Композиционный материал, содержащий реагент и/или индикатор для обработки скважины, нанесенный на термообработанную подложку с ядром, покрытым оксидом металла, и способ его использования

Изобретение относится к материалам, используемым при обработке скважин гидроразрывом. Композиционный материал для ввода реагента и/или индикатора для обработки скважины в пробуренный пласт подземной формации, характеризуется тем, что содержит термообработанную подложку, содержащую достаточно мощное ядро, предотвращающее закрытие трещиноватости на месте залегания в условиях продуктивного пласта, и оксид металла по меньшей мере частично нанесенный на ядро, причем площадь поверхности оксида металла термообработанной подложки составляет от 1 до 10 м2/г, диаметр термообработанной подложки составляет от 0,1 до 3 мм, и реагент и/или индикатор для обработки скважины, нанесенный на покрытие из оксида металла на термообработанной подложке. По другому варианту композиционный материал для ввода реагента и/или индикатора для обработки скважины в пробуренный пласт подземной формации характеризуется тем, что содержит термообработанную подложку, содержащую достаточно мощное ядро, предотвращающее закрытие трещиноватости на месте залегания в условиях продуктивного пласта, и оксид металла, по меньшей мере частично нанесенный на ядро, и реагент и/или индикатор для обработки скважины, поглощенный внутрипоровым пространством покрытия из оксида металла на термообработанной подложке, причем реагент и/или индикатор для обработки скважины способен непрерывно высвобождаться в течение длительного периода времени в пластовой жидкости, содержащейся в подземном пласте. Способ обработки скважины в пробуренном пласте подземной формации, включающий закачку в пласт скважинного флюида для обработки пласта, содержащего указанный выше композиционный материал. Способ интенсификации скважины в пробуренном пласте подземной формации, включающий закачку в пласт скважинного флюида для обработки пласта, содержащего указанный выше композиционный материал. Способ ингибирования или регулирования скорости высвобождения реагента и/или индикатора для обработки скважины в подземной формации или пласте путем введения в формацию или пласт указанного выше композиционного материала, в котором реагент и/или индикатор для обработки скважины, нанесенный по меньшей мере на часть оксида металла термообработанной подложки, имеет срок службы, исходя из одного сеанса обработки по меньшей мере шесть месяцев. Способ борьбы с пескопроявлением в пробуренном пласте подземной формации, включающий подачу в пласт суспензии указанного выше композиционного материала и жидкости-носителя, размещение композиционного материала в прилегающей подземной формации для формирования флюидопроницаемого фильтра, способного снижать или в значительной степени предотвращать прохождение частиц породы из подземной формации в продуктивный пласт, позволяя проход пластовых флюидов из подземной формации в пласт. Изобретение развито в зависимых пунктах формулы. Технический результат – повышение эффективности обработки. 6 н. и 33 з.п. ф-лы,

Реферат

Область техники, к которой относится изобретение

Композиционные материалы, содержащие, по меньшей мере, один реагент и/или индикатор для обработки скважины, нанесенные на термообработанную подложку, могут использоваться в операциях по обработке скважины для того, чтобы медленно высвобождать реагент и/или индикатор для обработки скважины в окружающую среду. Термообработанная подложка содержит внешнее покрытие из оксида металла, спеченное с ядром, а ядро способно расклинивать открытые трещины в подземной формации.

Предпосылки создания изобретения

В типичной операции гидравлического разрыва пласта разрывающая жидкость, содержащая твердый расклинивающий наполнитель, закачивается в пласт, пройденный стволом скважины, под давлением, достаточном, чтобы вызвать образование или увеличение трещин в продуктивном пласте. Обычно подземная формация имеет несколько продуктивных зон. При добыче пластовых жидкостей из скважины, как правило, желательно установить связь с выбранными зонами таким образом, чтобы операции по интенсификации случайно не задели непродуктивную зону или зону, представляющую меньший интерес. Выборочная стимуляция становится необходимой, так как срок эксплуатации скважины снижается, также как и ее производительность.

Мониторинг продуктивных пластов используется для оценки продуктивности зон или формаций, из которых добываются пластовые жидкости. Кроме того, мониторинг добываемых пластовых жидкостей важен для повышения эффективности операций по гидравлическому разрыву пласта. В прошлом, индикаторы помещались в фильтрах в стратегически важных областях внутри скважины. К сожалению, такие методы мониторинга из известного уровня техники имеют малую долговечность после размещения индикатора в скважине. Кроме того, они не обеспечивают средства контроля над расходованием индикатора в скважине. В связи с этим ведется поиск альтернативных вариантов.

Также ведется поиск альтернативы ввода реагентов для обработки скважины в скважину, например, чтобы реагент для обработки скважин расходовался в течение продолжительного периода времени. Реагенты для обработки скважин часто используются в добывающих скважинах для предотвращения вредных воздействий, вызванных отложениями и осаждениями. Например, отложение солей в пласте (а также в производственных трубопроводах нисходящей скважины) часто отслеживается ингибиторами образования отложений.

Ранее используемые композиционные материалы включают их в качестве реагента для обработки скважины адсорбированного на материале твердого носителя с большой площадью поверхности. Данные композиционные материалы могут использоваться для медленного высвобождения реагентов для обработки в пласт и окрестности. Они использовались в различных формациях, включая глубоководные скважины, газ в плотных породах и метан в угольных пластах. В патенте США № 7 686 081 и в патентной публикации США № 2010/0175875 раскрывается пополнение таких частиц, после их истощения.

Данные композиционные материалы, однако, часто имеют присущий недостаток, заключающийся в том, что они не обладают необходимой прочностью проппантов и, как правило, подлежат смешиванию не менее чем с 10% по массе проппанта в трещине или при обработке в случае пескопроявления. Более высокие нагрузки приводят к дроблению композиционных материалов, приводящих к потере проводимости фильтра.

В последнее время, в публикации патента США № 2012/0273197, приведенном здесь в качестве ссылки, раскрыт композиционный материал, демонстрирующий прочность проппанта и способный передавать реагент для обработки скважины в течение длительного периода времени в обработанную формацию. Стоимость производства таких композиционных материалов достаточно высока. Существует потребность в менее дорогом альтернативно варианте.

Следует понимать, что изложенное выше предназначено только для иллюстрации и не предназначено для ограничения объема или предмета прилагаемой формулы изобретения или любых ограничений, связанных с патентной заявкой или патентом. Таким образом, ни один из пунктов прилагаемой формулы изобретения или любой родственной заявки или патента не подлежит ограничению вышеописанным обсуждением или толковаться как включение или исключение каждого или любого из указанных выше признаков или недостатков, просто из-за упоминания их в настоящем документе.

Краткое изложение существа изобретения

В варианте осуществления изобретения, предлагается композиционный материал для ввода реагента и/или индикатора для обработки скважины в пробуренный пласт подземной формации. Композиционный материал характеризуется термообработанной подложкой с достаточно прочным ядром, позволяющим предотвращать закрытие увеличенной трещиноватости на месте залегания в условиях продуктивного пласта. Ядро, по меньшей мере, частично покрыто оксидом металла. Покрытие из оксида металла может быть пористым или не пористым. Площадь поверхности термообработанного пористого оксида металла составляет от 1 м2/г до 10 м2/г, а диаметр термообработанного пористого оксида металла составляет от 0,1 до 3 мм. Реагент и/или индикатор для обработки скважины наносится на термообработанное покрытие из оксида металла.

В другом варианте осуществления изобретения, предлагается композиционный материал для ввода реагента и/или индикатора для обработки скважины в пробуренный пласт подземной формации. Композиционный материал характеризуется термообработанной подложкой, имеющей достаточно мощное ядро, для предотвращения закрытия трещиноватости на месте залегания в условиях продуктивного пласта, и оксид металла, по меньшей мере, частично, нанесенный на ядро. Реагент и/или индикатор для обработки скважины, нанесенный, по меньшей мере, на часть покрытия из оксида металла. В качестве альтернативы, где покрытие из оксида металла является пористым, реагент и/или индикатор для обработки скважины, может поглощаться внутрипоровым пространством покрытия из оксида металла. Реагент и/или индикатор для обработки скважины способен непрерывно высвобождается в течение длительного периода времени в пластовую жидкость, содержащуюся в подземном пласте.

В другом варианте осуществления изобретения предлагается способ обработки пробуренного пласта подземной формации, в котором композиционный материал нагнетают в пробуренный пласт подземной формации. Композиционный материал содержит термообработанную подложку с достаточно прочным ядром, позволяющим предотвращать закрытие увеличенной трещиноватости на месте залегания в условиях продуктивного пласта. Термообработанная подложка дополнительно характеризуется покрытием из оксида металла, который, по меньшей мере, частично покрывает ядро. Площадь поверхности термообработанного оксида металла составляет от 1 м2/г до 10 м2/г, а диаметр термообработанного пористого оксида металла составляет от 0,1 до 3 мм. Реагент и/или индикатор для обработки скважины наносится на покрытие из оксида металла на термообработанной подложке. В качестве альтернативы, где покрытие из оксида металла является пористым, реагент для обработки скважины, может поглощаться внутрипоровым пространством оксида металла.

В другом варианте осуществления изобретения предлагается способ обработки пробуренного скважиной пласта подземной формации, в котором композиционный материал нагнетают в подземную формации. Композиционный материал содержит термообработанную подложку, состоящую из ядра и оксида металла. Ядро представляет собой достаточно прочный материал для предотвращения закрытия трещиноватости на месте залегания в условиях продуктивного пласта. Оксид металла наносится, по меньшей мере, на часть ядра. Реагент и/или индикатор для обработки скважины поглощается внутрипоровым пространством, по меньшей мере, части покрытия из оксида металла термообработанной подложки. Реагент и/или индикатор для обработки скважины способен непрерывно высвобождается в течение длительного периода времени в пластовую жидкость, содержащуюся в подземном пласте.

В другом варианте осуществления изобретения предлагается способ интенсификации подземной формации, в котором жидкость для обработки скважины нагнетают в пласт. Композиционный материал содержит термообработанную подложку, состоящую из ядра и покрытия из оксида металла. Ядро представляет собой достаточно прочный материал для предотвращения закрытия увеличенной или созданной трещиноватости на месте залегания в условиях продуктивного пласта. Оксид металла наносится, по меньшей мере, на ядро. Площадь поверхности пористого оксида металла составляет от 1 м2/г до 10 м2/г, а диаметр термообработанного пористого оксида металла составляет от 0,1 до 3 мм. Если оксид металла является пористым, то объем пор пористого оксида металла на термобработанной подложке составляет от 0,01 до 0,10 г/см3. Реагент и/или индикатор для обработки скважины может поглощаться внутрипоровым пространством оксида металла.

В другом варианте осуществления изобретения предлагается способ интенсификации подземной формации, в котором жидкость для обработки скважины, содержащую композиционный материал, нагнетают в пласт. Композиционный материал содержит термообработанную подложку с достаточно прочным ядром, позволяющим предотвращать закрытие трещиноватости на месте залегания в условиях продуктивного пласта. Оксид металла наносится, по меньшей мере, на часть ядра. Реагент и/или индикатор для обработки скважины, поглощается, по меньшей мере, частью термобработанного покрытия из оксида металла. Если покрытие из оксида металла является пористым, то реагент и/или индикатор для обработки скважины, может поглощаться внутрипоровым пространством покрытия из оксида металла. Реагент и/или индикатор для обработки скважины способен непрерывно высвобождается в течение длительного периода времени в пластовую жидкость, содержащуюся в подземном пласте.

В другом варианте осуществления изобретения, предлагается способ ингибирования или регулирования скорости высвобождения реагента и/или индикатора для обработки скважины в подземную формацию или в ствол скважины, в котором композиционный материал вводится в пласт или ствол скважины. Композиционный материал содержит реагент и/или индикатор для обработки скважины, поглощенный внутрипоровым пространством покрытия из оксида металла. Покрытие из оксида металла связано с ядром достаточной прочности, чтобы предотвращать закрытие трещиноватости на месте залегания в условиях продуктивного пласта. До поглощения реагента и/или индикатора для обработки скважины поверхностью покрытия из оксида металла, ядро и покрытие из оксида металла спекаются. Площадь поверхности термообработанного пористого оксида металла составляет от 1 м2/г до 10 м2/г, а диаметр термообработанного пористого оксида металла составляет от 0,1 до 3 мм., а если оксид металла является пористым, то объем пор термообработанного пористого оксида металла на составляет от 0,01 до 0,10 г/см3. Реагент и/или индикатор для обработки скважины поглощенный покрытием из оксида металла на термообработанной подложке имеет срок службы, исходя из одного сеанса обработки, по меньшей мере, шесть месяцев.

В другом варианте осуществления изобретения, предлагается способ ингибирования или регулирования скорости высвобождения реагента и/или индикатора для обработки скважины в подземную формацию или в скважину, в котором композиционный материал вводится в пласт или скважину. Композиционный материал содержит термообработанную подложку с достаточно прочным ядром, позволяющим предотвращать закрытие трещиноватости на месте залегания в условиях продуктивного пласта. Оксид металла наносится, по меньшей мере, на часть ядра. Реагент и/или индикатор для обработки скважины поглощается внутрипоровым пространством, по меньшей мере, части покрытия из оксида металла. Реагент и/или индикатор для обработки скважины способен непрерывно высвобождается в течение длительного периода времени в пласт. Реагент и/или индикатор для обработки скважины поглощенный покрытием из оксида металла на термообработанной подложке имеет срок службы, исходя из одного сеанса обработки, по меньшей мере, шесть месяцев.

В другом варианте осуществления изобретения предлагается способ борьбы с пескопроявлением в скважине, пробуренной в подземной формации, в котором суспензию из композиционного материала нагнетают в пласт. Композиционный материал размещают в прилегающей подземной формации для формирования флюидопроницаемого фильтра, способного снижать или в значительной степени предотвращать прохождение частиц породы из подземной формации в скважину, позволяя проход пластовых флюидов из подземной формации в скважину. Композиционный материал содержит термообработанную подложку, состоящую из ядра и покрытия из оксида металла. Площадь поверхности покрытия из оксида металла на термообработанной подложке составляет от 1 м2/г до 10 м2/г, а диаметр термообработанного оксида металла составляет от 0,1 до 3 мм. В случае если оксид металла является пористым, то объем пор покрытия из оксида металла на термообработанной подложке составляет от 0,01 до приблизительно 0,10 г/см3. Реагент и/или индикатор для обработки скважины поглощается покрытием из оксида металла на термобработанной подложке. В случае, если покрытие из оксида металла является пористым, то реагент и/или индикатор для обработки скважины, может поглощаться внутрипоровым пространством покрытия из оксида металла.

В еще одном варианте осуществления изобретения предлагается способ борьбы с пескопроявлением в скважине, пробуренной в подземной формации, в котором суспензию нагнетают в скважину. Композиционный материал состоит из термообработанной подложки, включающей ядро и оксид металла, нанесенный, по меньшей мере, на часть ядра. Реагент и/или индикатор для обработки скважины поглощается, по меньшей мере, частью покрытия из оксида металла на термобработанной подложке. В случае если покрытие из оксида металла является пористым, то реагент и/или индикатор для обработки скважины, может поглощаться внутрипоровым пространством покрытия из оксида металла. Композиционный материал размещают в прилегающей подземной формации для формирования флюидопроницаемого фильтра, способного снижать или в значительной степени предотвращать прохождение частиц породы из подземной формации в скважину, позволяя проход пластовых флюидов из подземной формации в скважину. Реагент и/или индикатор для обработки скважины способен непрерывно высвобождается в течение длительного периода времени.

Подробное описание предпочтительных вариантов осуществления изобретения

Особенности и преимущества настоящего изобретения и дополнительные признаки и выгоды будут очевидны специалистам в отрасли техники, к которой относится данное изобретение, при рассмотрении следующего подробного описания примерных вариантов осуществления настоящего изобретения. Следует понимать, что приводимое здесь описание примерных вариантов осуществления не предназначено для ограничения пунктов формулы данного патента или любого патента или заявки на патент, испрашивающего приоритет к данному документу. В конкретных вариантах осуществления и деталях, раскрытых в данном документе, могут быть сделаны многие изменения без отступления от сущности и объема данного изобретения.

В данном описании и в различных частях (и заголовках) настоящей патентной заявке, термины "изобретение", "настоящее изобретение" и их вариации не предназначены для обозначения каждого возможного варианта осуществления, охватываемого данным раскрытием или любым конкретным пунктом(ами) формулы изобретения. Таким образом, предмет каждой такой ссылки не следует рассматривать необходимым только из-за такой ссылки для каждого из вариантов осуществления по настоящему документу, или их части, или для любого конкретного пункта(ов) формулы изобретения. Кроме того, термины "включающий" и "содержащий" используются в настоящем описании и в прилагаемой формуле изобретения в неограничивающей форме, и, таким образом, их следует интерпретировать как "включающий, но не ограничиваясь".

Композиционный материал может быть использован для введения одного или нескольких реагентов(а) для обработки скважины, одного или нескольких индикаторов(а) или смеси одного или нескольких реагентов(а) и одного или нескольких индикаторов(а) в подземную формацию или в ствол скважины, пробуренный в подземной формации. Композиционный материал обладает прочность обычного проппанта, но позволяет медленное высвобождение одного или нескольких реагентов и/или индикаторов для обработки скважины в пласт и/или ствол скважины.

Композиционный материал применяется в операциях при обработке нефтяной скважины, газовой скважины, а также геотермальной скважины.

Композиционный материал характеризуется термобработанной подложкой. Термообработанная подложка имеет ядро и внешнее покрытие, нанесенное, по меньшей мере, на часть ядра. Как правило, все поверхности ядра покрыты внешним покрытием.

Реагент и/или индикатор для обработки скважины медленно высвобождается из покрытия из оксида металла и может медленно высвобождаться в пласт и/или в ствол скважины на месте залегания в условиях продуктивного пласта.

Ядро композиционного материала выполняется из любого материала, способного выдерживать температуру и условия спекания, как описано в настоящем документе. Предпочтительно, ядро композиционного материала способно расклинивать открытые трещины, созданные или расширенные операцией гидравлического разрыва пласта и предотвращать закрытие трещиноватости на месте залегания в условиях продуктивного пласта.

Ядро может быть пористым или не пористым.

Примерами подходящих ядер являются обычные проппанты, в том числе с кажущейся удельной массой (ASG) ядра, как правило, превышающей или равной 2,45, более предпочтительно, превышающей или равной 2,65. Такими промежуточными высокопрочными проппантами являются проппанты, содержащие: диоксид кремния, кварц, песок, стекло, керамику, фрагменты ореховой скорлупы, алюминиевые окатыши, нейлоновые шарики, покрытый смолой песок, синтетические и органические частицы, стеклянные микросферы и бокситы. Также могут использоваться смеси таких проппантов, в том числе из различных кристаллических структур (см., например, патент США № 8722188 и публикацию патента США № 2014/0011658, которые включены сюда посредством ссылки).

Ядро может дополнительно представлять собой ультралегкий (ULW) проппант, имеющий ASG менее 2,45. В некоторых случаях ASG (ULW) проппанта СДВ может быть меньше или равно 2,25, в других случаях, меньше или равно 2,0, а в некоторых случаях меньше или равно 1,75, а в других случаях, меньше или равно 1,25. ULW проппанты облегчают размещение частичных монослоев в пласте. В одном варианте осуществления, ULW проппант может использоваться в смеси с проппантом, имеющим ASG больше чем 2,45.

Примеры подходящих ядер, включающие такие материалы, приведены в публикациях патентов США №№ 2007/0209795, 2007/0209794 и 2008/0087429, и патентах США №№ 6364018, 6330916, 6059034, 7426961, 7322411, 7971643, 7931087 и 7494711, которые включены в данное описание посредством ссылки.

Керамические проппанты часто предпочитают из-за их высокой стойкости к раздавливанию. Такие керамические проппанты, как правило, не обладают пористостью. Обычно проппанты выбираются исходя из диапазона напряжений смыкания трещин требуемой нисходящей скважины. ULW проппанты, как правило, пригодны для использования в диапазоне напряжений смыкания трещин, составляющем от менее чем 1000 фунтов на квадратный дюйм до 7500 фунтов на квадратный дюйм, в то время как проппанты промежуточного класса полезны вплоть до 12000 фунтов на квадратный дюйм, а высокопрочные проппанты (например, керамика), могут использоваться при давлениях свыше 12000 фунтов на квадратный дюйм.

Обычно ядро содержит от 1 до 99% по весу композиционного материала.

Покрытие, которое охватывает по меньшей мере часть ядра характеризуется нерастворимым в воде оксидом металла. Площадь поверхности покрытия такова, что, по меньшей мере, один реагент и/или индикатор для обработки скважины могут поглощаться поверхностью оксида металла. Оксид металла может быть пористым или не пористым.

Если покрытие из оксида металла является пористым, то пористость проницаемость пористого оксида металла такова, что реагент и/или индикатор для обработки скважины, также может поглощаться внутрипоровым пространством пористого оксида металла.

Как правило, площадь поверхности оксида металла, на которой осуществляется спекание, как правило, составляет от 1 м2/г до 10 м2/г, предпочтительно от 1,5 м2/г до 4 м2/г, а диаметр термообработанного пористого оксида металла, как правило, составляет от 0,1 до 3 мм, предпочтительно от 150 до 1780 мкм, и объем пор оксида металла составляет от 0,01 до 0,10 г/см3.

Подходящие наноразмерные оксиды металлов включают оксид алюминия, оксид циркония и оксид титана. В предпочтительном варианте осуществления оксид металла представляет собой оксид алюминия, включая альфа-оксид алюминия, тета-оксид алюминия, дельта-оксид алюминия, гамма-оксид алюминия, критерий хи-оксид алюминия или каппа-оксид алюминия или их смеси.

Ядро и покрытие из оксида металла подвергают спеканию перед нанесением реагента и/или индикатора для обработки скважины на покрытие из оксида металла. Толщина оксида металла, нанесенного на ядро ​​термобработанной подложки, обычно составляет от 1 до примерно 25 процентов от общего диаметра частицы композиционного материала.

Термобработанная подложка, как правило, нерастворима в скважинных жидкостях при подземных условиях, например, при температурах ниже 250°С и давлении менее 80 МПа.

Количество реагента и/или индикатора для обработки скважины, поглощенного оксидом металла на термообработанной подложке обычно составляет от 5 до 50 весовых процентов, в расчете на общий вес композиционного материала.

Поглощение реагента для обработки скважины на оксиде металла и/или поглощение реагента для обработки скважины оксидом металла, уменьшает (или устраняет) количество реагента для обработки скважин, требуемого для нахождения в растворе в ходе операции по обработке скважины.

Если реагент и/или индикатор для обработки скважины поглощается внутрипоровым пространством покрытия из оксида металла на термообработанной подложке, то реагент и/или индикатор для обработки скважины могут быть инкапсулирован или иммобилизованы в матрице (например, в эмульсии) или полимерном материале. Матрица выполняется из полимерного материала. Предпочтительно, выполняется из проницаемого полимерного материала.

В одном варианте осуществления изобретения полимерный материал может представлять собой пластик, например: полипропилен, полиэтилен, полиэтилен высокой плотности, полипропилен высокой плотности, полиэтилентерефталат, полиамид (как алифатические, так и ароматические), жидкокристаллический полимер или крахмал (например, полисахарид), лигнин, хитин или их смеси. Другие материалы, пригодные для инкапсулирования реагента для обработки скважины включают: акрил, полибутилен, поликарбонат, полиэфир, полистирол, полиуретан, поливинилхлорид, поликапролактон, полибутилентерефталат, поливиниловый спирт, полимолочную кислоту, полигликолид, полиэфиримид, полиимиды, акрилонитрил-бутадиен-стирол, акрилонитрил-стирол-акрилат, полиоксиметилен, полибутилен, полиизобутилен, поливинилбутираль, эпихлоргидриновый каучук, нитриловый эластомер, нитриловый каучук, полиэфиркетон, полиэфирфиркетона, полиэфиркетонкетон,полиметилметакрилат, полиэтиленоксид, полифениленоксид, полисульфоны, полиэфирсульфон, полимочевина, хлорированный полиэтилен, этиленхлорфтороэтилен, тетрафторэтиленперфторпропилен, перфторалкоксил, силиконовый каучук и другие полимерные материалы, состоящие из вышеуказанных смесей и сополимеров, терполимеров и их гидрофобно/гидрофильно модифицированные или сшитые производные или их смеси. Кроме того, полимер может представлять собой парафин.

Реагент и/или индикатора для обработки скважины может быть твердым или жидким. Если реагент и/или индикатор для обработки скважины представляет собой твердое вещество, то реагент и/или индикатор для обработки скважины растворяется в соответствующем растворителе. Реагент и/или индикатор для обработки скважины может медленно высвобождаться в добываемую жидкую среду, поскольку она делает его растворимым. Если реагент и/или индикатор для обработки скважины представляет собой жидкость, то реагент и/или индикатор для обработки скважины медленно высвобождается в добываемую жидкость, а скорость высвобождения зависит от поверхностных зарядов между реагентом и/или индикатором для обработки скважины и покрытием из оксида металла или полимерным покрытием.

Реагент и/или индикатора для обработки скважины поглощается термообработанным покрытием из пористого оксида металла в соответствующей растворяющей жидкости и затем становится эффективным в жидкостях внутри пласта или стволе скважины. Например, водорастворимые реагенты и/или индикаторы для обработки скважины может сохраняться нетронутыми на термообработанным покрытием из пористого оксида металла при отсутствии потока воды и медленно высвобождается в присутствии воды. Растворимые в углеводородах реагенты для обработки скважины могут оставаться нетронутыми на термообработанном покрытии из пористого оксида металла, пока они не будут медленно поглощены углеводородной фазой добываемой текучей среды.

Реагент и/или индикатор для обработки скважины предпочтительно являются водорастворимыми или растворимыми в алифатических и/или ароматических углеводородах. В одном варианте осуществления, возможно одновременное использование комбинации растворимых в нефти и растворимых в воде реагентов и/или индикаторов для обработки скважины.

В предпочтительном варианте осуществления изобретения, реагент для обработки скважин может представлять собой, меньшей мере, один компонент, выбранный из группы, состоящей из деэмульгирующих реагентов (типа вода-в-нефти и нефть-в-воде), ингибиторов коррозии, ингибиторов образования отложений, ингибиторов парафина, ингибиторов образования гидратов газа, ингибиторов солеобразования и диспергаторов асфальтена, а также их смеси.

Кроме того, другие подходящие реагенты для обработки включают: пенообразователи, раскислители, биоциды и поверхностно-активные вещества, а также другие реагенты, в для которых желательна медленное высвобождение в добывающую скважину.

В примерном варианте осуществления, композиционные материалы, содержащие реагент для обработки скважин, используются для обработки газовых скважин или нефтяных скважин, в которых желательно воспрепятствовать образованию нежелательных посторонних веществ, контролировать образование нежелательных посторонних веществ или замедлять высвобождения нежелательных посторонних веществ в скважину. Например, композиционный материал может использоваться в ходе работ по завершению или добыче. Композиционные материалы могут использоваться в скважине для удаления нежелательных посторонних веществ или для контроля образования нежелательных посторонних веществ на трубчатой ​​поверхности оборудования внутри ствола скважины.

В предпочтительном варианте осуществления композиционный материал эффективно препятствует, контролирует, предотвращает и подвергает обработке неорганические отложения в подземных формациях, например стволах скважин, нефтяных скважин, газовых скважин, водозаборных скважин и геотермальных скважин. Композиционные материалы особенно эффективны при обработке отложений кальция, бария, солей магния и тому подобное, включая отложения из сульфата бария, сульфата кальция и карбоната кальция. Композиционные материалы могут применяться для обработки других неорганических отложений, например, сульфида цинка, сульфида железа и др.

Композиционный материал также может использоваться для контроля и/или предотвращения нежелательного образования солей, парафинов, газовых гидратов, асфальтенов, а также коррозии в пластах или на наземном оборудовании.

Пригодными ингибиторами образования отложений являются анионные ингибиторы образования отложений.

Предпочтительные ингибиторы образования отложений включают сильные кислоты, например фосфоновую кислоту, фосфорную кислоту или ортофосфористую кислоту, эфиры фосфорной кислоты, эфиры фосфоновой/фосфиновой кислоты, различные аминополикарбоновые кислоты, хелатообразующие агенты и полимерные ингибиторы и их соли. Также применяются органофосфонаты, органофосфаты и сложные эфиры фосфорной кислоты, а также соответствующие кислоты и их соли.

Ингибиторы образования отложений на основе фосфоновой/фосфиновой кислоты часто более предпочтительны в свете их эффективности за контролем отложений при относительно низких концентрациях. Полимерные ингибиторы образования отложений, например, полиакриламиды, соли акриламидометилпропансульфоната/ сополимера акриловой кислоты (AMPS/АА), фосфинированный малеиновокислый сополимер (PHOS/MA) или натриевая соль полималеиновой кислоты/акриловой кислоты/акриламидометилпропансульфонатные терполимеры (PMA/AMPS), также являются эффективными ингибиторами образования отложений. Предпочтительными являются соли натрия.

Еще одним полезным веществом, особенно для рассолов, являются хелатирующие агенты, включающие диэтилентриаминпентаметиленфосфоновую кислоту и этилендиаминтетрауксусную кислоту.

Реагент для обработки скважины может дополнительно представлять собой любые фруктаны или производных фруктана, например инулин и производные инулина, как это описано в патентной публикации США № 2009/0325825, которая включена сюда посредством ссылки.

Примерные полезные деэмульгаторы включают, но не ограничиваясь, конденсационные полимеры алкиленоксидов и гликоли, например, оксид этилена и оксид пропилена, конденсационные полимеры ди-пропиленгликоля, а также триметилолпропан и алкилзамещенные фенолформальдегидные смолы, бис-фенилдиэпоксиды, а также сложные эфиры и диэфиры такого рода бифункциональных продуктов. Особенно предпочтительными в качестве неионогенных деэмульгаторов являются оксиалкилированные фенолформальдегидные смолы, оксиалкилированные амины и полиамины, ди-эпоксидированные оксиалкилированные полиэфиры и т.д. Подходящие деэмульгаторы по типу нефть-в-воде, включают четвертичное соединение хлорида политриэтаноламинметильного коллоидного раствора меламиновой кислоты, аминометилированного полиакриламид и т.д.

Ингибиторы парафина включают, но не ограничиваясь, сополимеры этилен/винилацетат, акрилаты (например, сложные эфиры полиакрилатов и сложные эфиры метакрилатов жирных спиртов) и олефин/малеиновые сложные эфиры.

Примерные ингибиторы коррозии включают, но не ограничиваясь, жирные имидазолины, алкиловые пиридины, четвертичные соединения алкилпиридинов, четвертичные соединения жирных аминов и фосфатные соли жирных имидазолинов.

Реактивы для обработки газовых гидратов или ингибиторы включают, но не ограничиваясь, полимеры и гомополимеры и сополимеры винилпирролидона, винилкапролактама и гидратные ингибиторына основе амина, например, описанные в публикации патента США №№ 2006/0223713 и 2009/0325823, которые включены в данное описание посредством ссылки.

Примерные реактивы для обработки асфальтенов включают гомополимеры и сополимеры (например, полимеры и сополимеры жирных сложных эфиров акриловой и метакриловой кислот) и сорбитанмоноолеат.

Подходящие пенообразователи включают, но не ограничиваясь, оксиалкилированные сульфаты или этоксилированные сульфаты спиртов или их смеси.

Примерные поверхностно-активные вещества включают катионные, амфотерные, анионные и неионогенные поверхностно-активный вещества. Катионные поверхностно-активных вещества содержат часть четвертичного аммония (например, четвертичного линейного амина, четвертичного бензильного амина или четвертичного галогенида аммония), часть четвертичного сульфония или часть четвертичного фосфония или их смеси. Подходящие поверхностно-активные вещества, содержащие четвертичную группу, включают четвертичный галогенид аммония или четвертичный амин, например, четвертичный хлорид аммония или четвертичный бромид аммония. Амфотерные поверхностно-активные вещества представляют собой глицинаты, амфоацетаты, пропионаты, бетаины и их смеси. Катионное или амфотерное поверхностно-активное вещество может иметь гидрофобный хвост (насыщенной или ненасыщенной), например с длиной углеродной цепи С1218. Кроме того, гидрофобный хвост, получают из натурального масла растений, например кокосового масла, рапсового масла и пальмового масла.

Предпочтительные поверхностно-активные вещества включают N, N, N триметил-1-октадекааммонийхлорид, N, N, N-триметил-1-гексадекааммонийхлорид и N, N, N-триметил-1- сояаммониийхлорид, а также их смеси. Подходящие анионные поверхностно-активные вещества представляют собой сульфонаты (например, ксилолсульфонатнатрия и нафталинсульфонатнатрия), фосфонаты, этоксисульаты и их смеси.

Примерные раскислители включают триазины, малеимиды, формальдегиды, амины, карбоксамиды, алкилкарбоксилазосоединения, морфолиноперекисные соединения куминов и аминопроизводные морфолина и производные пиперазина, оксиды аминов, алканоламины, алифатические и ароматические полиамины.

Подходящие индикаторы включают красители (например, феноксазоновых красителей, флюоресцеиновых пиридиниевых, бетаиновых красителей, сольватохромных красителей, красителей Oregon Green, Cascade Blue, желтый Lucifer, Auramine O, тетраметилродамина, пиранина, сульфородамина, гидроксикумарина, полисульфнонатных пиренов, цианинов, гидроксиламинов, нейтрального красного и акридинового оранжевого), газы (например, гелий и диоксид углерода); кислоты (например, пикриновая кислота и салициловая кислота) или их соли; способное к ионизации соединения (например, способный к ионизации аммоний, бор, хромат и т.д.) и радиоактивные материалы (например, криптон-85), изотопы; генетически или биологически закодированные материалы; микроорганизмы; минералы, синтетическое или природное соединение с высоким молекулярным весом и полимеры (например, олигонуклеотиды, перфторированные углеводороды, например, перфторбутан, перфторметилциклопентан и перфторметилциклогексан).

Индикатор может представлять собой хелат, например этилендиаминтетрауксусную кислоту (EDTA) или ее соли. В патенте США № 4264 329, включенном сюда посредством ссылки, описываются приемлемые хелаты металлов, образованные в результате реакции арила, замещаемого этилендиаминтетрауксусной кислотой с ионом металла, выбранного из свинца, кадмия и цинк. Данные хелаты реагируют с флуорогенными реагентами, например, флуорескамином и ортофталевым альдегидом. Для обнаружения хелата используется флуоресцентная спектроскопия.

Оксид металла может быть нанесен на ядро в виде частиц геля. Частицы геля получают смешиванием гидрозоли оксида металла, который содержит гидрат оксида металла (например, оксид алюминия) или активированного металла (например, активированного оксида алюминия) и присадки, выбранной из углерода (например, чистого углерода) или природного органического материала с высоким молекулярным весом (например, древесной муки и крахмал), которая не растворима в водном растворе до температуры 50°С, и углерода в растворе гидролизуемого основания с образованием смеси. Затем смесь вводится в диспергированной форме в несмешивающуюся с водой жидкость с температурой от 60°С до 100°С, в результате чего образуются частицы геля. Частицы геля выдерживаются в жидкости при температуре, а затем в водном растворе основания, например водном растворе аммиака для восстановления выдержанных частиц. Частицы геля затем наносятся на материал ядра. Частицы геля могут наноситься на материал я