Каскадная модуляция волновой формы со встроенным сигналом управления для высокопроизводительного периферийного транзита мобильной связи

Иллюстрации

Показать все

Изобретение относится к области техники связи и может быть использовано для высокопроизводительного периферийного транзита мобильной связи. Способ, реализуемый в устройстве связи, заключается в генерировании посредством процессора устройства связи модуляционного сигнала с первой волновой формой на основе первой аппроксимации входного сигнала, генерировании посредством упомянутого процессора модуляционного сигнала со второй волновой формой на основе первой разности между входным сигналом и модуляционным сигналом с первой волновой формой, генерировании посредством упомянутого процессора сигнала управления, имеющего последовательность символов управления с предварительно определенным форматом модуляции, выполнении посредством упомянутого процессора мультиплексирования (TDM) во временной области над модуляционным сигналом с первой волновой формой, модуляционным сигналом со второй волновой формой и сигналом управления для формирования сигнала каскадной модуляции волновой формы со встроенным сигналом управления (CWM-CS), модуляции посредством коммуникационного интерфейса устройства связи CWM-CS на несущую и передачи посредством коммуникационного интерфейса CWM-CS по линии связи в соответствующее устройство связи в сети. Технический результат – повышение отношения сигнал/шум. 4 н. и 13 з.п. ф-лы, 13 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ

Настоящее изобретение относится к области техники связи и, в частности, к каскадной модуляции волновой формы со встроенным сигналом управления для высокопроизводительного периферийного транзита мобильной связи.

УРОВЕНЬ ТЕХНИКИ

Сеть радио доступа (radio access network, RAN) относится к сети между мобильными устройствами и базовой сетью. В традиционных беспроводных макросотовых сетях территория может быть географически поделена на множество сот и секторов соты, каждый из которых обслуживается беспроводной базовой станцией, осуществляющей связь с базовой сетью. Часть RAN между беспроводными базовыми станциями и базовой сетью называется базовым транзитом беспроводной связи. Поскольку спрос на высокоскоростную беспроводную связь продолжает увеличиваться с достижением пределов макро сот с точки зрения количества местоположений и возможности проникновения в территории помещений или густозаселенные территории, исследование и отрасль переходят к мелкосотовым развертыванием с более плотными и более малыми сотами.

Периферийный транзит беспроводной связи и периферийный транзит мобильной связи представляют собой появляющиеся сегменты сети, которые задействуют архитектуру централизованной RAN (centralized-RAN, C-RAN), подходящую для мелкосотовых развертываний. В архитектуре C-RAN цифровая обработка основной полосы частот (baseband, BB), которая обычно выполняется в беспроводных базовых станциях, расположенных на удаленных площадках сотовой связи, перемещается к централизованным блокам основной полосы частот (centralized baseband unit, BBU), расположенным в центральной станции (central office, CO) или поблизости c базовой сетью. Как таковые беспроводные базовые станции, расположенные на удаленных площадках сотовой связи, заменяются удаленными радио блоками (remote radio unit, RRU), которые взаимодействуют с антеннами для беспроводных радиочастотных (RF) передач и приемов без или с ограниченной цифровой обработкой BB. Периферийный транзит беспроводной связи относится к части RAN между удаленными радио блоками (RRU) и блоками (BBU) основной полосы частот. Посредством перемещения цифровой обработки BB в централизованные блоки (BBU) основной полосы частот, архитектура C-RAN может предоставить возможность совместного использования ресурсов и скоординированной многоточечной (coordinated multipoint, CoMP) обработки, такой как совместная обработка сигналов, совместное ослабление помех и/или совместное планирование по множеству антенн в сотах, таким образом улучшая производительность и эффективность сети. Архитектура C-RAN может также поддерживать массивное множество входов множество выходов (multiple-input multiple output, MIMO) для беспроводной передачи с высокой пропускной способностью.

Периферийный транзит беспроводной связи может быть осуществлен посредством технологий волоконно-оптической связи, при которых волоконно-оптические линии связи могут использоваться для транспортировки сигналов и/или данных между удаленными радио блоками (RRU), расположенными на удаленных площадках сотовой связи, и блоками (BBU) основной полосы частот, расположенными на центральной площадке. Некоторые преимущества волоконно-оптических передач могут включать в себя малую потерю мощности, малую задержку и более высокие ширины полосы пропускания (bandwidth, BW). Однако, использование оптоволокна и оптических аппаратных средств добавляет затрат для сети периферийного транзита беспроводной связи. Таким образом, эффективное использование волоконно-оптических линий связи и оптических аппаратных средств может быть важным при конструировании периферийного транзита беспроводной связи.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Один подход к поддержке C-RAN заключается в кодировании цифровых синфазных и квадратурных (in-phase and quadrature-phase, IQ) дискретных отсчетов сигналов канала беспроводной связи согласно протоколу радиоинтерфейса общего пользования (common public radio interface, CPRI), как определено в спецификации CPRI V6.1, 2014, в которой используется двоичная модуляция, и в транспортировке закодированных согласно CPRI кадров по волоконно-оптической линии связи между RRU и BBU. Другой подход основан на методике аналоговой модуляции волновой формы, которая относится к подходу эффективного периферийного транзита мобильной связи (efficient mobile fronthaul, EMF). Подход EMF агрегирует сигналы множества каналов беспроводной связи в один канал одиночной длины волны с использованием агрегирования в частотной области или агрегирования во временной области. Подход EMF имеет более высокую эффективность использования ширины полосы пропускания, более малую сложность цифровой обработки сигналов (digital signal processing, DSP) и меньшую задержку обработки в отличие от подхода CPRI, но страдает от более больших амплитуд векторных ошибок (error-vector magnitude, EVM). Для решения этих и других проблем, и как будет более полно объяснено в данном документе, используется методика каскадной модуляции волновой формы (cascaded waveform modulation, CWM) для раздельной модуляции агрегированного сигнала канала беспроводной связи со множеством различных разрешений для улучшения отношений (SNR) сигнал-шум. Кроме этого, сигналы управления могут быть встроены с модулированными посредством CWM сигналами для передачи по волоконно-оптической линии связи с целью содействия канальной коррекции.

В одном варианте осуществления настоящее раскрытие включает в себя способ, реализуемый в устройстве связи, содержащий этапы, на которых генерируют, посредством процессора устройства связи, модуляционный сигнал с первой волновой формой, обозначенный как W1, на основе первой аппроксимации входного сигнала, обозначенного как S, генерируют, посредством упомянутого процессора, модуляционный сигнал со второй волновой формой, обозначенный как W2, на основе первой разности между входным сигналом S и модуляционным сигналом W1 с первой волновой формой, генерируют, посредством упомянутого процессора, сигнал управления, обозначенный как CS, имеющий последовательность символов управления с предварительно определенным форматом модуляции, выполняют, посредством упомянутого процессора, мультиплексирование (TDM) во временной области над модуляционным сигналом W1 с первой волновой формой, модуляционным сигналом W2 со второй волновой формой и сигналом CS управления для формирования сигнала каскадной модуляции волновой формы со встроенным сигналом управления (CWM-CS), модулируют, посредством коммуникационного интерфейса устройства связи, CWM-CS на несущую, и передают, посредством коммуникационного интерфейса, CWM-CS по линии связи в соответствующее устройство связи в сети. В некоторых вариантах осуществления раскрытие также включает в себя то, что этап, на котором генерируют модуляционный сигнал W1 с первой волновой формой содержит этап, на котором аппроксимируют входной сигнал S следующим образом:

где round() является функцией округления, которая округляет входное значение до ближайшего целого числа, Emax относится к максимальной амплитуде входного сигнала S, и M является положительным целым числом, и/или в котором входной сигнал S является комплекснозначным сигналом, содержащим вещественную часть и мнимую часть, и в котором Emax связана с первым максимальным значением вещественной части или вторым максимальным значением мнимой части, и/или в котором M является положительным целым числом между 4 и 8, и/или в котором модуляционный сигнал W1 с первой волновой формой сгенерирован так, что модуляционный сигнал W1 с первой волновой формой содержит (2M+1)2 отличающихся друг от друга значений комплексного сигнала на основе SNR линии связи, и/или дополнительно содержащий этап, на котором выбирают, посредством упомянутого процессора, значение для M на основе SNR линии упомянутой линии связи, и/или в котором входной сигнал S содержит синфазную (I) составляющую и квадратурную (Q) составляющую, при этом I-составляющая представлена первыми N разрядами, обозначенными как in для 1 ≤ n ≤ N, следующим образом:

и при этом Q-составляющая представлена вторыми N разрядами, обозначенными как qn для 1 ≤ n ≤ N, следующим образом:

где real(S) представляет вещественную часть входного сигнала S, imag(S) представляет мнимую часть входного сигнала S, и a и b являются двумя количественными величинами, относящимися к разрешениям дискретизации I-составляющей и Q-составляющей, соответственно, и/или в котором входной сигнал S содержит цифровое представление сигнала CPRI, и/или в котором этап генерирования модуляционного сигнала W1 с первой волновой формой содержит получение m самых старших разрядов (MSB) для каждой из I-составляющей и Q-составляющей следующим образом:

где j является мнимой единицей, и/или в котором предварительно определенный формат модуляции является форматом квадратурной амплитудной модуляции (QAM), и/или дополнительно содержащий этап, на котором выбирают 16-ти позиционную квадратурную амплитудную модуляцию (16-QAM) в качестве формата QAM, когда SNR сигнала CS управления находится между 23 децибелами (дБ) и 29 дБ, и/или дополнительно содержащий этап, на котором выбирают 64-ех позиционную квадратурную амплитудную модуляцию (16-QAM) в качестве формата QAM, когда SNR сигнала CS управления больше 29 децибелов (дБ), и/или масштабируют, посредством упомянутого процессора, модуляционный сигнал W1 с первой волновой формой посредством первого коэффициента, обозначенного как c1, до выполнения TDM, масштабируют, посредством упомянутого процессора, модуляционный сигнал W2 со второй волновой формой посредством второго коэффициента, обозначенного как c2, до выполнения TDM, масштабируют, посредством упомянутого процессора, сигнал управления посредством третьего коэффициента, обозначенного как c3, до выполнения TDM, и выбирают, посредством упомянутого процессора, первый коэффициент c1, второй коэффициент c2 и третий коэффициент c3 так, чтобы максимальные амплитуды c1×W1, c2×W2, и c3×CS были схожими, и/или в котором входной сигнал S содержит сигнал мультиплексирования (OFDM) с ортогональным частотным разделением, сигнал отфильтрованного OFDM, сигнал многополосного OFDM, сигнал расширенного дискретным преобразованием Фурье (DFT) OFDM, сигнал множества несущих (FBMC) полосы фильтров, сигнал множества универсальных отфильтрованных несущих (UFMC) или их сочетания, и/или дополнительно содержащий этап, на котором выполняют повышающую дискретизацию над CWM-CS до модуляции CWM-CS, и/или дополнительно содержащий этап, на котором выполняют формирование (PS) импульсов над CWM-CS до модуляции CWM-CS, и/или дополнительно содержащий этап, на котором выполняют преобразование с повышением частоты в отношении CWM-CS для создания преобразованного с повышением частоты CWM-CS до модуляции CWM-CS, и/или в котором этап модуляции CWM-CS содержит этап, на котором модулируют вещественную часть преобразованного с повышением частоты CWM-CS, и/или в котором вещественная часть преобразованного с повышением частоты CWM-CS модулируется посредством модуляции (IM) оптической интенсивности с подходящим смещением, и/или в котором сигнал CS управления содержит управляющие слова с целью управления и администрирования сетью, и/или в котором сигнал CS управления содержит обучающие символы с целью канальной синхронизации, и/или дополнительно содержащий этапы, на которых генерируют модуляционный сигнал W2 со второй волновой формой дополнительно посредством применения второй аппроксимации к первой разности между входным сигналом S и модуляционным сигналом W1 с первой волновой формой, генерируют модуляционный сигнал с третьей волновой формой, обозначенный как W3, на основе второй разности между входным сигналом S и суммой модуляционного сигнала W1 с первой волновой формой и модуляционного сигнала W2 со второй волновой формой, и выполняют TDM дополнительно над CWM-CS и модуляционным сигналом W3 с третьей волновой формой, и/или в котором линия связи содержит волоконно-оптическую линию связи, кабельную линию связи, линию связи цифровой абонентской линии (DSL) или линию микроволновой связи в области свободного распространения.

В другом варианте осуществления раскрытие включает в себя способ, реализуемый в устройстве связи, содержащий этапы, на которых принимают, посредством коммуникационного интерфейса устройства связи из линии связи, CWM-CS, выполняют, посредством процессора устройства связи, демультиплексирование во временной области над CWM-CS для получения модуляционного сигнала с первой волновой формой, обозначенного как W1, модуляционного сигнала со второй волновой формой, обозначенного как W2, и сигнала управления, обозначенного как CS, обучают, посредством упомянутого процессора, канальный корректор на основе сигнала CS управления, выполняют, посредством упомянутого процессора, канальную коррекцию над модуляционным сигналом W1 с первой волновой формой, модуляционным сигналом W2 со второй волновой формой и сигналом CS управления, выполняют, посредством упомянутого процессора, демультиплексирование во временной области над модуляционным сигналом W1 с первой волновой формой, модуляционным сигналом W2 со второй волновой формой и сигналом CS управления, применяют, посредством упомянутого процессора, функцию округления к модуляционному сигналу W1 с первой волновой формой, генерируют, посредством упомянутого процессора, восстановленный сигнал, обозначенный как S, посредством суммирования модуляционного сигнала W1 с первой волновой формой и модуляционного сигнала W2 со второй волновой формой, восстанавливают, посредством упомянутого процессора, данные из восстановленного сигнала S, и восстанавливают, посредством упомянутого процессора, информацию управления посредством демодуляции сигнала CS управления, и/или дополнительно содержащий этапы, на которых делят, посредством упомянутого процессора, модуляционный сигнал W1 с первой волновой формой на первый коэффициент, обозначенный как c1, до генерирования восстановленного сигнала S, делят, посредством упомянутого процессора, модуляционный сигнал W2 со второй волновой формой на второй коэффициент, обозначенный как c2, до генерирования восстановленного сигнала S, и делят, посредством упомянутого процессора, сигнал CS управления на третий коэффициент, обозначенный как c3, до восстановления информации управления, и/или дополнительно содержащий этап, на котором выполняют преобразование с понижением частоты над CWM-CS, принятым из линии связи, и/или дополнительно содержащий этап, на котором выполняют формирование импульсов над CWM-CS, принятым из линии связи, и/или дополнительно содержащий этап, на котором выполняют понижающую дискретизацию над CWM-CS, принятым из линии связи.

В еще одном варианте осуществления раскрытие включает в себя устройство связи, содержащее процессор, выполненный с возможностью генерирования модуляционного сигнала с первой волновой формой, обозначенный как W1, на основе первой аппроксимации входного сигнала, обозначенного как S, генерирования модуляционного сигнала со второй волновой формой, обозначенного как W2 на основе разности между входным сигналом S и модуляционным сигналом W1 с первой волновой формой, выполнения TDM на модуляционным сигналом W1 с первой волновой формой и модуляционным сигналом W2 со второй волновой формой для формирования сигнала каскадной модуляции (CWM) волновой формы, и генерирования выходного сигнала согласно модуляционному сигналу W1 с первой волновой формой и модуляционному сигналу W2 со второй волновой формой, и коммуникационный интерфейс, соединенный с процессором и выполненный с возможностью передачи выходного сигнала по линии связи в соответствующее устройство связи в сети. В некоторых вариантах осуществления раскрытие также включает в себя то, что процессор дополнительно выполнен с возможностью генерирования модуляционного сигнала с первой волновой формой посредством деления входного сигнала на первый масштабный коэффициент, связанный с максимальной амплитудой сигнала входного сигнала, для создания первого сигнала, умножения первого сигнала на второй масштабный коэффициент, связанный с SNR линии связи, применения функции округления к первому сигналу, умножения первого сигнала на первый масштабный коэффициент, и деления первого сигнала на второй масштабный коэффициент, и/или в котором процессор дополнительно выполнен с возможностью генерирования сигнала управления, обозначенного как CS, содержащего последовательность символов управления формата модуляции, выполнения TDM дополнительно над сигналом управления и сигналом CWM для создания CWM-CS, и масштабирования уровней сигнала модуляционного сигнала W1 с первой волновой формой, модуляционного сигнала W2 со второй волновой формой и сигнала CS управления так, чтобы максимальные амплитуды модуляционного сигнала W1 с первой волновой формой, модуляционного сигнала W2 со второй волновой формой и сигнала CS управления были схожими, и в котором коммуникационный интерфейс дополнительно выполнен с возможностью модуляции выходного сигнала на несущую до передачи выходного сигнала.

В целях ясности любой из предшествующих вариантов осуществления может быть объединен с любым или более другими предшествующими вариантами осуществления для создания нового варианта осуществления в пределах объема настоящего раскрытия.

Эти и другие признаки будут более ясно поняты из последующего подробного описания, рассматриваемого совместно с сопроводительными чертежами и формулой изобретения.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Для более полного понимания данного раскрытия теперь делается ссылка на следующее краткое описание, рассматриваемое совместно с сопроводительными чертежами и подробным описанием, в котором одинаковые ссылочные позиции представляют собой одинаковые части.

На Фиг.1 показана принципиальная схема системы C-RAN.

На Фиг.2 показана принципиальная схема передатчика периферийного транзита беспроводной связи.

На Фиг.3 показана принципиальная схема приемника периферийного транзита беспроводной связи.

На Фиг.4 показана принципиальная схема передатчика основанного на CWM-CS периферийного транзита беспроводной связи согласно одному варианту осуществления раскрытия.

На Фиг.5 показана принципиальная схема приемника основанного на CWM-CS периферийного транзита беспроводной связи согласно одному варианту осуществления раскрытия.

На Фиг.6 показана принципиальная схема системы основанной на CWM-CS передачи согласно одному варианту осуществления раскрытия.

На Фиг.7 показана принципиальная схема варианта осуществления приемопередающего блока связи периферийного транзита.

На Фиг.8 показан график, изображающий численно моделируемое рабочие параметры SNR системы основанной на CWM-CS передачи согласно одному варианту осуществления раскрытия.

На Фиг.9 показан график, изображающий экспериментально определенные рабочие параметры SNR системы основанной на CWM-CS передачи согласно одному варианту осуществления раскрытия.

На Фиг.10 показана блок-схема последовательности операций способа выполнения обработки в передатчике основанного на CWM-CS периферийного транзита беспроводной связи согласно одному варианту осуществления раскрытия.

На Фиг.11 показана блок-схема последовательности операций способа генерирования аппроксимирующего сигнала для CWM согласно одному варианту осуществления раскрытия.

На Фиг.12 показана блок-схема последовательности операций способа выполнения обработки в приемнике основанного на CWM-CS периферийного транзита беспроводной связи согласно одному варианту осуществления раскрытия.

На Фиг.13 показана блок-схема последовательности операций способа выполнения основанной на CWM демодуляции согласно одному варианту осуществления раскрытия.

ПОДРОБНОЕ ОПИСАНИЕ

Следует понимать с самого начала, что, несмотря на то, что ниже приведены иллюстративные варианты реализации одного или более вариантов осуществления, раскрытые системы и/или способы могут быть реализованы с использованием любого количества методик, известных либо существующих в настоящее время. Раскрытие никоим образом не должно быть ограничено иллюстративными вариантами реализации, чертежами и методиками, изображенными ниже, включая примерные конструкции и реализации, изображенные и описанные в данном документе, но может быть видоизменено в пределах объема пунктов прилагаемой формулы изобретения наряду с их полным объемом эквивалентов.

На Фиг.1 показана принципиальная схема системы C-RAN 100. Система 100 содержит RRU 110, соединенный с возможностью осуществления связи с объединением 120 BBU через линию 130 связи периферийного транзита. RRU 110 располагается на удаленной площадке 140 сотовой связи. RRU 110 обычно устанавливается у основания вышки 141 сотовой связи, которая удерживает множество антенн 142. Линия 130 связи периферийного транзита может быть кабельной линией связи, линией микроволновой связи в области свободного распространения, линией связи DSL или волоконно-оптической линией связи, которая выполнена с возможностью транспортировки цифровых сигналов основной полосы частот между RRU 110 и объединением 120 BBU. Кабельная линия связи в некоторых примерах содержит коаксиальные кабели. Линия микроволновой связи в области свободного распространения содержит тракт распространения радиоволны прямой видимости. Линия связи DSL содержит цифровые абонентские линии DSL, которые являются витыми медными парами. Волоконно-оптическая линия связи содержит стандартное одномодовое волокно (standard single-mode fiber, SSMF) или многомодовое волокно (multi-mode fiber, MMF). Так как оптоволокно обеспечивает значительно меньшие потери мощности, более высокую скорость и большую BW в отличие от кабелей, то оптоволокно обычно используется для линии 130 связи периферийного транзита вместо кабелей. Объединение 120 BBU обычно располагается на площадке 170 CO. Площадка 140 сотовой связи является географической территорией, расположенной в удаленном местоположении от площадки 170 CO, и может содержать один или более секторов соты, которые могут быть определены в течение развертывания сети операторами мобильной связи. RRU 110 обслуживает множество мобильных станций, расположенных у площадки 140 сотовой связи. Объединение 120 BBU соединяет RRU 110 с базовой сетью 150 через линию 160 связи базового транзита. Линия 160 связи базового транзита по существу подобна линии 130 связи периферийного транзита, но транспортирует такие пакеты, как пакеты Ethernet, между объединением 120 BBU и базовой сетью 150. Базовая сеть 150 может содержать взаимно соединенные подсети, задействуемые сетевыми провайдерами и поставщиками услуг. Базовая сеть 150 является центральной частью сети, которая предоставляет сетевые услуги пользователям мобильных станций.

RRU 110 соединен с возможностью осуществления связи с антеннами 142 через линию 143 связи, которая может быть любой подходящей линией связи для транспортировки RF-сигналов. RRU 110 является устройством, выполненным с возможностью осуществления связи с мобильными станциями в назначенных беспроводных RF-каналах восходящей линии связи (UL) и назначенных беспроводных RF-каналах нисходящей линии связи (DL) через антенны 142. UL относится к направлению передачи от мобильных станций к CO или площадке 170 CO, тогда как DL относится к направлению передачи от CO или площадки 170 CO к мобильным станциям. Некоторые примеры беспроводных RF-каналов включают в себя каналы долгосрочного развития (long-term evolution, LTE), каналы усовершенствованного LTE (LTE-advanced, LTE-A) или другие каналы усовершенствованного универсального наземного радио доступа (evolved universal terrestrial radio access, E-UTRA), определенных в спецификациях проекта (3GPP) партнерства третьего поколения. Беспроводные RF-каналы могут переносить сигналы, которые модулируются различными схемами модуляции, такими как OFDM, отфильтрованное OFDM, многополосное OFDM, расширенное посредством DFT OFDM, FBMC и/или UFMC.

Объединение (пул) 120 BBU содержит множество блоков (BBU) 121 основной полосы частот. Блоки (BBU) 121 основной полосы частот являются устройствами, выполненными с возможностью выполнения функций DSP BB и функциями обработки беспроводного управления доступом к среде (MAC) согласно протоколу беспроводной связи.

В направлении UL RRU 110 принимает RF-сигналы UL от мобильных станций, преобразовывает с понижением частоты их в сигналы BB UL и агрегирует сигналы BB UL в агрегированный сигнал UL. RRU 110 затем отправляет агрегированный сигнал UL в объединение 120 BBU через линию 130 связи периферийного транзита. Когда BBU 121 принимает агрегированный сигнал UL от RRU 110, то BBU 121 дезагрегирует агрегированный сигнал UL и выполняет обработку BB и обработку MAC над дезагрегированными сигналами UL для восстановления данных UL, переданные мобильными станциями. BBU 121 пересылает данные в базовую сеть 150. Блоки (BBU) 121 основной полосы частот могут координироваться друг с другом для совместной обработки одного или более агрегированных сигналов UL от одного или более удаленных радио блоков (RRU) 110. Агрегирование и дезагрегирование сигналов UL могут быть выполнены в BB или промежуточной частоте (IF), как описано более полно ниже.

В направлении DL базовая сеть 150 пересылает пакеты данных DL в объединение 120 BBU по линии 160 связи базового транзита. Пакеты данных DL предназначаются мобильным станциям. Блоки (BBU) 121 основной полосы частот генерируют сигналы DL для мобильных станций из соответствующих пакетов данных DL посредством выполнения обработки BB и обработки MAC. Блоки (BBU) 121 основной полосы частот агрегируют сигналы DL в агрегированные сигналы DL и передают агрегированные сигналы DL в RRU 110 через линию 130 связи периферийного транзита. Когда RRU 110 принимает агрегированные сигналы DL от BBU 121, то RRU 110 дезагрегирует агрегированные сигналы DL и передает дезагрегированные Сигналы DL в мобильные станции по соответствующим RF-каналам DL. Агрегирование и дезагрегирование сигналов DL являются схожими с агрегированием и дезагрегированием сигналов UL, как описано более полно ниже.

В заявке на патент США № 14/853,478 за авторством Хуайю Цзэн (Huaiyu Zeng) и др. и под названием «Цифровые представления аналоговых сигналов и управляющих слов с использованием различного формат многоуровневой модуляции» («Digital Representations of Analog Signals and Control Words Using Different Multi-Level Modulation Format») (Заявка ’478), которая включена посредством ссылки, описана система EMF, которая цифровым образом агрегирует и дезагрегируют сигналы UL и DL в BB или IF c использованием TDM и транспортирует оцифрованные сигналы UL и DL BB по линии связи периферийного транзита, такой как линия 130 связи периферийного транзита. Система EMF использует IM для оптической передачи и прямого обнаружения (direct-detection, DD) для оптического приема.

На Фиг.2 показана принципиальная схема передатчика периферийного транзита беспроводной связи 200. Передатчик 200 используется в RRU 110 и/или блоках (BBU) 121 основной полосы частот. Когда передатчик 200 используется в RRU 110, то передатчик 200 принимает сигналы BB или IF UL, соответствующие RF-сигналам UL, переданным мобильными станциями. Когда передатчик 200 используется в блоках (BBU) 121 основной полосы частот, то передатчик 200 принимает сигналы BB или IF DL, переносящие пакеты DL, сгенерированные базовой сетью, такой как базовая сеть 150. RRU 110 и блоки (BBU) 121 основной полосы частот используют оптический коммуникационный интерфейс для модуляции выходного сигнала передатчика 200 на сигнал одиночной оптической несущей и передают модулированный сигнал одиночной оптической несущей по линии 130 связи периферийного транзита. Передатчик 200 содержит множество блоков 210 разделения сигналов IQ/управляющих слов (CW), блок 220 мультиплексирования, блок 230 импульсно-кодовой модуляции (pulse-code modulation, PCM), блок 240 QAM, блок 250 вставки обучающего символа (training symbol, TS) и блок 260 TDM.

Передатчик 200 выполнен с возможностью приема объединенных сигналов IQ/CW из множества каналов беспроводной связи, изображенных в качестве Канала с 1 по N. Объединенный сигнал IQ/CW переносит данные IQ и данные CW канала беспроводной связи. Каждый блок 210 разделения сигналов IQ/CW выполнен с возможностью разделения объединенного сигнала IQ/CW на сигнал IQ и сигнал CW. Сигнал IQ содержит цифровые представления IQ отдельно взятого канала беспроводной связи. Сигнал CW содержит управляющие слова (CW), связанные с управлением и администрированием упомянутого отдельно взятого канала беспроводной связи. Управляющие слова (CW) могут быть встроены с такой информацией, как конфигурации антенн, управления мощностью и рабочая температура. В одном варианте осуществления объединенные сигналы IQ/CW являются сигналами протокола CPRI.

Блок 220 мультиплексирования соединен с блоками 210 разделения сигналов IQ/CW. Блок 220 мультиплексирования выполнен с возможностью мультиплексирования сигналов IQ всех беспроводных RF-каналов в агрегированный сигнал IQ для формирования агрегированного сигнала IQ во временной области и мультиплексирования сигналов CW всех беспроводных RF-каналов в агрегированный сигнал CW.

Блок 230 PCM соединен с блоком 220 мультиплексирования и выполнен с возможностью кодирования агрегированного сигнала IQ согласно схеме PCM для создания закодированного посредством PCM сигнала IQ. Блок 240 QAM соединен с блоком 220 мультиплексирования и выполнен с возможностью кодирования агрегированного сигнала CW согласно формату QAM. Формат QAM может быть выбран на основе SNR линии канала связи для достижения малого коэффициента (bit error ratio, BER) битовых ошибок, например, менее приблизительно 10-12. Например, 16-QAM может быть выбрана для канала с SNR приблизительно от 23 дБ до приблизительно 29 дБ, 64-QAM может быть выбрана для канала с SNR, большим приблизительно 29 дБ, и 4-ех позиционная квадратурная амплитудная модуляция (4-QAM) может быть выбрана для канала с SNR, менее приблизительно 23 дБ. Кроме того, модуляция с решетчатым кодированием (trellis-coded modulation, TCM) может быть применена к модуляции QAM для дополнительного улучшения рабочих параметров BER передачи CW.

Блок 260 TDM соединен с блоком 230 PCM, блоком 240 QAM и блоком 250 вставки TS. Блок 260 TDM выполнен с возможностью временного мультиплексирования закодированного посредством PCM сигнала IQ и закодированного посредством QAM сигнала CW на покадровой основе. Блок 250 вставки TS выполнен с возможностью вставки TS между мультиплексированными кадрами IQ/CW. Таким образом, выходной сигнал блока 260 TDM является мультиплексированным по времени сигналом IQ/CW, содержащим последовательные мультиплексированные кадры IQ/CW, разделенные обучающими символами (TS). Например, TS может быть предварительно определенной временной последовательностью, которая может использоваться для обнаружения кадра и синхронизация в приемнике.

На Фиг.3 показана принципиальная схема варианта осуществления приемника 300 периферийного транзита беспроводной связи. Приемник 300 используется в RRU 110 и/или блоках 121 (BBU) основной полосы частот. Приемник 300 принимает и обрабатывает агрегированные беспроводные сигналы IQ и сигналы CW, принятые от передатчика, такого как передатчик 200, через линию связи периферийного транзита, такую как линия 130 связи периферийного транзита. Когда приемник 300 используется в RRU 110, то принятые агрегированные беспроводные сигналы IQ и сигналы CW переносят сигналы BB или IF DL, которые предназначаются мобильным станциям. Когда приемник 300 используется в блоках (BBU) 121 основной полосы частот, то принятые агрегированные беспроводные сигналы IQ и сигналы CW переносят сигналы BB или IF UL, соответствующие RF-сигналам UL, переданным мобильными станциями. Приемник 300 содержит блок 310 синхронизации, блок 320 демультиплексирования с временным разделением, корректор (EQ) 330, блок 340 демультиплексирования и множество блоков 350 объединения сигналов IQ/CW.

Приемник 300 выполнен с возможностью приема мультиплексированного по времени сигнала IQ/CW. Например, мультиплексированный по времени сигнал IQ/CW может быть передан передатчиком 200. Блок 310 синхронизации выполнен с возможностью обнаружения начала кадра на основе обучающих символов (TS) в мультиплексированном по времени сигнале IQ/CW. Блок 320 демультиплексирования с временным разделением соединен с блоком 310 синхронизации и выполнен с возможностью выполнения демультиплексирование во временной области для разделения мультиплексированного по времени сигнала IQ/CW на сигнал IQ и сигнал CW.

EQ 330 соединен с блоком 320 демультиплексирования с временным разделением и выполнен с возможностью выполнения канальной коррекции над сигналом IQ и сигналом CW. Канальная коррекция удаляет или устраняет межсимвольные помехи (inter-symbol interference, ISI) или помехи между дискретными отсчетами. Коэффициенты EQ 330 обучаются и обновляются на основе сигнала CW, поскольку сигнал CW имеет хорошо заданное созвездие QAM. В действительности, сигнал CW используется для содействию обучению и конвергенции EQ 330. EQ 330 дополнительно выполнен с возможностью демодуляции сигнала CW согласно предварительно определенной схеме модуляции, которая используется передатчиком принятого мультиплексированного по времени сигнала IQ/CW. Как показано стрелкой 390, демодулированный сигнал CW пропускается к EQ 330 для обучения и обновление EQ 330.

Блок 340 демультиплексирования соединен с EQ 330 и выполнен с возможностью разделения скорректированного сигнала данных IQ на множество сигналов IQ и разделения демодулированного и скорректированного сигнала CW на множество сигналов CW согласно предварительно определенному планированию временных интервалов, которое используется передатчиком принятого мультиплексированного по времени сигнала IQ/CW. Каждый отделенный сигнал IQ и каждый отделенный сигнал CW соответствует отдельно взятому беспроводному RF-каналу.

Блоки 350 объединения сигналов IQ/CW соединены с блоком 340 демультиплексирования и выполнены с возможностью объединения сигнала IQ и сигнала CW для связанного беспроводного RF-канала, изображенного в качестве с Канала 1 по Канал N.

Несмотря на то, что передатчик 200 и приемник 300 являются эффективными с точки зрения ширины полосы пропускания, имеют малую сложность DSP и имеют малую задержку обработки, передача закодированного посредством PCM агрегированного сигнала IQ по линии связи периферийного транзита может не быть безошибочной или без искажений. Например, сигналам канала беспроводной связи обычно требуется приблизительно 10 разрядов разрешения дискретного отсчета, и оптические системы такие, как передатчик 200 и приемник 300, обычно разрабатываются с разрешением дискретного отсчета приблизительно от 6 разрядов до приблизительно 8 разрядов. Один подход в улучшении функционирования системы EMF заключается в увеличении разрешения дискретного отсчета приблизительно до 10 разрядов. Однако, сложность системы и стоимость аппаратного обеспечения увеличиваются с увеличением разрешения дискретного отсчета или количества разрядов.

В данном документе раскрыты различные варианты осуществления для улучшения рабочих параметров передачи EMF посредством использования CWM-CW. CWM представляет волновую форму входного сигнала с помощью двух или более волновых форм. В одном варианте осуществления CWM генерирует модуляционный сигнал с первой волновой формой, обозначенный как W1, на основе аппроксимации входного сигнала, обозначенного как S, и модуляционный сигнал со второй волновой формой, обозначенный как W2, на основе разности между S и W1, например, W2=S-W1. Модуляционный сигнал W1 с первой волновой формой генерируется посредством применения функции округления к входному сигналу S, например, W1=round(S), где round() обозначает функцию округления, которая округляет входное значение до ближайшего значения в наборе заданных значений. Модуляционный сигнал W1 с первой волновой формой представляет входной сигнал в более грубом разрешении в отличие от модуляционного сигнала W2 со второй волновой формой. Передатчик, который использует CWM, переда