Устройство для генерирования тепла и водорода

Иллюстрации

Показать все

Изобретение относится к устройству для генерирования тепла и водорода. Устройство содержит корпус (2), камеру (3) горения горелки, сформированную в корпусе (2), горелку (7), имеющую отверстие (9) впрыска топлива и отверстие (11) подачи воздуха для осуществления горения горелки в камере (3) горения горелки, устройство подачи топлива для подачи топлива к отверстию (9) впрыска топлива, устройство подачи воздуха для подачи воздуха к отверстию (11) подачи воздуха и катализатор (4) риформинга, который расположен в корпусе (2) и к которому подводятся газообразные продукты горения горелки, образованные в камере (3) горения горелки. При этом устройство подачи воздуха снабжено теплообменным элементом (13а) для нагревания воздуха, подаваемого в отверстие (11) подачи воздуха. Кроме того, устройство подачи воздуха снабжено переключающим устройством, выполненным с возможностью переключения пути воздушного потока для введения наружного воздуха в отверстие (11) подачи воздуха. При этом горелка (7), имеющая отверстие (9) впрыска топлива и отверстие (11) подачи воздуха, расположена в одной концевой части корпуса (2), а отверстие (25) для выпуска газа расположено в другой концевой части корпуса (2). Технический результат заключается в обеспечении отсутствия деградации катализатора риформинга. 1 з.п. ф-лы, 12 ил.

Реферат

Настоящее изобретение относится к устройству для генерирования тепла и водорода.

В области техники известно устройство для генерирования тепла и водорода, снабженное горелкой, имеющее камеру горения горелки и отверстие впрыска топлива для осуществления впрыска топлива внутрь камеры горения горелки, устройство подачи воздуха для подачи воздуха внутрь камеры горения горелки и катализатор риформинга, и предназначенное для подачи газообразных продуктов горения горелки, образующихся в камере горения горелки, к катализатору риформинга, чтобы тем самым генерировать тепло и водород (см., например, «Application of a Diesel Fuel Reformer for Tier 2 Bin 5 Emissions» Delphi, 2006 DEER Conference, 21 Августа 2006, Детройт, Мичиган). В этом устройстве для генерирования тепла и водорода для того, чтобы вызвать реакцию риформинга с частичным окислением, воздух и топливо приводятся в реакцию в состоянии, в котором молярное отношение O2/С воздушно-топливной смеси поддерживается на уровне 0,5, и в результате этого вырабатываются тепло и водород.

В связи с этим, когда осуществляется реакция риформинга с частичным окислением топлива с использованием катализатора риформинга, температура катализатора риформинга, когда реакция риформинга с частичным окислением достигает равновесного состояния, т.е. равновесная температура реакции, меняется в зависимости от молярного отношения O2/С воздушно-топливной смеси. Например, когда молярное отношение О2/С составляет 0,5, температура катализатора риформинга, т.е. равновесная температура реакции, становится равной примерно 830°C. Однако, температура этого катализатора риформинга имеет это значение в случае, когда температура подаваемого воздуха составляет 25°C. Если температура подаваемого воздуха повышается, то температура катализатора риформинга повышается вместе с ней.

При этом, однако, в указанном выше устройстве для генерирования тепла и водорода подаваемый воздух постоянно нагревается газом, выходящим из катализатора риформинга. Поэтому, если нагревающее действие газа, выходящего из катализатора риформинга, приводит к повышению температуры подаваемого воздуха, то температура катализатора риформинга повышается. Если температура катализатора риформинга повышается, - температура газа, выходящего из катализатора риформинга растет, и температура подаваемого воздуха растет, так что температура подаваемого воздуха продолжает повышаться. В результате возникает проблема, заключающаяся в том, что температура катализатора риформинга становится выше, и катализатор риформинга деградирует из-за высокой температуры.

В соответствии с настоящим изобретением для решения этой проблемы предлагается устройство для генерирования тепла и водорода, содержащее корпус, камеру горения горелки, сформированную в корпусе, причем горелка имеет отверстие впрыска топлива и отверстие подачи воздуха для осуществления горения горелки в камере горения горелки, устройство подачи топлива для подачи топлива к отверстию впрыска топлива, устройство подачи воздуха для подачи воздуха к отверстию подачи воздуха, и катализатор риформинга, который расположен в корпусе и к которому подводятся газообразные продукты горения горелки, образующиеся в камере горения горелки, причем устройство подачи воздуха снабжено теплообменным элементом для нагревания воздуха, подаваемого в отверстие подачи воздуха, с помощью газообразных продуктов горения горелки, тепло и водород образуются в процессе горения горелки, при этом устройство подачи воздуха снабжено переключающим устройством, выполненным с возможностью переключения пути воздушного потока для введения наружного воздуха в отверстие подачи воздуха между путем высокотемпературного воздушного потока для введения наружного воздуха, поступающего в теплообменный элемент и нагреваемого в теплообменном элементе, в отверстие подачи воздуха, и путем низкотемпературного воздушного потока для подачи наружного воздуха, который не поступает в теплообменный элемент и, соответственно, имеет более низкую температуру, чем наружный воздух, нагреваемый в теплообменном элементе, к отверстию подачи воздуха.

Таким образом, согласно первому объекту настоящего изобретения создано устройство для генерирования тепла и водорода, содержащее: корпус, камеру горения горелки, сформированную в корпусе, горелку, имеющую отверстие впрыска топлива и отверстие подачи воздуха для осуществления горения горелки в камере горения горелки, устройство подачи топлива для подачи топлива к отверстию впрыска топлива, устройство подачи воздуха для подачи воздуха к отверстию подачи воздуха и катализатор риформинга, который расположен в корпусе и к которому подводятся газообразные продукты горения горелки, образованные в камере горения горелки, причем устройство подачи воздуха снабжено теплообменным элементом для нагревания воздуха, подаваемого в отверстие подачи воздуха, с помощью газообразных продуктов горения горелки, при этом тепло и водород образуются в процессе горения горелки, причем устройство подачи воздуха снабжено переключающим устройством, выполненным с возможностью переключения пути воздушного потока для введения наружного воздуха в отверстие подачи воздуха между путем высокотемпературного воздушного потока для введения наружного воздуха, поступающего в теплообменный элемент и нагреваемого в теплообменном элементе, в отверстие подачи воздуха, и путем низкотемпературного воздушного потока для подачи наружного воздуха, который не поступает в теплообменный элемент и, соответственно, имеет более низкую температуру, чем наружный воздух, нагреваемый в теплообменном элементе, к отверстию подачи воздуха, при этом горелка, имеющая отверстие впрыска топлива и отверстие подачи воздуха, расположена в одной концевой части корпуса, а отверстие для выпуска газа расположено в другой концевой части корпуса, причем катализатор риформинга расположен в корпусе между горелкой и отверстием для выпуска газа, при этом теплообменный элемент расположен в корпусе между катализатором риформинга и отверстием для выпуска газа, и воздух, подаваемый в отверстие подачи воздуха, нагревается с помощью газа, выходящего из катализатора риформинга.

Предпочтительно, имеется воздушный насос, и воздух, нагнетаемый из воздушного насоса, подается в отверстие подачи воздуха через любой один путь из пути высокотемпературного воздушного потока и пути низкотемпературного воздушного потока.

За счет обеспечения переключающего устройства, способного переключать путь воздушного потока между путем высокотемпературного воздушного потока и путем низкотемпературного воздушного потока по мере необходимости, можно вводить наружный воздух, который не протекает внутри теплообменного элемента и, соответственно, имеет более низкую температуру, чем наружный воздух, нагреваемый в теплообменном элементе, в отверстие подачи воздуха, благодаря чему не происходит деградации катализатора риформинга.

Далее настоящее изобретение будет описано более подробно со ссылкой на прилагаемые чертежи, на которых:

фиг.1 - общий вид устройства для генерирования тепла и водорода;

фиг.2 - диаграмма для пояснения реакций риформинга дизельного топлива;

фиг.3 - диаграмма, показывающая зависимость равновесной температуры ТВ реакции от молярного отношения О2/С;

фиг.4 - диаграмма, показывающая связь молярного отношения О2/С и числа молекул, образованных на один атом углерода;

фиг.5 - диаграмма, иллюстрирующая распределение температуры внутри катализатора риформинга;

фиг.6 - диаграмма, показывающая зависимость равновесной температуры ТВ реакции от молярного отношения О2/С при изменении температуры ТА подаваемого воздуха;

фиг.7 - временная диаграмма, показывающая регулирование образования тепла и водорода;

фиг.8A и 8B - диаграммы, показывающие рабочие области, осуществляющие операцию вторичного прогрева;

фиг.9 - диаграмма алгоритма регулирования образования тепла и водорода;

фиг.10 - диаграмма алгоритма регулирования образования тепла и водорода; и

фиг.11 - диаграмма алгоритма регулирования образования тепла и водорода.

На фиг.1 представлен общий вид устройства 1 для генерирования тепла и водорода. Это устройство 1 для генерирования тепла и водорода в целом имеет цилиндрическую форму. На фиг.1 позицией 2 обозначен цилиндрический корпус устройства 1 для генерирования тепла и водорода, позицией 3 - камера горения горелки, сформированная в корпусе 2, позицией 4 - катализатор риформинга, расположенный в корпусе 2, и позицией 5 - камера выпуска газа, сформированная в корпусе. В варианте осуществления, показанном на фиг.1, катализатор 4 риформинга расположен в центре корпуса 2 в продольном направлении, камера 3 горения горелки расположена в одной концевой части корпуса 2 в продольном направлении, и камера 5 выпуска газа расположена в другой концевой части корпуса 2 в продольном направлении. Как показано на фиг.1, в данном варианте осуществления вся внешняя поверхность корпуса 2 покрыта теплоизоляционным материалом 6.

Как показано на фиг.1, горелка 7, снабженная топливным инжектором 8, расположена в одной концевой части камеры 3 горения горелки. Конец топливного инжектора 8 расположен в камере 3 горения горелки, и отверстие 9 впрыска топлива сформировано на конце топливного инжектора 8. Кроме того, воздушная камера 10 сформирована вокруг топливного инжектора 8, и отверстие 11 подачи воздуха для эжектирования воздуха в воздушной камере 10 внутрь камеры 3 горения горелки сформировано вокруг конца топливного инжектора 8. В варианте осуществления, показанном на фиг.1, топливный инжектор 8 соединен с топливным баком 12, и топливо, находящееся внутри топливного бака 12, инжектируется из отверстия 9 впрыска топлива топливного инжектора 8. В варианте осуществления, показанном на фиг.1, это топливо состоит из дизельного топлива.

Воздушная камера 10 соединена с одной стороны, через канал 13 высокотемпературного воздушного потока, с воздушным насосом 15 с возможностью регулирования скорости нагнетания, и соединена с другой стороны, через канал 14 низкотемпературного воздушного потока, с воздушным насосом 15 с возможностью регулирования скорости нагнетания. Как показано на фиг.1, высокотемпературный воздушный клапан 16 и низкотемпературный воздушный клапан 17 расположены в канале 13 высокотемпературного воздушного потока и в канале 14 низкотемпературного воздушного потока, соответственно. Кроме того, как показано на фиг.1, канал 13 высокотемпературного воздушного потока оснащен теплообменным элементом, расположенным в камере 5 выпуска газа. Этот теплообменный элемент схематически показан на фиг.1 ссылочной позицией 13a. Следует отметить, что данный теплообменный элемент может быть сформирован после катализатора 4 риформинга по окружности корпуса 2, ограничивающего камеру 5 выпуска газа. Таким образом, предпочтительно, чтобы этот теплообменный элемент 13а был расположен или сформирован по месту, где осуществляется теплообмен с использованием тепла высокотемпературного газа, выходящего из камеры 5 выпуска газа. С другой стороны, канал 14 низкотемпературного воздушного потока не имеет теплообменного элемента 13а, осуществляющего теплообмен с использованием тепла высокотемпературного газа, выходящего из камеры 5 выпуска газа по этому пути.

Если высокотемпературный воздушный клапан 16 открывают и низкотемпературный воздушный клапан 17 закрыт, - наружный воздух подается через воздухоочиститель 18, воздушный насос 15, канал 13 высокотемпературного воздушного потока и воздушную камеру 10 в камеру 3 горения горелки из отверстия 11 подачи воздуха. В это время наружный воздух, т.е. воздух, направляется в теплообменную часть 13а. В противоположность этому, если низкотемпературный воздушный клапан 17 открывают и высокотемпературный воздушный клапан 16 закрыт, - наружный воздух, т.е. воздух, подается через воздухоочиститель 18, воздушный насос 15, канал 14 низкотемпературного воздушного потока и воздушную камеру 10 из отверстия 11 подачи воздуха. Таким образом, высокотемпературный воздушный клапан 16 и низкотемпературный воздушный клапан 17 образуют переключающее устройство, способное переключать канал воздушного потока для подачи воздуха через воздушную камеру 10 в отверстие 11 подачи воздуха между каналом 13 высокотемпературного воздушного потока и каналом 14 низкотемпературного воздушного потока.

В то же время, устройство 19 зажигания расположено в камере 3 горения горелки. В варианте осуществления, показанном на фиг.1, это устройство 19 зажигания состоит из запальной свечи. Эта запальная свеча 19 соединена через переключатель 20 с источником 21 питания. С другой стороны, в варианте осуществления, показанном на фиг.1, катализатор 4 риформинга состоит из окисляющей части 4a и части 4b риформинга. В примере, показанном на фиг.1, подложка катализатора 4 риформинга состоит из цеолита. На эту подложку в окисляющей части 4a нанесен в основном палладий Pd, в то время как в части 4b риформинга нанесен в основном родий Rh. Кроме того, температурный датчик 22 для определения температуры торцевой поверхности стороны входа окисляющей части 4a катализатора 4 риформинга расположен в камере 3 горения горелки, и температурный датчик 23 для определения температуры торцевой поверхности стороны выпуска части 4b риформинга катализатора 4 риформинга расположен в камере 5 выпуска газа. Кроме того, температурный датчик 24 для определения температуры воздуха, проходящего в канале 14 низкотемпературного воздушного потока, расположен в канале 14 низкотемпературного воздушного потока, находящемся снаружи теплоизолирующего материала 6.

Как показано на фиг.1, устройство 1 для генерирования тепла и водорода снабжено электронным блоком 30 управления. Данный электронный блок 30 управления состоит из цифрового компьютера, оснащенного, как показано на фиг.1, ПЗУ (постоянным запоминающим устройством) 32, ОЗУ (оперативным запоминающим устройством) 33, ЦП (микропроцессором) 34, портом 35 ввода и портом 36 вывода, которые связаны друг с другом посредством двунаправленной шины 31. Выходные сигналы температурных датчиков 22, 23 и 24 вводятся через соответствующие АЦП 37 в порт 35 ввода, соответственно. Кроме того, выходной сигнал, показывающий значение сопротивления запальной свечи 19, вводится через соответствующий АЦП 37 в порт 35 ввода. Кроме того, различные команды из блока 39 генерирования команд, создающего различные типы команд, вводятся в порт 35 ввода.

С другой стороны, порт 36 вывода соединен через соответствующие управляющие схемы 38 с топливными инжекторами 8, высокотемпературным воздушным клапаном 16, низкотемпературным воздушным клапаном 17 и переключателем 20. Кроме того, порт 36 вывода соединен с управляющей схемой 40 насоса, регулирующей скорость нагнетания воздушного насоса 15. Скорость нагнетания воздушного насоса 15 регулируется данной управляющей схемой 40 насоса для достижения заданного значения скорости нагнетания, которое выводится в порт 36 вывода.

Во время начала работы устройства 1 для генерирования тепла и водорода, топливо, впрыскиваемое из горелки 7, воспламеняется с помощью запальной свечи 19. Благодаря этому, топливо и воздух, которые подаются из горелки 7, вступают в реакцию в камере 3 горения горелки, и в результате этого начинается горение горелки. Если горение горелки начинается, температура катализатора 4 риформинга постепенно повышается. В этот момент времени горение горелки осуществляется при бедном воздушно-топливном отношении. Далее, если температура катализатора 4 риформинга достигает температуры, при которой возможен риформинг топлива, воздушно-топливное отношение переключается с бедного воздушно-топливного отношения на богатое воздушно-топливное отношение, и процесс риформинга топлива на катализаторе 4 риформинга начинается. Если процесс риформинга топлива начинается, - вырабатывается водород, и высокотемпературный газ, содержащий образованный водород, выпускается из отверстия 25 для выпуска газа камеры 5 выпуска газа.

Водород, образованный с помощью устройства 1 для генерирования тепла и водорода, используется, например, для прогрева катализатора очистки выхлопных газов транспортного средства. В этом случае устройство 1 для генерирования тепла и водорода, например, расположено внутри моторного отсека транспортного средства. Разумеется, водород, вырабатываемый устройством 1 для генерирования тепла и водорода, используется и для разных других применений. В любом случае, в устройстве 1 для генерирования тепла и водорода, водород вырабатывается путем риформинга топлива. Поэтому, сначала, со ссылкой на фиг.2, будут объяснены реакции риформинга в случае использования в качестве топлива дизельного топлива.

Позиции (а)-(с) на фиг.2 показывают формулу реакции, когда осуществляется реакция полного окисления, формулу реакции, когда осуществляется реакция риформинга с частичным окислением, и формулу реакции, когда осуществляется реакция парового риформинга, соответственно, в случае использования в качестве топлива обычно используемого дизельного топлива. Следует отметить, что теплотворная способность ΔH0 в формулах реакции представлена низшей теплотворной способностью (LHV). Итак, как следует из (b) и (с) на фиг.2, существует два способа генерирования водорода из дизельного топлива: способ осуществления реакции риформинга с частичным окислением и способ осуществления реакции парового риформинга. Реакция парового риформинга представляет собой способ добавления водяного пара в дизельное топливо и, как следует из (с) на фиг.2, данная реакция парового риформинга является эндотермической реакцией. Поэтому, чтобы вызвать реакцию парового риформинга, необходимо добавить тепло извне. В крупномасштабных установках для генерирования водорода, обычно, чтобы повысить эффективность образования водорода, в дополнение к реакции риформинга с частичным окислением применяется реакция парового риформинга, в которой образующееся тепло не сбрасывается, но используется для генерирования водорода.

В противоположность этому, в настоящем изобретении, для образования водорода и тепла, реакция парового риформинга, использующая образованное тепло для генерирования водорода, не используется. В настоящем изобретении для генерирования водорода используется только реакция риформинга с частичным окислением. Эта реакция риформинга с частичным окислением, как следует из (b) на фиг.2, является экзотермической реакцией. Соответственно, реакция риформинга протекает за счет собственного образованного тепла, даже без добавления тепла извне, и вырабатывается водород. В данном случае, как показано с помощью формулы реакции риформинга с частичным окислением в позиции (b) на фиг.2, реакция риформинга с частичным окислением осуществляется с помощью богатого воздушно-топливного отношения, когда молярное отношение O2/С, иллюстрирующее соотношение воздуха и топлива, которые вступают в реакцию, составляет 0,5. При этом образуются CO и H2.

На фиг.3 показана зависимость между равновесной температурой ТВ реакции, когда воздух и топливо вступают в реакцию на катализаторе риформинга и достигается равновесие, и молярным отношением O2/C воздушно-топливной смеси. Следует отметить, что сплошная линия на фиг.3 показывает теоретическое значение, когда температура воздуха равна 25°С. Как показано сплошной линией на фиг. 3, когда реакция риформинга с частичным окислением осуществляется при богатом воздушно-топливном отношении, т.е. при молярном отношении О2/С=0,5, равновесная температура ТВ реакции составляет практически 830°C. Следует отметить, что фактическая равновесная температура ТВ реакции в данном случае становится немного ниже 830°C, но ниже равновесная температура ТВ реакции будет описана для варианта осуществления по настоящему изобретению как значение, показанное сплошной линией на фиг.3.

С другой стороны, как следует из формулы реакции полного окисления, показанной позицией (а) на фиг.2, когда молярное отношение O2/C=1,4575, воздушно-топливное отношение становится стехиометрическим воздушно-топливным отношением. Как показано на фиг.3, равновесная температура ТВ реакции становится наиболее высокой, когда воздушно-топливное отношение становится стехиометрическим воздушно-топливным отношением. Когда молярное отношение О2/С находится между 0,5 и 1,4575, частично осуществляется реакция риформинга с частичным окислением, в тоже время частично осуществляется реакция полного окисления. В этом случае чем больше молярное отношение О2/С, тем больше отношение, при котором осуществляется реакция полного окисления, по сравнению с отношением, при котором осуществляется реакция риформинга с частичным окислением, поэтому чем больше молярное отношение O2/C, тем выше равновесная температура ТВ реакции.

С другой стороны, на фиг.4 показана зависимость между числом молекул (H2 и CO), образованных на один атом углерода, и молярным отношением O2/С. Как было объяснено выше, чем больше молярное отношение О2/С превышает 0,5, тем меньше отношение, при котором осуществляется реакция риформинга с частичным окислением. Таким образом, как показано на фиг. 4, чем больше молярное отношение О2/С превышает 0,5, тем меньше образование Н2 и СО. Следует отметить, что, хотя это и не показано на фиг.4, если молярное отношение О2/С становится больше, чем 0,5, за счет реакции полного окисления, показанной позицией (а) на фиг.2, образованные количества СО2 и Н2О увеличиваются. В этой связи, на фиг.4 показаны образованные количества Н2 и СО, если предположить, что реакция конверсии водяного газа, показанная на фиг.2(d), не происходит. Однако, в действительности, реакция конверсии водяного газа, показанная позицией (d) фиг.2, происходит за счет СО, образованного при реакции риформинга с частичным окислением, и H2O, образованной при реакции полного окисления, и водород образуется также и за счет этой реакции конверсии водяного газа.

Итак, как пояснено выше, чем больше молярное отношение О2/С превышает 0,5, тем меньше образованные количества Н2 и СО. С другой стороны, как показано на фиг.4, если молярное отношение О2/С становится меньше 0,5, избыточный углерод С, который не способен вступать в реакцию, возрастает. Этот избыточный углерод C осаждается в порах подложки катализатора риформинга, то есть происходит коксование. Если происходит коксование, способность осуществления риформинга катализатором риформинга заметно падает. Поэтому, чтобы избежать коксования, молярное отношение О2/С необходимо поддерживать на уровне не ниже 0,5. Далее, как следует из фиг.4, в диапазоне, где не происходит образования избыточного углерода, образованное количество водорода становится наибольшим, когда молярное отношение О2/С составляет 0,5. Следовательно, в варианте осуществления настоящего изобретения, когда реакция риформинга с частичным окислением осуществляется для образования водорода, чтобы избежать закоксовывания и предоставить возможность водороду образовываться наиболее эффективно, молярное отношение O2/C принципиально поддерживают на уровне 0,5.

С другой стороны, даже если молярное отношение О2/С установлено шире, чем стехиометрическое воздушно-топливное отношение с величиной молярного отношения О2/С=1,4575, осуществляется реакция полного окисления, однако, чем шире становится молярное отношение O2/C, тем большее количество воздуха должно иметь повышенную температуру. Соответственно, как показано на фиг.3, если молярное отношение О2/С становится больше, чем молярное отношение O2/C=1,4575, характеризующее стехиометрическое воздушно-топливное отношение, то чем больше становится молярное отношение О2/С, тем больше равновесная температура ТВ реакции будет падать. В этом случае, например, если молярное отношение О2/С установлено на уровне бедного воздушно-топливного отношения, равного 2,6, когда температура воздуха составляет 25°C, равновесная температура ТВ реакции становится примерно 920°C.

Итак, как пояснено выше, во время начала работы устройства 1 для генерирования тепла и водорода, показанного на фиг.1, топливо, впрыскиваемое из горелки 7, воспламеняется с помощью запальной свечи 19. Благодаря этому, внутри камеры 3 горения горелки топливо и воздух, инжектированные из горелки 7, вступают в реакцию, в результате чего начинается горение горелки. Если горение горелки начинается, температура катализатора 4 риформинга постепенно повышается. В этот момент времени горение горелки осуществляется при бедном воздушно-топливном отношении. Затем, если температура катализатора 4 риформинга достигает температуры, при которой возможен риформинг топлива, воздушно-топливное отношение переключается с бедного воздушно-топливного отношения на богатое воздушно-топливное отношение, и процесс риформинга топлива на катализаторе 4 риформинга начинается. Если процесс риформинга топлива начался, - образуется водород. На фиг.5 показано распределение температуры внутри окисляющей части 4a и части 4b риформинга катализатора 4 риформинга, когда реакция на катализаторе 4 риформинга достигает равновесного состояния. Следует отметить, что на фиг.5 показано распределение температуры в случае, когда температура наружного воздуха составляет 25°C, и этот наружный воздух подается через канал 14 низкотемпературного воздушного потока, показанный на фиг.1, из горелки 7 внутрь камеры 3 горения горелки.

Сплошная линия на фиг.5 показывает распределение температуры внутри катализатора 4 риформинга, когда молярное отношение O2/C воздуха и топлива, подаваемых из горелки 7, равно 0,5. Как показано на фиг.5, в этом случае в окисляющей части 4a катализатора 4 риформинга температура катализатора 4 риформинга повышается в направлении стороны выпуска благодаря теплоте реакции окисления из-за остающегося кислорода. Примерно тогда, когда газообразные продукты горения проходят внутри окисляющей части 4a катализатора 4 риформинга во внутреннюю часть 4b риформинга, остающийся кислород в газообразных продуктах горения расходуется, и осуществляется процесс риформинга топлива в части 4b риформинга катализатора 4 риформинга. Данная реакция риформинга является эндотермической реакцией. Поэтому температура внутри катализатора 4 риформинга падает по мере протекания процесса риформинга, то есть к стороне выпуска катализатора 4 риформинга. Температура торцевой поверхности стороны выпуска катализатора 4 риформинга в этот момент времени равна 830°C и совпадает с равновесной температурой ТВ реакции при молярном отношении O2/C=0,5, как показано на фиг.3.

С другой стороны, на фиг.5 пунктирной линией показано распределение температуры внутри катализатора 4 риформинга, когда молярное отношение O2/C воздуха и топлива, подаваемых из горелки 7, соответствует бедному воздушно-топливному отношению 2,6. В этом случае также температура внутри катализатора 4 риформинга повышается в направлении стороны выпуска катализатора 4 риформинга благодаря теплоте реакции окисления топлива внутри окисляющей части 4a катализатора 4 риформинга. С другой стороны, в этом случае процесс риформинга не осуществляется внутри части 4b риформинга катализатора 4 риформинга, благодаря чему температура катализатора 4 риформинга сохраняется постоянной в части 4b риформинга. Температура торцевой поверхности стороны выпуска катализатора 4 риформинга в этот момент времени равна 920°C и совпадает с равновесной температурой ТВ реакции при молярном отношении O2/C=2,6, как показано на фиг.3. Таким образом, равновесная температура ТВ реакции на фиг.3 показывает температуру торцевой поверхности стороны выпуска катализатора 4 риформинга, когда температура наружного воздуха составляет 25°C, и этот наружный воздух подается через канал 14 низкотемпературного воздушного потока, показанный на фиг.1, из горелки 7 внутрь камеры 3 горения горелки.

Далее, со ссылкой на фиг.6 будет пояснена равновесная температура ТВ реакции при изменении температуры воздуха, реагирующего с топливом в катализаторе риформинга. На фиг.6, как и на фиг.3, показана зависимость между равновесной температурой ТВ реакции, когда воздух и топливо вступают в реакцию на катализаторе риформинга при достижении равновесия, и молярным отношением O2/C воздушно-топливной смеси. Следует отметить, что на фиг.6 аббревиатура ТА обозначает температуру воздуха. На данной фиг.6 зависимость между равновесной температурой ТВ реакции и молярным отношением O2/С, показанная на фиг.3 сплошной линией, снова показана сплошной линией. На фиг.6 пунктирными линиями также показаны зависимости между равновесной температурой ТВ реакции и молярным отношением O2/C при изменении температуры ТА воздуха до 225°C, 425°C и 625°C. Из фиг.6 следует, что равновесная температура ТВ реакции становится выше в целом, независимо от молярного отношения О2/С при повышении температуры ТА воздуха.

С другой стороны, подтверждается, что катализатор 4 риформинга, используемый в варианте осуществления настоящего изобретения, не сильно ухудшается из-за высокой температуры, если температура катализатора составляет 950°C или менее. Таким образом, в варианте осуществления настоящего изобретения, 950°C является допустимой температурой TX катализатора, позволяющей избежать термической деградации катализатора 4 риформинга. Эта допустимая температура ТХ катализатора показана на фиг.3, фиг.5 и фиг.6. Как видно из фиг.5, когда температура ТА воздуха равна 25°C, если молярное отношение O2/C равно 0,5 или молярное отношение O2/C равно 2,6, - температура катализатора 4 риформинга при достижении реакцией в катализаторе 4 риформинга равновесного состояния становится допустимой температурой ТХ катализатора на всех участках катализатора 4 риформинга. Соответственно, в этом случае можно продолжать использовать катализатор 4 риформинга, не опасаясь термической деградации на практике.

С другой стороны, как следует из фиг.3, даже в том случае, когда температура ТА воздуха равна 25°C, если молярное отношение О2/С становится немного выше 0,5, температура торцевой поверхности стороны выхода катализатора 4 риформинга, при достижении реакцией в катализаторе 4 риформинга равновесного состояния, т.е. равновесной температуры ТВ реакции, будет в конечном счете превышать допустимую температуру ТХ катализатора. Если молярное отношение О2/С становится немного ниже 2,6, - температура торцевой поверхности стороны выхода катализатора 4 риформинга, при достижении реакцией в катализаторе 4 риформинга равновесного состояния, будет в конечном счете превышать допустимую температуру ТХ катализатора.

Поэтому, например, когда реакция в катализаторе 4 риформинга находится в равновесном состоянии, когда происходит реакция риформинга с частичным окислением, молярное отношение О2/С может быть больше 0,5, однако возможный диапазон расширения молярного отношения O2/C ограничен.

С другой стороны, как следует из фиг.6, если температура ТА воздуха становится более высокой, когда реакция в катализаторе 4 риформинга достигает равновесного состояния, даже если молярное отношение O2/C составляет 0,5, - температура торцевой поверхности стороны выпуска катализатора 4 риформинга при достижении реакцией в катализаторе 4 риформинга равновесного состояния становится выше, чем допустимая температура ТХ катализатора, и, соответственно, катализатор 4 риформинга будет ухудшаться из-за теплоты. Таким образом, когда температура ТА воздуха становится высокой, если реакция в катализаторе 4 риформинга достигает равновесного состояния, - молярное отношение O2/C не может быть установлено равным 0,5. Таким образом, в варианте осуществления настоящего изобретения, когда реакция в катализаторе 4 риформинга достигает равновесного состояния, температура ТА воздуха устанавливается низкой, примерно 25°C, и молярное отношение О2/С устанавливается равным 0,5 в состоянии для поддержания температуры ТА воздуха на уровне примерно 25°C.

Далее, со ссылкой на фиг.7, будет объяснен вкратце способ для генерирования тепла и водорода с помощью устройства 1 для генерирования тепла и водорода, показанного на фиг.1. Следует отметить, что на фиг.7 показаны рабочее состояние запальной свечи 19, количество воздуха, подаваемое из горелки 7, количество топлива, впрыскиваемое из горелки 7, молярное отношение O2/С вступающей в реакцию воздушно-топливной смеси, температура воздуха, подаваемого из горелки 7, и температура TC торцевой поверхности стороны выхода катализатора 4 риформинга. Следует отметить, что различные целевые значения для температуры TC торцевой поверхности стороны выхода катализатора 4 риформинга, показанные на фиг.7 и т.д., и различные целевые значения температуры катализатора 4 риформинга являются теоретическими значениями. В варианте осуществления по настоящему изобретению, как было объяснено выше, например, фактическая равновесная температура ТВ реакции становится немного ниже, чем целевая температура 830°C. Эти целевые температуры изменяются в зависимости от конструкции устройства 1 для генерирования тепла и водорода и т.д. Поэтому на практике необходимо осуществлять эксперименты, чтобы предварительно установить оптимальные целевые температуры, соответствующие конструкции устройства 1 для генерирования тепла и водорода.

Если работа устройства 1 для генерирования тепла и водорода начинается, запальная свеча 19 включается. Далее, воздух подается через канал 13 высокотемпературного воздушного потока внутрь камеры 3 горения горелки. В данном случае, как показано с помощью пунктирной линии на фиг.7, также можно включить запальную свечу 19 после того, как воздух подан через канал 13 высокотемпературного воздушного потока внутрь камеры 3 горения горелки. Далее, топливо впрыскивается из горелки 7. Если топливо, впрыскиваемое из горелки 7, воспламеняется запальной свечой 19, количество топлива увеличивается, молярное отношение O2/С вступающей в реакцию воздушно-топливной смеси снижается с 4,0 до 3,0, и горение горелки начинается внутри камеры 3 горения горелки. В период времени от момента начала подачи топлива до момента воспламенения топлива воздушно-топливное отношение поддерживается на уровне бедного воздушно-топливного отношения, чтобы в максимально возможной степени снизить количество образующихся НС.

Далее, горение горелки продолжается при бедном воздушно-топливном отношении. Благодаря этому температура катализатора 4 риформинга постепенно повышается. С другой стороны, если горение горелки начинается, температура газа, прошедшего через катализатор 4 риформинга и поступившего в камеру 5 выпуска газа, постепенно повышается. Следовательно, температура воздуха, нагретого в теплообменном элементе 13а с помощью этого газа, постепенно повышается. В результате, температура воздуха, подаваемого из канала 13 высокотемпературного воздушного потока внутрь камеры 3 горения горелки, постепенно повышается. Благодаря этому, прогрев катализатора 4 риформинга ускоряется. Прогрев катализатора 4 риформинга, осуществляемый при бедном воздушно-топливном соотношении таким путем в варианте осуществления настоящего изобретения, как показано на фиг.7, называется «первичным прогревом». Следует отметить, что в примере, показанном на фиг.7, во время этого первичного прогрева количество подаваемого воздуха и количество топлива увеличиваются.

Эта операция первичного прогрева продолжается до тех пор, пока не станет возможным риформинг топлива в катализаторе 4 риформинга. В варианте осуществления настоящего изобретения, если температура торцевой поверхности стороны выхода катализатора 4 риформинга становится равной 700°C, считается, что риформинг топлива становится возможным в катализаторе 4 риформинга. Таким образом, как показано на фиг.7, в варианте осуществления настоящего изобретения, операция первичного прогрева продолжается до тех пор, пока температура TC торцевой поверхности стороны выхода катализатора 4 риформинга не станет равной 700°C. Следует отметить, что в варианте осуществления настоящего изобретения, с момента начала работ