Генератор водяного знака, декодер водяного знака, способ генерации сигнала водяного знака на основе данных двоичного сообщения, способ формирования данных двоичного сообщения на основе сигнала с водяным знаком и компьютерная программа с использованием двухмерного расширения битов

Иллюстрации

Показать все

Изобретение относится к средствам для формирования водяного знака. Технический результат заключается в повышении надежности передачи кодированного водяного знака. Генератор водяного знака, генерирующий сигнал водяного знака на основе данных двоичного сообщения, включающий в себя процессор информации, который в зависимости от одиночного бита данных двоичного сообщения формирует информацию о двухмерном расширении, представляющую бит сообщения в форме набора значений время-частотной области. Генератор водяного знака, включающий в себя также питатель сигнала водяного знака, выдающий сигнал водяного знака на основе информации о двухмерном расширении. Описаны также детектор водяного знака, способы и компьютерные программы. 7 н. и 11 з.п. ф-лы, 27 ил.

Реферат

Область техники

Изобретение относится к генератору водяных знаков, обеспечивающему на выходе сигнал водяного знака на основе данных двоичного сообщения. Кроме того, заявляемое изобретение относится к декодеру водяных знаков, формирующему на выходе данные двоичного сообщения на основе маркированного водяным знаком сигнала. Кроме того, представляемое изобретение относится к способу генерации сигнала водяного знака на основе данных двоичного сообщения. Кроме того, настоящее изобретение относится к способу формирования данных двоичного сообщения на основе маркированного водяным знаком сигнала. В дополнение к этому, заявляемое изобретение связано с соответствующими компьютерными программами.

Ряд предлагаемых конструктивных решений изобретения относится к простой и надежной системе маркирования аудиоконтента цифровыми водяными знаками.

Предшествующий уровень техники

Во многих технических приложениях существует необходимость введения дополнительной информации в данные или в сигнал, представляющий полезные данные, или "основные данные", такие как, например, аудиосигнал, видеосигнал, графика, показания измерений и тому подобное. Часто требуется, чтобы подобного рода дополнительная информация, привязываемая к основным данным (в частности, к аудиоданным, видеоданным, к данным изображения, данным измерений, к текстовой информации и прочее), вводилась таким образом, чтобы она была незаметной для пользователя этими данными. Более того, в ряде случаев желательно, чтобы присоединенная информация не могла быть удалена из основных данных (тех же аудиоданных, видеоданных, данных изображения, данных измерения и так далее).

В особенности это относится к приложениям, где необходима электронная защита авторских прав. Более того, иногда введение в полезные данные важной дополнительной, не воспринимаемой органами чувств, сопутствующей информации просто необходимо. Таким случаем является, например, включение в аудиоконтент служебной информации, содержащей сведения об источнике предлагаемой фонограммы, ее содержимом, о правах, которыми обременен данный аудиоконтент и т.п.

Концепция внедрения дополнительных сведений в полезные данные или в "основные данные" получила название "watermarking", то есть буквально - "нанесение водяных знаков" (маркировка водяными знаками/введение водяного знака). Обсуждение в специализированной литературе методик защиты водяными знаками затрагивает большое число видов полезной информации, как то: фонограммы, видеоматериалы, изображения, тексты и тому подобное.

Дальше дан ряд ссылок на публикации концепций применения цифровых водяных знаков. Сюда относится также широкий спектр пособий, руководств и иных изданий, подробно рассматривающих вопросы электронной защиты водяными знаками.

DE 19640814 C2 описывает метод кодирования, при котором в аудиосигнал вводят незвуковой сигнал данных, и метод декодирования сигнала данных, сопутствующего аудиосигналу в незвуковой форме. Метод кодирования для введения незвукового сигнала данных в звуковой сигнал состоит в преобразовании звукового сигнала в спектральное представление. Данный метод кодирования также включает в себя определение порога маскирования аудиосигнала и подачу псевдошумового сигнала. Этот метод кодирования, кроме того, включает в себя введение сигнала данных и умножение псевдошумового сигнала на сигнал данных с получением сигнала данных с частотным расширением. Метод кодирования наряду с этим включает в себя взвешивание сигнала данных расширения с порогом маскирования и перекрыванием аудиосигнала и сигнал взвешенных данных.

В дополнение к этому в WO 93/07689 описан способ и устройство автоматической идентификации программы, передаваемой радиостанцией или телевизионным каналом или записанной на носителе, путем добавления к звуковому сигналу программы неслышимого кодированного сообщения, идентифицирующего канал телевещания или радиостанцию, программу и/или точную дату. При реализации согласно указанному документу звуковой сигнал передают через аналого-цифровой преобразователь на процессор, предусматривающий возможность дробления частотных составляющих и изменения энергии некоторых частотных составляющих на расчетную величину с формированием кодированного сигнала идентификации. Выход процессора соединен через цифро-аналоговый преобразователь со звуковым выходом для передачи звукового сигнала в эфир или для записи фонограммы. В другом варианте решения по рассматриваемому документу применяют аналоговую полосу пропускания для выделения частотной полосы звукового сигнала, в которой энергия может быть изменена для кодирования звукового сигнала.

В US 5450490 описано устройство и способы введения кода, имеющего, по меньшей мере, одну кодовую частотную составляющую в аудиосигнале. Разные частотные составляющие аудиосигнала оцениваются на возможность маскировать кодовую частотную составляющую для человеческого слуха, и на основании этих оценок задается амплитуда кодовой частотной составляющей. Также дано описание способов и устройства распознавания кода в закодированном аудиосигнале. Кодовую частотную составляющую кодированного аудиосигнала распознают, основываясь на ожидаемой кодовой амплитуде или на амплитуде помехи в диапазоне звуковых частот, включающем в себя частоту кодирующей составляющей.

В WO 94/11989 рассмотрен способ и устройство кодирования/декодирования транслируемых или записанных звуковых фрагментов и мониторинга расположения их слушателей. Описаны способы и устройство кодирования и декодирования информации в составе радиопередач или в составе записанных сигналов звукового фрагмента. В схемотехнической версии, описанной в документе, система мониторирования аудитории кодирует идентифицирующую информацию как составляющую аудиосигнала радиопередачи или фрагмента фонограммы с использованием кодирования расширенного спектра (широкополосное кодирование). Устройство мониторинга принимает акустически воспроизведенную версию радиопередачи или записанного сигнала через микрофон, декодирует идентифицирующую информацию составляющей аудиосигнала независимо от наличия окружающего фонового шума и вносит эту информацию в память, автоматически ведя на данного участника аудитории дневник (журнал), который позже загружается в централизованное системное устройство. Другое устройство мониторинга декодирует дополнительную информацию сигнала радиопередачи, соотнесенную со сведениями дневника аудитории в центральном системном устройстве. Этот монитор может одновременно отправлять данные на централизованное системное устройство, используя телефонную линию модемной связи, и принимать данные от централизованного системного устройства через сигнал, закодированный с использованием технологии расширенного спектра и модулированный по сигналу радиопередачи от третьего лица.

WO 95/27349 раскрывает устройство и способы введения кодов в аудиосигналы и декодирования. Описаны устройство и способы введения кода, имеющего, по меньшей мере, одну кодирующую частотную составляющую в аудиосигнале. Выполняется оценивание способности разных частотных составляющих аудиосигнала маскировать кодовую частотную составляющую для слуха человека, и на базе результатов такого оценивания каждой из кодирующих частотных составляющих присваивается амплитуда. Также дано описание способов и устройства распознавания кода в закодированном аудиосигнале. Кодовую частотную составляющую кодированного аудиосигнала распознают, основываясь на ожидаемой кодовой амплитуде или на амплитуде помехи в диапазоне звуковых частот, включающем в себя частоту кодирующей составляющей.

При всем этом в известных системах нанесения электронных водяных знаков частота ошибок по битам зачастую неудовлетворительна. Кроме того, сложность декодирования иногда весьма высока, например, при использовании очень длинных широкополосных последовательностей. В дополнение к этому некоторые общеприменяемые системы чувствительны к искажениям маркированного водяным знаком сигнала от узкополосных источников искажения и/или импульсоподобных источников искажения.

В сложившейся ситуации данное изобретение ставит перед собой задачу разработать концепцию кодирования и декодирования бита с надлежащей надежностью передачи.

Краткое описание изобретения

Поставленная задача достигается посредством применения генератора водяных знаков, декодера водяных знаков, способа формирования сигнала водяного знака на основании данных двоичного сообщения, способа формирования данных двоичного сообщения на основании маркированного водяным знаком сигнала и компьютерной программы.

Реализация заявляемого изобретения включает в себя создание генератора [электронных/цифровых] водяных знаков, выполненного с возможностью генерации сигнала водяного знака на основе данных двоичного сообщения. Генератор водяных знаков включает в свою схему процессор информации, характеризующийся возможностью формирования - в зависимости от одиночного бита сообщения - характеристик двухмерного расширения, представляющих бит сообщения в форме набора значений время-частотной области. Генератор водяных знаков также включает в свою схему питатель ("провайдер") сигнала водяного знака, характеризующийся возможностью формирования сигнала водяного знака, исходя из характеристик двухмерного расширения.

Ключевой идеей представляемого изобретения является существенное повышение надежности передачи бита данных двоичного сообщения в форме сигнала водяного знака за счет расширения одиночного бита сообщения как по времени, так и по частоте. При этом существенно возрастает степень избыточности. Кроме того, достигается должная устойчивость к типичным источникам искажения, ухудшающим сигнал водяного знака, поскольку большинство типичных источников искажения являются или узкополосными или кратковременными (импульсоподобными). Таким образом, благодаря параметрам двухмерного расширения, представляющим один бит сообщения, информация, содержащаяся в этом одиночном бите, распространяется на множество частотных полос таким образом, что узкополосное искажение (такое как сигнал узкополосного искажения или нуль передаточной функции) обычно не препятствует корректному распознаванию нужного бита; а также информация, описывающая этот бит, распространяется на множество временных интервалов таким образом, что искажение в виде короткого щелчка (подобное импульсу), которое воздействует только на один интервал времени или только на небольшое количество интервалов времени (значительно меньшее, чем количество интервалов времени, на которые распространяется информация рассматриваемого бита), в основном, не препятствует восстановлению бита сообщения с большой долей надежности.

Суммируя сказанное, представленная концепция обеспечивает повышенную надежность корректного приема одиночного бита данных двоичного сообщения на стороне декодера водяных знаков.

В предпочтительном варианте реализации процессор информации выполнен с возможностью расширения бита сообщения в первом направлении расширения с использованием первой последовательности расширения для формирования представления промежуточной информации, выполнен с возможностью совмещения представления промежуточной информации с представлением информации о наложении для формирования представления объединенной информации, а также с возможностью расширения представления объединенной информации во втором направлении с использованием второй последовательности расширения для формирования информации о двухмерном расширении. Использование подобной смешанной концепции, где задействованы раздельные последовательности расширения для расширения бита сообщения и информации о наложении (например, данных синхронизации) в частотном направлении, и где задействована общая последовательность расширения для расширения во временном направлении, упрощает кодирование, сохраняя возможность надлежащего разделения бита сообщения и информации о наложении (например, данных синхронизации). Согласно этой концепции может быть достигнута особенно надежная синхронизация, если информация о наложении будет содержать данные синхронизации. В подобном случае основное преимущество заключается в том, что и данные двоичного сообщения, и данные синхронизации закодированы с использованием общей последовательности расширения времени, поскольку для достижения синхронизации на стороне декодера свертка времени должна выполняться при множестве вариантов выбора позиций. При использовании одной и той же последовательности расширения по времени для данных двоичного сообщения и данных синхронизации как примера информации о наложении можно снизить вычислительную трудоемкость и упростить синхронизацию.

В предпочтительном варианте реализации процессор информации выполнен с возможностью совмещения представления промежуточной информации с представлением информации о наложении, расширенным в первом направлении расширения с использованием последовательности расширения информации о наложении, так, что бит сообщения и информация о наложении расширяются в первом направлении расширения посредством разных последовательностей расширения, и так, что соединение бита сообщения и информации о наложении расширяются во втором направлении расширения посредством общей последовательности расширения.

В предпочтительном варианте реализации процессор информации выполнен с возможностью совмещения перемножением представления промежуточной информации и представления информации о наложении, а также с возможностью расширения представления объединенной информации, которое включает в себя значения произведения, полученного в зависимости от значений представления промежуточной информации и значений информации о наложении, причем, во втором направлении расширения используется вторая последовательность расширения таким образом, что значения произведения расширяются за счет использования общей последовательности расширения. Преимущество совмещения умножением представления промежуточной информации и представления информации о наложении заключается в том, что такое совмещение дает в результате не зависящий от данных уровень значений представления объединенной информации, если величины или абсолютные значения элементов представления промежуточной информации и/или представления информации о наложении не зависят от данных двоичного сообщения. Это упрощает неощутимое на слух введение представления объединенной информации в полезный сигнал, например, акустический. Кроме того, применение общей последовательности расширения к значениям произведения упрощает декодирование, как рассмотрено ниже.

В предпочтительном варианте реализации процессор информации выполнен с возможностью избирательного расширения определенного бита сообщения до первого битового представления, которое является положительным кратным последовательности расширения битов, или до второго битового представления, которое является отрицательным кратным последовательности расширения битов, в зависимости от значения данного бита для расширения этого бита сообщения в первом направлении расширения. Соотнесение различных значений данного бита сообщения с линейно-зависимыми последовательностями расширения упрощает декодирование, поскольку одиночной корреляции будет достаточно.

В предпочтительном варианте реализации процессор информации выполнен с возможностью соотнесения значения данного представления промежуточной информации, которое (значение) получено расширением бита сообщения в первом направлении, или соотнесения значения данного представления объединенной информации, которое получено расширением бита сообщения в первом направлении расширения и совмещением полученного результата с представлением информации о наложении, с набором значений расширения таким образом, что набор значений расширения является версией второй последовательности расширения, масштабированной в соответствии с данным значением. Применение подобного расширения для второго направления расширения обеспечивает простоту и минимальную вычислительную трудоемкость построения схемы расширения. В этом случае расширение в первом направлении расширения и расширение во втором направлении расширения выполняются в значительной степени независимо, благодаря чему как расширитель на стороне кодера, так и блок свертки на стороне декодера, могут иметь предельно упрощенную компоновку. В частности, на стороне кодера может быть выполнено раздельное расширение во временном направлении и в частотном направлении, что значительно снижает вычислительную стоимость и обеспечивает возможность введения информации о наложении. На стороне декодера отпадает необходимость коррелировать представление сигнала с водяным знаком во время-частотной области с полной двухмерной схемой. Достаточно на отдельных шагах выполнить корреляцию во временном направлении и в частотном направлении.

В заявляемом изобретении реализован декодер водяных знаков, предназначенный для формирования данных двоичного сообщения, исходя из маркированного водяным знаком сигнала. В состав декодера водяных знаков включены блок формирования представления время-частотной области, предназначенный для представления во время-частотной области сигнала с водяным знаком, и детектор синхронизации, включающий в себя модуль свертки. Модуль свертки состоит из одного или более блоков свертки и предназначен для выполнения двухмерного свертывания для получения данных синхронизации, исходя из двухмерной составляющей представления во время-частотной области. Декодер водяного знака также включает в свою конструкцию экстрактор водяного знака, предназначенный для извлечения данных двоичного сообщения из представления во время-частотной области сигнала водяного знака с использованием данных синхронизации.

В заявляемом изобретении реализован еще один вариант декодера водяных знаков, предназначенный для формирования данных двоичного сообщения, исходя из маркированного водяным знаком сигнала. В подобной компоновке декодер водяных знаков включает в себя блок формирования представления время-частотной области, предназначенный для представления во время-частотной области сигнала с водяным знаком, и экстрактор водяного знака, включающий в свою схему модуль свертки, состоящий из одного или более блоков свертки. Модуль свертки выполняет функцию двухмерного сжатия (свертывания) для извлечения бита данных двоичного сообщения в зависимости от двухмерной составляющей представления во время-частотной области.

Последние два конструктивных решения по настоящему изобретению базируются на заключении, что благодаря двухмерному свертыванию можно достичь высокой точности и надежности синхронизации и бита данных двоичного сообщения. Следует вывод, что декодеры водяных знаков способствуют реализации преимуществ генератора водяных знаков, обозначенных выше.

В предпочтительном варианте реализации модуль свертки выполняет перемножение массива значений представления во время-частотной области со значениями последовательности временной свертки и сложение результатов умножения для выведения числового значения временной свертки. Модуль свертки поэлементно перемножает массив значений временной свертки с различными частотами время-частотных представлений или с производными от них значениями на последовательность частотной свертки и суммирует результаты перемножения для выведения числового значения двухмерной свертки. Такое техническое решение обеспечивает простоту реализации концепции свертывания, в которой временная свертка осуществляется независимо от частотной свертки. Соответственно, декодер водяных знаков реализуется через относительно простую схемотехнику, в которой, например, многие элементы могут быть задействованы многократно при сохранении высоких рабочих характеристик и надежности.

В предпочтительном варианте реализации модуль свертки предназначен для выведения набора значений временной свертки. Модуль свертки перемножает массив числовых значений время-частотного представления на значения последовательности временной свертки и суммирует результаты умножения для получения одного из числовых значений временной свертки. Кроме того, модуль свертки поэлементно умножает значения временной свертки на значения последовательности частотной свертки и суммирует результаты умножения с получением значения двухмерной свертки.

В предпочтительном варианте реализации модуль свертки поэлементно умножает последовательные наборы значений временной свертки на значения различных последовательностей частотной свертки, при этом первый набор значений временной свертки гарантированно умножается поэлементным и одноэтапным или многоэтапным способом на первую объединенную последовательность частотной свертки, которая является произведением общей последовательности частотной свертки и первой последовательности частотной свертки наложения, и при этом второй набор значений временной свертки гарантированно умножается поэлементным и одноэтапным или многоэтапным способом на вторую объединенную последовательность частотной свертки, которая является произведением общей последовательности частотной свертки и второй последовательности частотной свертки наложения и которая отличается от первой последовательности частотной свертки наложения. Такой подход позволяет распознавать последовательный ряд битов при оптимально упрощенном режиме экстракции контента. В силу того что одна из последовательностей частотной свертки является переменной, а другая последовательность частотной свертки фиксирована, количество вероятных комбинаций удерживается на низком уровне. С другой стороны, при использовании разных последовательностей частотной свертки для разных интервалов времени упорядочение по времени, тем не менее, выполнимо.

К заявленному изобретению также относятся способ генерации сигнала водяного знака на основе данных двоичного сообщения и способ формирования данных двоичного сообщения в зависимости от маркированного водяным знаком сигнала. Кроме того, изобретение включает в себя компьютерную программу, разработанную для осуществления одного или обоих указанных способов. Названные способы и компьютерная программа основаны на тех же принципах, что и указанное выше устройство, что позволяет применить к ним данные выше пояснения.

Краткое описание чертежей

Далее, варианты технических решений в соответствии с предлагаемым изобретением будут описаны со ссылкой на прилагаемые чертежи, где на фиг.1 дана принципиальная блочная схема устройства ввода водяного знака согласно изобретению; на фиг.2 дана принципиальная блочная схема декодера водяных знаков согласно изобретению; на фиг.3 дана более подробная принципиальная блочная схема генератора водяных знаков согласно изобретению; на фиг.4 дана подробная принципиальная блочная схема модулятора как элемента схемотехники изобретения; на фиг.5 дана блок-схема рабочего цикла психоакустического процессора как элемента схемотехники изобретения; на фиг.6 дана блок-схема рабочего цикла процессора психоакустической модели как элемента схемотехники изобретения; на фиг.7 отображен график зависимости спектральной плотности мощности аудиосигнала на выходе блока 801 от частоты; на фиг.8 отображен график зависимости спектральной плотности мощности аудиосигнала на выходе блока 802 от частоты; на фиг.9 дана блок-схема расчета амплитуды; на фиг.10A показана принципиальная схема модулятора; на фиг.10B графически представлен пример распределения коэффициентов на время-частотной плоскости; на фиг.11A и 11B в принципиальных блочных схемах представлено альтернативное конструктивное решение модуля синхронизации; фиг.12A графически отображает задачу временного выравнивания водяного знака; фиг.12B графически отображает задачу идентификации начала сообщения; фиг.12C графически иллюстрирует построение временного соответствия последовательностей синхронизации в режиме синхронизации полного сообщения; фиг.12D графически иллюстрирует построение временного соответствия последовательностей синхронизации в режиме синхронизации неполного сообщения; на фиг.12E графически представлены входные данные модуля синхронизации; на фиг.12F графически представлена концепция идентификации точки синхронности; на фиг.12G дана принципиальная блочная схема коррелятора сигнатуры синхронизации (маркировки совпадения); фиг.13A графически иллюстрирует пример временной свертки; фиг.13B графически иллюстрирует пример поэлементного перемножения битов и последовательностей расширения; на фиг.13C представлен график сигнала на выходе коррелятора сигнатуры синхронизации после усреднения по времени; на фиг.13D представлен график сигнала на выходе коррелятора сигнатуры синхронизации после фильтрации с использованием функции автокорреляции сигнатуры синхронизации; на фиг.14 дана принципиальная блочная схема конструктивного решения экстрактора водяного знака в соответствии с изобретением; фиг.15 схематически отображает выбор части представления во время-частотной области в качестве кандидатного сообщения; на фиг.16 показана принципиальная блочная схема модуля анализа; на фиг.17A показана спектрограмма выходного сигнала коррелятора синхронизации; на фиг.17B схематически отображены декодированные сообщения; на фиг.17C графически отображено положение синхронизации, выделенное из сигнала с водяным знаком; на фиг.18A графически представлены полезная информация, полезная информация с конечной последовательностью Витерби, полезная информация в кодировке по Витерби и полезная нагрузка в кодировке по Витерби в закодированной с повторениями версии; на фиг.18B графически отображены поднесущие частоты, используемые для введения маркированного водяным знаком сигнала; на фиг.19 графически представлены некодированное сообщение, кодированное сообщение, сообщения синхронизации и сигнал водяного знака, в котором к сообщениям применена последовательность синхронизации; на фиг.20 схематически отображен первый шаг алгоритма так называемой "АВС-синхронизации"; на фиг.21 графически отображен второй шаг алгоритма так называемой "АВС-синхронизации"; на фиг.22 графически отображен третий шаг алгоритма так называемой "АВС-синхронизации"; на фиг.23 показана схема сообщения, содержащего полезную информацию и составляющую CRC; на фиг.24 дана принципиальная блочная схема реализации генератора водяных знаков согласно изобретению; на фиг.25A дана принципиальная блочная схема декодера водяных знаков согласно изобретению; на фиг.25B дана принципиальная блочная схема декодера водяных знаков согласно изобретению; на фиг.26 дана блок-схема способа формирования сигнала водяного знака на основе данных двоичного сообщения и на фиг.27 дана блок-схема способа формирования данных двоичного сообщения в зависимости от сигнала, маркированного водяным знаком.

Подробное техническое описание

1. Генерация водяного знака

1.1. Генератор водяных знаков в соответствии с фиг.24

Далее, со ссылкой на принципиальную блочную схему на фиг.24 будет описан генератор водяных знаков 2400. Генератор водяных знаков 2400 предназначен для приема данных двоичного сообщения 2410 и генерации на их основе сигнала водяного знака 2420. Генератор водяных знаков включает в свою конструкцию процессор информации 2430, который в зависимости от одиночного бита данных двоичного сообщения 2410 формирует информацию о двухмерном расширении 2432, представляющую бит сообщения в виде набора значений время-частотной области. Кроме того, генератор водяных знаков 2400 включает в свою конструкцию питатель ("провайдер")сигнала водяного знака 2440, который формирует сигнал водяного знака 2420 на основе информации о двухмерном расширении 2432.

Генератор водяных знаков 2400 может быть дополнен любыми из отличительных признаков и функциональных возможностей, рассмотренных ниже в разделе 3.

1.2. Способ формирования сигнала водяного знака в зависимости от данных двоичного сообщения в соответствии с фиг.26

Дальше со ссылкой на блок-схему на фиг.26 будут даны пояснения к способу формирования сигнала водяного знака в зависимости от данных двоичного сообщения.

Способ 2600 на фиг.26 включает в себя шаг 2610, состоящий в формировании в зависимости от одиночного бита данных двоичного сообщения информации о двухмерном расширении, представляющей этот бит сообщения в форме набора значений время-частотной области. Способ 2600 также включает в себя шаг 2620, состоящий в формировании сигнала водяного знака на основе информации о двухмерном расширении.

Безусловно, способ 2600 может быть дополнен любыми из существенных признаков и функциональных возможностей, рассмотренных здесь и относящихся также к устройству как предмету изобретения.

2. Декодирование водяного знака

2.1. Декодер водяных знаков в соответствии с фиг.25A

Дальше, со ссылкой на принципиальную блочную схему на фиг.25A будет описан декодер водяных знаков 2500.

Декодер водяных знаков 2500 предназначен для формирования данных двоичного сообщения 2520 в зависимости от сигнала с водяным знаком 2510. Декодер водяных знаков 2500 включает в свой состав блок формирования представления время-частотной области 2530, формирующий представление во время-частотной области 2532 сигнала с водяным знаком. Кроме того, декодер водяных знаков 2500 имеет в своем составе детектор синхронизации 2540. Детектор синхронизации 2540 включает в свою схему модуль свертки 2542, состоящий из одного или более блоков свертки. Модуль свертки 2542 выполняет двухмерное свертывание с извлечением данных синхронизации 2544 в зависимости от двухмерной составляющей представления во время-частотной области 2532. Декодер водяных знаков 2500 также имеет в своем составе экстрактор водяного знака 2550, предназначенный для извлечения данных двоичного сообщения 2520 из представления во время-частотной области 2532 сигнала с водяным знаком с использованием данных синхронизации 2544.

Безусловно, декодер водяных знаков 2500 может быть дополнен любым из средств и функциональных возможностей, рассматриваемых здесь применительно к декодированию водяных знаков.

2.2. Декодер водяных знаков в соответствии с фиг.25B

Дальше, со ссылкой на принципиальную блочную схему на фиг.25B будет описан декодер водяных знаков 2560.

Декодер водяных знаков 2560 предназначен для приема сигнала водяного знака 2570 и формирования на его основе данных двоичного сообщения 2580. Декодер водяных знаков 2560 включает в свою схему блок формирования представления время-частотной области 2590, предназначенный для формирования представления во время-частотной области 2592 сигнала водяного знака 2570. Декодер водяных знаков также имеет в своем составе экстрактор водяного знака 2596, включающий в себя модуль свертки 2598. Модуль свертки выполняет двухмерное свертывание с выведением бита данных двоичного сообщения в зависимости от двухмерной составляющей представления во время-частотной области 2592.

Безусловно, декодер водяных знаков 2560 может быть дополнен любым из средств и функциональных возможностей, рассмотренных здесь применительно к декодированию водяных знаков.

2.2. Способ формирования данных двоичного сообщения в зависимости от сигнала с водяным знаком в соответствии с фиг.27

Дальше, со ссылкой на блок-схему на фиг.27 будет рассмотрен способ 2700 формирования данных двоичного сообщения в зависимости от сигнала с водяным знаком.

Способ 2700 включает в себя шаг 2710, состоящий в формировании представления во время-частотной области сигнала с водяным знаком. Способ 2700 также включает в себя шаг 2720, состоящий в двухмерном свертывании с выведением бита данных двоичного сообщения или данных синхронизации, используемых для извлечения данных двоичного сообщения из представления во время-частотной области сигнала с водяным знаком в зависимости от двухмерной составляющей представления во время-частотной области.

Безусловно, способ 2700 может быть дополнен любыми из существенных признаков и функциональных возможностей, описанных применительно к декодированию водяного знака.

3. Описание системы

Далее будет описана система передачи водяного знака, которая включает в себя блок ввода водяного знака и декодер водяных знаков. Безусловно, блок ввода водяного знака и декодер водяных знаков могут использоваться независимо друг от друга.

Для описания системы выбран принцип "от сложного к простому". Сначала проведена дифференциация между кодером и декодером. Затем, в разделах с 3.1 по 3.5 подробно описан каждый рабочий блок в отдельности.

Базовая структура системы представлена на фигурах 1 и 2, где отображены, соответственно, сторона кодера и сторона декодера. На фиг.1 показана принципиальная блочная схема блока ввода водяного знака 100. На стороне кодера блоком обработки 101 (обозначенный как генератор водяных знаков) генерирует сигнал водяного знака 101b из двоичных данных 101a и из данных 104, 105 обмена информацией с психоакустическим процессором 102. Информация, полученная от блока 102, призвана гарантировать неслышность водяного знака. Затем, водяной знак, сгенерированный генератором водяных знаков 101, суммируют с аудиосигналом 106. После этого сигнал с водяным знаком 107 может быть ретранслирован, сохранен или передан для дальнейшей обработки. Мультимедийные файлы, например, аудио- и видеофайлы, требуют введения значительной задержки в видеопоток во избежание потери аудио- и видеосинхронизации. В случае многоканального аудиосигнала каждый канал обрабатывается отдельно, согласно пояснению, данному в этом документе. Блоки обработки 101 (генератор водяных знаков) и 102 (психоакустический процессор) детально рассмотрены в разделах 3.1 и 3.2, соответственно.

На фигуре 2 в виде принципиальной блочной схемы детектора водяного знака 200 отображена сторона декодера. В систему 200 поступает маркированный водяным знаком аудиосигнал 200a, например, от микрофона. Первый блок 203, обозначенный как модуль анализа, демодулирует и трансформирует данные (например, аудиосигнал с водяным знаком) во временной/частотной области (формируя посредством этого время-частотное представление 204 аудиосигнала с водяным знаком 200а), пересылая их на модуль синхронизации 201, который анализирует входной сигнал 204 и выполняет синхронизацию, в частности, рассчитывает временное выравнивание кодированных данных (например, кодированных данных водяного знака относительно представления вовремя-частотной области). Эта информация (например, результирующие данные синхронизации 205) поступают на экстрактор водяного знака 202, который декодирует полученные данные (формируя соответствующие двоичные данные 202a, которые представляют содержимое данных маркированного водяным знаком аудиосигнала 200a).

3.1. Генератор водяных знаков 101

Подробная схема генератора водяных знаков 101 представлена на фигуре 3. Двоичные данные (выраженные как ±1), которые должны быть скрыты в аудиосигнале 106, вводят в генератор водяных знаков 101. Блок 301 упорядочивает принятые данные 101a в пакеты одинаковой длины Mp. К каждому пакету в качестве сигнальных добавляют служебные биты (например, в виде постфикса). Пусть Ms обозначает их количество. Более подробно их использование будет объяснено в разделе 3.5. В дальнейшем каждый пакет битов полезной информации вместе с присоединенными служебными сигнальными битами будет называться сообщением.

Каждое сообщение 301а длиной Nm=Ms+Mp пересылают в кодер канала, блок обработки 302, который отвечает за кодирование битов для защиты от ошибок. Возможно конструктивное решение этого модуля, при котором он состоит из сверточного кодера в сочетании с устройством временного уплотнения импульсных сигналов. Коэффициент преобразования сверточного кодера оказывает большое влияние на общую степень защиты от ошибок системы цифровой маркировки водяными знаками. С другой стороны, устройств