с возможностью его перемещения рядом с находящимся под землей инструментом для определения множества рабочих параметров, относящихся к находящемуся под землей инструменту и для обработки сигнала данных, который характеризует один или больше из рабочих параметров для передачи от находящегося под землей инструмента, на основе рабочего статуса находящегося под землей инструмента. Приемник может быть установлен в определенном местоположении над землей для приема сигнала данных и для получения рабочих параметров.

В другом аспекте описаны передатчик и соответствующий способ для использования совместно с приемником, как часть системы для выполнения работы под землей, в которой бурильная колонна продолжается от бурового станка до находящегося под землей инструмента, на котором установлен передатчик, таким образом, что протягивание и отвод бурильной колонны, в общем, приводит к соответствующим движениям находящегося под землей инструмента во время операции под землей. Передатчик включает в себя, по меньшей мере, один датчик для определения одного или больше рабочих параметров, относящихся к рабочему статусу находящегося под землей инструмента, и процессор, выполненный с возможностью обработки сигнала данных для передачи из передатчика на основе рабочего статуса находящегося под землей инструмента.

В еще одном, другом аспекте раскрытия описаны приемник и соответствующий способ для использования совместно с передатчиком, как часть системы для выполнения операции под землей, в которой бурильная колонна продолжается от бурового станка до находящегося под землей инструмента, на котором установлен передатчик таким образом, что протягивание и отвод бурильной колонны, в общем, приводит к соответствующим движениям находящегося под землей инструмента во время операций под землей. Приемник выполнен с возможностью приема сигнала данных, который передает передатчик, и этот сигнал данных характеризует один или больше рабочих параметров, относящихся к рабочему статусу находящегося под землей инструмента таким образом, что сигнал данных обрабатывают на основе рабочего статуса. Процессор выполнен с возможностью декодировать обработанный сигнал данных для получения одного или больше рабочих параметров.

В еще одном аспекте настоящего раскрытия описаны передатчик и соответствующий способ для использования совместно с системой для выполнения операции под землей, в которой бурильная колонна продолжается от бурового станка до находящегося под землей инструмента таким образом, что протягивание и/или вращение бурильной колонны приводит к движению находящегося под землей инструмента вдоль проходящего под землей пути, подвергая находящийся под землей инструмент механическим ударам и вибрации. Акселерометр, как часть передатчика, определяет ориентацию тангажа находящегося под землей инструмента в каждом из диапазона с высоким разрешением и диапазона с низким разрешением, на который воздействует механические удары и вибрация, для получения последовательности показаний тангажа. Процессор выполнен с возможностью отслеживания последовательности показаний тангажа и, в ответ на это, выбора одного из диапазона с высоким разрешением и диапазона с низким разрешением, для характеризации ориентации тангажа и для усреднения последовательности показаний тангажа в выбранном одном из диапазона с высоким разрешением и диапазона с низким разрешением, для генерирования среднего значения показаний тангажа для передачи через передатчик.

В следующем аспекте настоящего раскрытия описаны передатчик и соответствующий способ для использования совместно с системой, для выполнения операции под землей, при которой бурильная колонна продолжается от бурового станка до находящегося под землей инструмента таким образом, что протягивание и/или вращение бурильной колонны приводит к движению находящегося под землей инструмента вдоль пути под землей, подвергая находящийся под землей инструмент механическим ударам и вибрации. Акселерометр формирует часть передатчика для определения ориентации тангажа находящегося под землей инструмента, для получения последовательности показаний тангажа. Процессор выполнен с возможностью усреднения последовательности показаний тангажа, для генерирования среднего показания тангажа для передачи через передатчик.

В дополнительном аспекте настоящего раскрытия учитывается, что избирательно могут использоваться передовые протоколы передачи данных, например, для улучшения частоты обновления одного или больше параметров, которые используются в отношении отслеживания находящегося под землей инструмента. Такие усовершенствованные протоколы данных могут обеспечивать существенное уменьшение количества данных, которое необходимо для эффективной характеризации заданного параметра, например, на основе изменения разрешающей способности параметра таким образом, что требуется меньшее количество битов данных. В качестве неограничительного примера, описаны передатчик и соответствующий способ для использования совместно с приемником, как части системы для выполнения операции под землей, в которой бурильная колонна продолжается от бурового станка до находящегося под землей инструмента, на котором установлен передатчик таким образом, что протягивание и отвод бурильной колонны, в общем, приводит к соответствующим движениям находящегося под землей инструмента во время операции под землей. По меньшей мере, один датчик формирует часть передатчика для определения одного или больше параметров операций, относящихся к находящемуся под землей инструменту. Процессор выполнен с возможностью передачи данных, относящихся к одному или больше рабочим параметрам в стандартном режиме и в альтернативном режиме, таким образом, что альтернативный режим характеризует, по меньшей мере, определенный один из операционных параметров, используя количество битов, которое меньше, чем количество битов, которое характеризует определенный параметр в стандартном режиме, при этом альтернативный режим представляет определенный параметр с более низким разрешением, чем стандартный режим.

В другом аспекте настоящего раскрытия описаны передатчик и соответствующий способ для использования совместно с приемником, как часть системы, для выполнения операции под землей, в которой бурильная колонна продолжается от бурового станка до находящегося под землей инструмента, на котором установлен передатчик таким образом, что протягивание и отвод бурильной колонны, в общем, формируют соответствующие движения находящегося под землей инструмента во время операции под землей. По меньшей мере, один датчик формирует часть передатчика для определения одного или больше рабочих параметров, относящихся к находящему под землей инструменту. Процессор выполнен с возможностью передачи сигнала данных через передатчик, используя множество протоколов пакетной передачи данных, включающих в себя конкретный протокол, в котором, в соответствии с определением неподвижного состояния передатчика, используется фиксированный фрейм данных для характеризации одного или больше рабочих параметров, и многократно передает фиксированный фрейм.

Краткое описание чертежей

Примерные варианты осуществления представлены на фигурах, показанных на чертежах. Предполагается, что варианты осуществления и фигуры, раскрытые здесь, должны быть скорее иллюстративными, а не ограничительными.

На фиг. 1 схематично показан на виде в вертикальной проекции вариант осуществления системы для выполнения операции под землей, в которой используются усовершенствованные протоколы передачи данных между находящимся под землей передатчиком и портативным устройством, в соответствии с настоящим раскрытием.

На фиг. 2 показана блок-схема, которая иллюстрирует вариант осуществления электронного блока, который может перемещаться находящимся под землей инструментом и может быть воплощен в соответствии с настоящим раскрытием.

На фиг. 3 показана блок-схема последовательности операций, иллюстрирующая вариант осуществления способа для отслеживания тангажа находящегося под землей инструмента и применения нелинейного распределения диапазона тангажа.

На фиг. 4 показана блок-схема последовательности операций, иллюстрирующая вариант осуществления способа для настройки структуры пакета для передачи пакетов из находящегося под землей инструмента на основе рабочих условий или статуса находящегося под землей инструмента.

На фиг. 5 показана блок-схема последовательности операций, иллюстрирующая вариант осуществления способа для динамического запроса фиксированной длины пакета для усреднения по множеству, в соответствии с рабочим состоянием находящегося под землей инструмента.

На фиг. 6 показана блок-схема последовательности операций, иллюстрирующая вариант осуществления способа для динамической настройки определения силы g, для увеличения динамического диапазона на основе рабочих условий, с которыми сталкивается находящийся под землей инструмент.

Осуществление изобретения

Следующее описание представлено для обеспечения для специалиста среднего уровня возможности изготовления и использования изобретения и предусмотрено в контексте патентной заявки и ее требований. Различные модификации для описанных вариантов осуществления будут понятны для специалиста в данной области техники, и обобщенные принципы, описанные здесь, могут применяться для других вариантов осуществления. Таким образом, настоящее изобретение не предназначено для ограничения показанным вариантом осуществления, но его следует понимать в самом широком объеме, который соответствуют принципам и признакам, описанным здесь, включающим в себя модификации и эквиваленты. Следует отметить, что чертежи выполнены не в масштабе и являются схематичными по своей сути, таким образом, как считается, они наилучшим образом иллюстрируют свойства, представляющие интерес. Описательная терминология может быть принята с целью улучшения понимания читателем различных видов, представленных на чертежах, и при этом она никоим образом не является ограничительной.

Возвращаясь теперь к чертежам, на которых одинаковые элементы могут быть обозначены одинаковыми номерами ссылочных позиций на различных чертежах, в данный момент внимание направлено на фиг. 1, на которой представлен один вариант осуществления системы для выполнения операций под землей, в общем, обозначенной номером 10 ссылочной позиции. Система включает в себя портативное устройство 20, которое показано удерживаемым оператором над поверхностью 22 земли, а также на дополнительном увеличенном виде-вставке. Следует отметить, что проводное соединение между компонентами в устройстве 20 не было представлено для поддержания иллюстративной ясности, но следует понимать, что оно присутствует и может быть непосредственно выполнено специалистом, имеющим обычные навыки в области техники на основе данного общего раскрытия. Устройство 20 включает в себя блок 26 трехосевой антенны, которая измеряет три расположенных ортогонально компонента магнитного потока, которые обозначены как bx, by и bz. Один полезный антенный блок, который считается пригодным для использования здесь, раскрыт в документе US 6,005,532, который совместно принадлежит авторам настоящей заявки и представлен здесь по ссылке. Антенный блок 26 электрически соединен с приемным блоком 32. Средство 34 определения наклона может быть предусмотрено для измерения гравитационных углов, по которым могут быть определены компоненты потока в системе координат уровня.

Устройство 20 может дополнительно включать в себя графический дисплей 36, телеметрическое средство 38, имеющее антенну 40, и блок 42 обработки, взаимно соединенный, соответственно, с различными компонентами. Телеметрическое средство может передавать телеметрический сигнал 44 для приема в буровом станке. Блок обработки может включать в себя цифровой сигнальный процессор (ЦСП), который выполнен с возможностью выполнения различных процедур, необходимых во время работы. Следует понимать, что графический дисплей 36 может представлять собой сенсорный экран, чтобы способствовать выбору оператором различных кнопок, которые определены на экране, и/или может способствовать прокрутке между различными кнопками, которые определены на экране, для обеспечения выбора оператора. Такой сенсорный экран может использоваться отдельно или в комбинации с устройством 48 ввода, таким как, например, кнопочная панель. Последняя может использоваться без сенсорного экрана. Кроме того, множество вариаций устройств ввода может использоваться, и в них могут использоваться колесики прокрутки и другие соответствующие, хорошо известные формы устройства выбора. Блок обработки может включать в себя такие компоненты, как, например, один или больше процессоров, запоминающее устройство любого соответствующего типа и аналого-цифровые преобразователи. Как хорошо известно в данной области техники, последние должны быть выполнены с возможностью детектирования частоты, которая составляет, по меньшей мере, удвоенную частоту наибольшей частоты, представляющей интерес. Другие компоненты могут быть добавлены, как описано, такие как, например, магнитометр 50, который способствует определению положения относительно направления бурения, и ультразвуковые преобразователи для измерения высоты устройства над поверхностью земли.

Также, как показано на фиг. 1, система 10 дополнительно включает в себя буровой станок 80, имеющий каретку 82, установленную с возможностью перемещения вдоль длины противостоящей пары рельс 83. Находящийся под землей инструмент 90 прикреплен к противоположному концу бурильной колонны 92. В качестве неограничительного примера бурильный инструмент показан, как инструмент, находящийся под землей, и используется, как основа для настоящего описания, однако, следует понимать, что любое соответствующее находящееся под землей устройство может использоваться, таким образом, как оно есть, например, расширяющее устройство, предназначенное для использования во время операции обратного отвода, или устройство для картографирования. В общем, бурильная колонна 92 выполнена из множества съемно закрепляемых участков буровой трубы таким образом, что буровой станок может проталкивать бурильную колонну под землю, используя движение в направлении стрелки 94, и отводить бурильную колонну, в соответствии с противоположным движением. В участках буровой трубы может быть сформирован сквозной канал для перемещения бурового раствора или текучей среды, которая разбрызгивается из бурильного инструмента под давлением, с тем, чтобы способствовать бурению через землю, а также для охлаждения бурильной головки. В общем, буровой раствор также используется для задержки и вывода выбуренной породы на поверхность вдоль внешней длины бурильной колонны. Управление может быть выполнено хорошо известным способом путем ориентирования асимметричной стороны 96 бурильного инструмента для отклонения в требуемом направлении в земле, в соответствии с проталкиванием для движения вперед, которое может называться "режимом проталкивания". Вращение или кручение бурильной колонны буровым станком, в общем, может привести к перемещению вперед или прямому перемещению бурильного инструмента, что может называться режимом "кручения" или "перемещения вперед".

Буровыми работами управляет оператор (не показан) за консолью 100 управления (лучше всего видно на увеличенном виде-вставке), которая сама включает в себя приемопередатчик 102 телеметрических данных, соединенный с телеметрической антенной 104, экран 106 дисплея, устройство ввода, такое как клавиатура 110, средство 112 обработки, которое может включать в себя соответствующие интерфейсы, и запоминающее устройство, а также один или больше процессоров. Множество рычагов 114 управления, например, для управления движением каретки 82. Приемопередатчик 104 телеметрических данных может передавать телеметрический сигнал 116 с тем, чтобы способствовать двунаправленному обмену данными с портативным устройством 20. В варианте осуществления экран 106 может представлять собой сенсорный экран таким образом, что клавиатура 110 может быть не обязательной.

Устройство 20 выполнено с возможностью приема электромагнитного сигнала 120 определения местоположения, который передают из бурильного инструмента или другого находящегося под землей инструмента. Сигнал определения местоположения может представлять собой дипольный сигнал. В этом случае портативное устройство может соответствовать, например, портативному устройству, описанному в любом из патентов США №№6,496,008, 6,737,867, 6,727,704, а также в опубликованной заявке на патент США №2011-0001633, каждый из которых представлен здесь по ссылке. С учетом этих документов, следует понимать, что портативное устройство может работать либо в режиме обзорного определения местоположения, как представлено на фиг. 1, либо в режиме возврата в исходное положение, при установке портативного устройства на земле, как представлено в патенте 6,727,704. Хотя в настоящем раскрытии иллюстрируется дипольное поле определения местоположения, передаваемое из бурильного инструмента и, вращающееся вокруг оси симметрии поля, настоящее раскрытие не предназначено для ограничения в этом отношении.

Сигнал 120 определения местоположения может быть модулирован информацией, генерируемой в бурильном инструменте, включающей в себя, но без ограничений, параметры ориентации положения, на основе показаний датчика ориентации тангажа и/или крена, значения температуры, значения давления, состояния батареи, показания усилия натяжения в контексте операции обратного отвода и т.п. Устройство 20 принимает сигнал 120, используя антенную решетку 26, и обрабатывает принятый сигнал для получения данных. Следует отметить, что, в качестве альтернативы, для модуляции сигнала определения местоположения требуемая информация может быть передана по бурильной колонне до бурового станка, используя электрическую проводимость, такую как средство "провод-в-трубе". В другом варианте осуществления двунаправленная передача данных может быть выполнена путем использования самой бурильной колонны в качестве электрического проводника. Усовершенствованный вариант осуществления такой системы описан в совместно принадлежащей заявке на патент США, серийный №13/733,097, опубликованной, как опубликованная заявка США №2013/0176139, и которая представлена здесь полностью по ссылке. В любом случае вся информация может быть сделана доступной на консоли 100 в буровом станке.

На фиг. 2 показана блок-схема, которая иллюстрирует вариант осуществления электронного блока, в общем, обозначенного номером 200 ссылочной позиции, который может быть установлен в бурильном инструменте 90. Электронный блок может включать в себя подземный цифровой сигнальный процессор 210. Блок 214 датчика может быть электрически соединен с цифровым сигнальным процессором 210 через аналого-цифровой преобразователь (АЦП) 216. Любая соответствующая комбинация датчиков может быть предусмотрена для заданного варианта применения и может быть выбрана, например, из акселерометра 220, магнитометра 222, датчика 224 температуры и датчика 226 давления, которые могут определять давление бурового раствора перед его разбрызгиванием из бурильной колонны и/или в пределах кольцевой области, окружающей скважинный участок бурильной колонны. В варианте осуществления, в котором передача данных к буровому станку осуществляется путем использования бурильной колонны в качестве электрического проводника, изолятор 230 формирует электрически изолирующее соединение в бурильной колонне и схематично показан, как отделяющий, находящейся сверху участок 234 бурильной колонны от находящего внутри скважины участка 238 бурильной колонны для использования в одном или обоих из режима передачи, в котором данные подключают к бурильной колонне, и режима приема, в котором данные получают из бурильной колонны. В некоторых вариантах осуществления электрическая изоляция может быть предусмотрена, как часть находящегося под землей инструмента. Электронный блок может быть соединен, как представлено и показано, через электрически изолирующий/изоляционный разрыв, сформированный изолятором, с использованием первого вывода 250а и второго вывода 250b, которые могут быть совместно обозначены номером 250 ссылочной позиции. Для режима передачи используется блок 330 возбуждения антенны, который электрически соединен между цифровым сигнальным процессором 210, находящимся под землей, и выводом 250 для непосредственного привода бурильной колонны. В общем, данные, которые могут быть переданы по бурильной колонне, могут быть модулированы, используя частоту, которая отличается от любой частоты, которая используется для возбуждения дипольной антенны 340, которая может излучать описанный выше сигнал 120 (фиг. 1), для исключения взаимных помех. Когда возбудитель 330 антенны выключен, переключатель 350 (ВКЛ./ВЫКЛ.) включения/выключения может избирательно соединять вывод 250 с полосовым фильтром (ПФ) 352, центральная частота которого соответствует центральной частоте сигнала данных, который принимают из бурильной колонны. ПФ 352, в свою очередь, соединен с аналого-цифровым преобразователем (АЦП) 354, который сам по себе соединен с блоком 210 обработки цифрового сигнала. В одном варианте осуществления блокирующий постоянный ток фильтр защиты от наложения спектров может использоваться вместо полосового фильтра. Получение модулированных данных в блоке обработки цифровых сигналов может быть непосредственно выполнено специалистом среднего уровня в данной области техники с учетом определенной формы модуляции, которая используется с учетом данного общего раскрытия.

Также, как показано на фиг. 2, дипольная антенна 340 может быть подключена для использования в одном или обоих из режима передачи, в котором сигнал 120 передают в окружающую землю, и режима приема, в котором принимают электромагнитный сигнал, такой как сигнал от находящегося под землей инструмента, такого как, например, датчик натяжения. Для режима передачи используется блок 360 возбуждения антенны, который электрически включен между находящимся под землей цифровым сигнальным процессором 210 и дипольной антенной 340 для возбуждения антенны. И снова, частота сигнала 120, в общем, будет существенно отличаться от частоты сигнала бурильной колонны, для исключения взаимной помехи между ними. Когда возбудитель 360 антенны отключен, переключатель (ВКЛ./ВЫКЛ.) 370 включения/выключения может избирательно подключать дипольную антенну 340 к полосовому фильтру (ПФ) 372, центральная частота которого совпадает с центральной частотой сигнала данных, принимаемых от дипольной антенны. В варианте осуществления блокирующий постоянный ток фильтр защиты от наложения спектров может использоваться вместо полосового фильтра. ПФ 372, в свою очередь, подключен к аналого-цифровому преобразователю (АЦП) 374, который в свою очередь, подключен к блоку 210 цифровой обработки сигналов. Электронная схема приемопередатчика для блока цифровой обработки сигналов может быть легко выполнена с использованием множества соответствующих вариантов осуществления специалистом среднего уровня в данной области техники, с учетом, в частности, формы или форм модуляции, используемой с учетом этого общего раскрытия. Конструкция, показанная на фиг. 2, может быть модифицирована любым соответствующим образом, с учетом описания, которое было здесь представлено.

Снова, как показано на фиг. 1, дальность передачи, на которой сигнал 120 определения местоположения может быть принят портативным устройством 20, обратно пропорциональна кубу расстояния. При увеличении мощности передачи от находящегося под землей инструмента увеличивается дальность передачи, при этом следует понимать, что удвоение мощности передачи приводит только к 15%-ому увеличению дальности передачи. Конечно, при этом может происходить существенное уменьшение времени работы батареи в соответствии с таким увеличением мощности, когда передатчик, установленный в подземном инструменте, работает от батареи. Кроме того, на диапазон приема может в значительной степени влиять локальная помеха. Гармонические шумы линии электропередач на частоте (n×50) Гц и (n×60) Гц могут представлять собой существенный источник шумов. В прошлом несущую частоту для сигнала 120 определения местоположения тщательно выбирали, чтобы исключить гармоники линии электропередач. В некоторых случаях, исключение гармоник линии электропередач может потребовать сужения полосы пропускания для данных, которые модулируют на сигнал 120 определения местоположения. Заявители, однако, определили, что сужение полосы пропускания данных приводит к снижению пропускной способности данных. Относительно малые значения пропускной способности данных могут представлять собой проблему в смысле достижения достаточно быстрого обновления данных в портативном устройстве. Например, когда оператор пытается установить требуемую ориентацию по крену находящегося под землей инструмента, с целью управления, относительно медленное обновление ориентации может привести к тому, что этот процесс потребует значительного времени. Учитывая описанное выше, должно быть понятно, что исключение помехи со стороны шумов и пропускная способность представляют собой конкурирующие интересы. До сих пор Заявитель полагал, что отсутствует эффективное решение с учетом этих конкурирующих интересов. Как будет видно, Заявитель определил протоколы данных, которые являются специализированными с точки зрения работы под землей, что делает высокоэффективным использование доступной полосы пропускания данных. Следует понимать, что эти протоколы применимы для передачи, используя электромагнитный сигнал определения местоположения, или при использовании бурильной колонны в качестве электрического проводника. В то время как определенные концепции были описаны в отношении электромагнитного сигнала, такие концепции распознают, как в равной степени применимые в отношении передачи по буровой колонне.

С целью передачи данных, в соответствии с настоящим раскрытием, данные могут быть кодированы по несущей любым соответствующим способом, таким как, например, кодированные по фазе, модулированные по амплитуде, модулированные по частоте, или используя любую их соответствующую комбинацию. Определенные схемы модуляции, такие как, например, манчестерское кодирование могут быть предпочтительными в смысле поддержания энергии сигнала на частоте несущей, что улучшает дальность определения местоположения. С другой стороны, другие схемы модуляции, такие как, например, квадратурная модуляция со сдвигом по фазе (КМСФ) обеспечивают относительно высокую пропускную способность для данной полосы пропускания.

В общем, данные могут быть переданы в цифровой форме по сигналу 120 определения местоположения, используя пакетную структуру. Данные могут быть переданы, используя пакеты, которые являются специализированными для определенных типов данных. Например, разные структуры пакета могут использоваться для передачи данных крена, данных тангажа, состояния батареи, температуры, давления и т.п. Чем короче пакет, тем в меньшей степени пакет подвергается нарушениям со стороны шумов при приеме в портативном устройстве 20. Поскольку пакеты передают в портативное устройство в виде потоковой передачи, необходимо, чтобы портативное устройство было выполнено с возможностью определять начало нового пакета. Варианты осуществления пакетов, которые описаны здесь, позволяют использовать биты синхронизации с этой целью. Учитывая такие основные моменты, ряд структур уникальных пакетов будут описаны непосредственно ниже.

В таблице 1 иллюстративно представлен вариант осуществления пакета крена, в соответствии с настоящим раскрытием, в контексте манчестерского кодирования, хотя последнее не является необходимым. Традиционные пакеты крена, в качестве примера, позволяют кодировать 24 положения крена (то есть, с приращением на 15 градусов), используя дополнительные биты синхронизации, которые не участвуют в кодировании. Заявитель определил, что биты синхронизации могут использоваться так, чтобы они способствовали кодированию. В это же время, количество кодируемых положений крена может быть уменьшено для уменьшения размера пакета крена. Например, Заявитель определил, что 8 кодируемых положений крена достаточны для идентификации ориентации по крену бурильного инструмента таким образом, что требуются только 3 бита данных. В Таблице 1 иллюстрируется структура пакета крена для 8 положений крена. Каждое из L (Низкого) и Н (Высокого) значения представляет одну половину битового времени, в соответствии с манчестерским кодированием. Бит 1 из 3 битов данных представлен битом 1 синхронизации и битом 2 синхронизации. В настоящем варианте осуществления каждый бит синхронизации охватывает одно время бита и половину времени бита. Как можно видеть в таблице 1, разрешенное значение интервала синхронизации, охваченное битами 1 и 2 синхронизации, включает в себя либо 3 времени бита, с низким значением, после которых следуют 3 времени бита с высоким значением (крен 1-4) или 3 времени бита с высоким значением, после которых следует 3 времени бита с низким значением (крен 5-8). Таким образом, бит 1 синхронизации в комбинации с битом 2 синхронизации может представлять собой бит 1 данных и только два дополнительных бита 1 и 2 данных необходимы, чтобы составить 3 бита данных с целью кодирования трех значений битов. В соответствии с этим, любой вариант осуществления пакета может использовать биты синхронизации, таким образом, в качестве старшего значащего бита (СЗБ). Например, температура может быть кодирована, как нормальная, высокая и очень высокая таким образом, что биты синхронизации и только один бит данных требуются для пакета температуры. Следует понимать, что передача пакета может быть установлена с приоритетом. Например, при нормальных температурных условиях, пакет температуры может передаваться через фиксированный интервал, такой как, например, 15 секунд. Однако, когда скорость изменения температуры превышает определенное пороговое значение, пакет температуры может быть передан немедленно. Такое пороговое значение температуры, в качестве неограничительного примера, может представлять собой увеличение более чем на 10°С за 2 секунды. Пакет состояния батареи может быть кодирован, например, тремя битами данных, в дополнение к старшему значащему биту, представляемому битами 1 и 2 синхронизации.

В то время как пакеты крена часто предназначены для наиболее быстрого обновления, пакеты тангажа также передают достаточно часто. В качестве неограничительного примера один пакет тангажа может быть передан на каждые шесть пакетов крена. Традиционно, пакеты тангажа были длинными с целью определения показаний тангажа с высоким разрешением. Например, традиционные пакеты тангажа могут иметь разрешение 0,05° или 0,1%, независимо от рабочего статуса бурильного инструмента. Заявитель определил, что когда находящийся под землей инструмент вращается или просто движется, удары и вибрац