Гибкое устройство и способы его работы

Иллюстрации

Показать все

Изобретение относится к электротехнике. Технический результат состоит в расширении эксплуатационных возможностей. Гибкое устройство включает в себя гибкий корпус и множество пьезоэлектрических материалов, размещаемых на гибком корпусе, которые деформируются в ответ на сигналы возбуждения, вызывающие деформацию гибкого корпуса гибкого устройства. 2 н. и 12 з.п. ф-лы, 30 ил., 1 табл.

Реферат

Область техники, к которой относится изобретение

[1] Устройства и способы в соответствии с примерными вариантами осуществления относятся к гибкому устройству и к способам его работы, а более конкретно, к гибкому устройству, которое изменяет форму с использованием множества пьезоэлектрических веществ, и к способам его работы.

Уровень техники

[2] Совершенствование электронных технологий обеспечивает разработку различных типов электронных устройств. Широко используются традиционные устройства отображения, такие как телевизионные приемники, персональные компьютеры, переносные компьютеры, планшетные компьютеры, мобильные телефоны и MP3-проигрыватели.

[3] Чтобы удовлетворять потребности клиентов в новых устройствах, разрабатывается "устройство отображения следующего поколения".

[4] Один пример устройства отображения следующего поколения представляет собой гибкое дисплейное устройство. "Гибкое дисплейное устройство" означает устройство отображения, сконфигурированное с возможностью изменять форму.

[5] Гибкое дисплейное устройство может изменять форму в ответ на силу пользователя, приложенную к нему.

[6] Соответственно, конструкция гибкого устройства и способ его работы обязательно должны удовлетворять различные потребности пользователя.

Сущность изобретения

Техническая задача

[7] Согласно примерным вариантам осуществления, предоставляется гибкое устройство, которое может изменять форму с использованием множества пьезоэлектрических веществ, и способы его работы.

Решение задачи

[8] Примерные варианты осуществления преодолевают вышеуказанные недостатки и другие недостатки, не описанные выше. Кроме того, примерные варианты осуществления не обязательно должны преодолевать недостатки, описанные выше, и примерный вариант осуществления может не преодолевать ни одну из проблем, описанных выше.

[9] Согласно аспекту примерного варианта осуществления, предусмотрено гибкое устройство, включающее в себя гибкий корпус, нижний пьезоэлектрический слой из первого множества пьезоэлектрических материалов, расположенных на гибком корпусе, промежуточный слой, расположенный на нижнем пьезоэлектрическом слое, верхний пьезоэлектрический слой из второго множества пьезоэлектрических материалов, расположенный на промежуточном слое, и гибкую панель отображения, поддерживаемую посредством гибкого корпуса.

[10] Гибкое устройство дополнительно может включать в себя контроллер, сконфигурированный с возможностью прикладывать сигнал возбуждения, по меньшей мере, к одному из первого множества пьезоэлектрических материалов нижнего слоя и второго множества пьезоэлектрических материалов верхнего слоя, причем сигнал возбуждения вызывает деформацию, по меньшей мере, одного из первого множества пьезоэлектрических материалов и второго множества пьезоэлектрических материалов, в ответ на обнаружение события.

[11] Сигнал возбуждения содержит первый сигнал возбуждения и второй сигнал возбуждения, по меньшей мере, одно из первого множества пьезоэлектрических материалов и второго множества пьезоэлектрических материалов содержит первое множество пьезоэлектрических материалов и второе множество пьезоэлектрических материалов, первое множество пьезоэлектрических материалов деформируется в первом направлении в ответ на прикладывание первого сигнала возбуждения к первому множеству пьезоэлектрических материалов нижнего пьезоэлектрического слоя, а второе множество пьезоэлектрических материалов деформируется во втором направлении в ответ на прикладывание второго сигнала возбуждения ко второму множеству пьезоэлектрических материалов верхнего пьезоэлектрического слоя, и первое множество пьезоэлектрических материалов и второе множество пьезоэлектрических материалов поддерживают сбалансированное состояние в ответ на прикладывание первого сигнала возбуждения или второго сигнала возбуждения к первому множеству пьезоэлектрических материалов и второму множеству пьезоэлектрических материалов.

[12] Контроллер разделяет первое множество пьезоэлектрических материалов и второе множество пьезоэлектрических материалов на множество групп на основе местоположений, в которых располагаются первое множество пьезоэлектрических материалов и второе множество пьезоэлектрических материалов, и прикладывает различные из первого сигнала возбуждения и второго сигнала возбуждения к соответствующим группам, чтобы вызывать локальную деформацию сгруппированных первого множества пьезоэлектрических материалов и второго множества пьезоэлектрических материалов.

[13] Гибкое устройство дополнительно может включать в себя дисплей. Первое множество пьезоэлектрических материалов и второе множество пьезоэлектрических материалов располагаются в нижней части дисплея, контроллер избирательно прикладывает первый сигнал возбуждения и второй сигнал возбуждения к первому множеству пьезоэлектрических материалов и второму множеству пьезоэлектрических материалов на основе типа события, и контроллер управляет дисплеем таким образом, чтобы отображать пользовательский интерфейс (UI), соответствующий состоянию деформации гибкого корпуса, соответствующему деформации первого множества пьезоэлектрических материалов и второго множества пьезоэлектрических материалов, на дисплее.

[14] Гибкое устройство дополнительно может включать в себя дисплей, по меньшей мере, один биодатчик, сконфигурированный с возможностью обнаруживать касание пользователя, размещаемый на нижней стороне дисплея. Первое множество пьезоэлектрических материалов и второе множество пьезоэлектрических материалов располагаются между дисплеем и, по меньшей мере, одним биодатчиком, и контроллер избирательно прикладывает первый сигнал возбуждения и второй сигнал возбуждения к первому множеству пьезоэлектрических материалов и второму множеству пьезоэлектрических материалов и управляет дисплеем таким образом, чтобы отображать пользовательский интерфейс на дисплее в ответ на обнаружение касания пользователя, по меньшей мере, посредством одного биодатчика.

[15] Первое множество пьезоэлектрических материалов располагается в направлении по столбцам, и второе множество пьезоэлектрических материалов располагается в направлении по строкам.

[16] Нижний пьезоэлектрический слой, промежуточный слой и верхний пьезоэлектрический слой укладываются последовательно на одной стороне гибкого корпуса.

[17] Величина сигнала возбуждения соответствует степени деформации, по меньшей мере, одного из первого множества пьезоэлектрических материалов и второго множества пьезоэлектрических материалов.

[18] Гибкое устройство дополнительно может включать в себя детектор, сконфигурированный с возможностью обнаруживать электрический сигнал, сформированный из одного или более пьезоэлектрических материалов из первого множества пьезоэлектрических материалов и второго множества пьезоэлектрических материалов в ответ на деформацию гибкого корпуса. Контроллер определяет состояние деформации гибкого корпуса на основе изменения в электрическом сигнале и выполняет операцию управления, соответствующую определенному состоянию деформации.

[19] Согласно аспекту примерного варианта осуществления, предусмотрен способ для работы гибкого устройства, который может включать в себя обнаружение, посредством контроллера гибкого устройства, возникновения события и избирательное прикладывание сигналов возбуждения к первому множеству пьезоэлектрических материалов нижнего пьезоэлектрического слоя, расположенного на гибком корпусе гибкого устройства, и ко второму множеству пьезоэлектрических материалов верхнего пьезоэлектрического слоя, расположенного на первом множестве пьезоэлектрических материалов, на основе события. Сигналы возбуждения вызывают деформацию первого множества пьезоэлектрических материалов и второго множества пьезоэлектрических материалов.

Преимущества изобретения

[20] Согласно аспектам примерных вариантов осуществления, можно деформировать гибкое устройство с использованием множества пьезоэлектрических материалов. Как результат, дополнительно повышается эффективность использования гибкого устройства.

Краткое описание чертежей

[21] Вышеуказанные и другие аспекты должны становиться более очевидными посредством описания конкретных примерных вариантов осуществления со ссылкой на прилагаемые чертежи, на которых:

[22] Фиг. 1 иллюстрирует конструкцию гибкого устройства согласно примерному варианту осуществления;

[23] Фиг. 2 является видом в поперечном сечении гибкого устройства по фиг. 1;

[24] Фиг. 3-5 иллюстрируют структуру одного пьезоэлектрического вещества согласно различным примерным вариантам осуществления;

[25] Фиг. 6 является видом, предоставленным для того, чтобы пояснять изгиб пьезоэлектрического вещества в ответ на первый сигнал возбуждения, прикладываемый к нему;

[26] Фиг. 7 является видом, предоставленным для того, чтобы пояснять изгиб пьезоэлектрического вещества в ответ на второй сигнал возбуждения, прикладываемый к нему;

[27] Фиг. 8 и 9 являются видами, предоставленными для того, чтобы пояснять то, как гибкое устройство изменяет форму в ответ на изгиб пьезоэлектрического вещества;

[28] Фиг. 10 является видом, предоставленным для того, чтобы пояснять ситуацию, когда идентичный сигнал возбуждения прикладывается к верхнему пьезоэлектрическому слою и нижнему пьезоэлектрическому слою пьезоэлектрического вещества;

[29] Фиг. 11 и 12 являются видами, предоставленными для того, чтобы пояснять конструкцию, чтобы прикладывать сигнал возбуждения к пьезоэлектрическому веществу;

[30] Фиг. 13 и 14 являются видами, предоставленными для того, чтобы пояснять пример электродного рисунка, соединенного с множеством пьезоэлектрических веществ;

[31] Фиг. 15 является блок-схемой, предоставленной для того, чтобы пояснять конструкцию гибкого устройства согласно примерному варианту осуществления;

[32] Фиг. 16-20 являются видами, предоставленными для того, чтобы пояснять изменение форм гибкого устройства согласно различным примерным вариантам осуществления;

[33] Фиг. 21 является видом, предоставленным для того, чтобы пояснять работу гибкого устройства, отображающего UI в форме часов;

[34] Фиг. 22 является видом, предоставленным для того, чтобы пояснять структуру пьезоэлектрического вещества, дополнительно включающего в себя биодатчик;

[35] Фиг. 23 является видом, предоставленным для того, чтобы пояснять рисунок компоновки множества пьезоэлектрических веществ;

[36] Фиг. 24 иллюстрирует поперечное сечение гибкого устройства по фиг. 23;

[37] Фиг. 25 иллюстрирует рисунок компоновки множества пьезоэлектрических веществ согласно другому примерному варианту осуществления;

[38] Фиг. 26 иллюстрирует поперечное сечение гибкого устройства по фиг. 25;

[39] Фиг. 27 является блок-схемой последовательности операций, предоставленной для того, чтобы пояснять способ работы для изменения формы гибкого устройства с использованием множества пьезоэлектрических веществ;

[40] Фиг. 28 является блок-схемой, предоставленной для того, чтобы пояснять конструкцию гибкого устройства согласно различным примерным вариантам осуществления;

[41] Фиг. 29 является видом, предоставленным для того, чтобы пояснять структуру программного обеспечения, используемого в гибком устройстве; и

[42] Фиг. 30 является блок-схемой последовательности операций, предоставленной для того, чтобы пояснять способ работы для управления работой гибкого устройства посредством считывания измененной формы гибкого устройства с использованием множества пьезоэлектрических веществ.

Оптимальный режим осуществления изобретения

Режим осуществления изобретения

[44] Далее подробнее описываются конкретные примерные варианты осуществления со ссылкой на прилагаемые чертежи.

[45] В нижеприведенном описании, идентичные ссылки с номерами на чертежах используются для идентичных элементов на различных чертежах. Аспекты, указываемые в описании, такие как детальная конструкция и элементы, предоставляются для того, чтобы помогать в исчерпывающем понимании идеи настоящего изобретения. Соответственно, очевидно, что примерные варианты осуществления могут быть выполнены без этих конкретно заданных аспектов. Кроме того, хорошо известные функции и структуры не описываются подробно, поскольку они могут затруднять понимание изобретения излишними подробностями.

[46] Фиг. 1 является видом, предоставленным для того, чтобы пояснять конструкцию гибкого устройства согласно примерному варианту осуществления. Ссылаясь на фиг. 1, гибкое устройство 1000 включает в себя корпус 100 и множество пьезоэлектрических веществ 110-1~110-n.

[47] Соответствующие компоненты гибкого устройства 100 монтируются на корпусе, который является гибким и может быть деформирован.

[48] Корпус может изготавливаться из пластикового материала (например, полимерной пленки), который может деформироваться в ответ на внешнее давление. Конкретно, корпус 100 может быть сконфигурирован как несущая пленка, покрытая на обеих поверхностях барьерным покрытием. Несущая пленка может формироваться из различной смолы, такой как, например, полиимид (PI), поликарбонат (PC), полиэтилентерефталат (PET), полиэфирсульфон (PES), полиэтиленнафталат (PEN) или волокнит (FRP). Барьерное покрытие может применяться на обеих поверхностях несущей пленки, соответственно. Органическая или неорганическая пленка может использоваться в качестве барьерного покрытия для того, чтобы поддерживать гибкость. Кроме того, корпус 100 может формироваться из различных других материалов, демонстрирующих гибкость, таких как, например, металлическая фольга и т.д.

[49] Множество пьезоэлектрических материалов 110-1~110-n может монтироваться на поверхности или внутри корпуса 100. Конкретно, множество пьезоэлектрических материалов 110-1~110-n может размещаться в различных позициях корпуса 100. Фиг. 1 иллюстрирует пример, в котором множество пьезоэлектрических материалов 110-1~110-n формируются с предварительно определенными интервалами на одной поверхности корпуса 100 в горизонтальных и вертикальных строках, за счет этого формируя матричный рисунок. Хотя пьезоэлектрические материалы 110-1~110-n в примерном варианте осуществления, проиллюстрированном на фиг. 1, проиллюстрированы с постоянными интервалами друг от друга, число, местоположения и рисунок компоновки пьезоэлектрических материалов 110-1~110-n не ограничены каким-либо конкретным примером и могут модифицироваться различными способами в зависимости от варианта применения.

[50] Может размещаться множество пьезоэлектрических материалов 110-1~110-n, при этом размещаются два различных пьезоэлектрических слоя. Для удобства пояснения, пьезоэлектрический слой в верхней части упоминается в качестве "верхнего пьезоэлектрического слоя", в то время как пьезоэлектрический слой под верхним пьезоэлектрическим слоем упоминается в качестве "нижнего пьезоэлектрического слоя".

[51] Гибкое устройство 1000 использует пьезоэлектрический эффект соответствующих пьезоэлектрических материалов 110-1~110-n. Иными словами, когда пользователь прикладывает давление посредством деформации корпуса 100, имеющего пьезоэлектрические материалы 110-1~110-n, соответствующие пьезоэлектрические материалы 110-1~110-n подвергаются диэлектрической поляризации вследствие приложенного давления и за счет этого формируют электрические сигналы. Следовательно, возникает прямой пьезоэлектрический эффект или первый пьезоэлектрический эффект. Наоборот, при приложении электрического поля к соответствующим пьезоэлектрическим материалам 110-1~110-n, форма пьезоэлектрических материалов 110-1~110-n изменяется вследствие электрического поля, и это представляет собой обратный пьезоэлектрический эффект или второй пьезоэлектрический эффект. Эффекты, упомянутые выше, совместно упоминаются в качестве "пьезоэлектрического эффекта". Согласно примерному варианту осуществления, проиллюстрированному на фиг. 1, гибкое устройство 1000 может изменять форму корпуса 100 посредством использования пьезоэлектрического эффекта или, более конкретно, любой комбинации первого пьезоэлектрического эффекта и второго пьезоэлектрического эффекта.

[52] Фиг. 2 иллюстрирует поперечное сечение гибкого устройства 1000 согласно варианту осуществления. Ссылаясь на фиг. 2, гибкое устройство 1000 включает в себя дисплей 120. Дисплей 120 включает в себя первый защитный слой 121, панель 122 отображения, формирователь 123 сигналов управления, блок 124 задней подсветки и подложку 125.

[53] Первый защитный слой 121 защищает панель 122 отображения. Например, первый защитный слой 121 может формироваться из такого материала, как ZrO, CeO2 или ThO2. Первый защитный слой 121 может формироваться в качестве прозрачной пленки, чтобы покрывать всю поверхность панели 122 отображения.

[54] Панель 122 отображения может быть реализована как жидкокристаллический дисплей (ЖК-дисплей), дисплей на органических светоизлучающих диодах (OLED), электрофоретический дисплей (EPD), электрохромный дисплей (ECD) или плазменная панель отображения (PDP). Для реализации в качестве ЖК-дисплея, требуется блок 124 задней подсветки, как проиллюстрировано на фиг. 2. Блок 124 задней подсветки может включать в себя источник света, такой как лампы или светодиод, в компоновке с прямыми краями, чтобы предоставлять заднюю подсветку в направлении панели 122 отображения.

[55] Формирователь 123 сигналов управления возбуждает панель 122 отображения. Конкретно, формирователь 123 сигналов управления прикладывает напряжение возбуждения к множеству пикселов панели 122 отображения. Формирователь 123 сигналов управления может быть реализован как тонкопленочный транзистор (TFT), TFT на основе низкотемпературного поликристаллического кремния (LTPS) или органический TFT (OTFT). Формирователь 123 сигналов управления может принимать различные конфигурации согласно тому, как формируется панель 122 отображения. Например, панель 122 отображения может включать в себя органический излучатель света из множества пиксельных ячеек и электродных слоев, покрывающих обе поверхности органического излучателя света. Формирователь 123 сигналов управления может включать в себя множество транзисторов, соответствующих надлежащим пиксельным ячейкам панели 122 отображения. Соответствующие транзисторы освещают пиксельные ячейки, соединенные с ними, при прикладывании электрического сигнала к ним. Как результат, изображение отображается на панели 122 отображения. Хотя не проиллюстрировано на фиг. 2, дополнительно может предоставляться цветной светофильтр. Соответствующие компоненты иллюстрируются на фиг. 2, изготовлены как органическая структура, содержащая углерод, или тонкая гибкая структура, такая как фольга.

[56] Дисплей 120 альтернативно может быть реализован как электрическая бумага (электронная бумага). Электронная бумага может быть реализована с использованием полусферических закручивающихся шаров, заряжаемых с помощью электростатического заряда, способа электрофоретического отображения с использованием электрофореза и микрокапсулы или способа отображения с использованием холестерического жидкого кристалла.

[57] Подложка 125 поддерживает компоненты. Подложка 125 может представлять собой пластиковую подложку, сформированную из различного материала, включающего в себя, например, полиимид (PI), поликарбонат (PC), полиэтилентерефталат (PET), полиэфирсульфон (PES), полиэтиленнафталат (PEN) или волокнит (FRP).

[58] Множество пьезоэлектрических материалов 110-1~110-n размещается под подложкой 125 в различных конфигурациях.

[59] Пьезоэлектрические материалы 110-1~110-n покрываются посредством второго защитного слоя 126. Второй защитный слой 126 может формироваться из гибкого материала, такого как резина или пластмасса. Хотя примерный вариант осуществления, проиллюстрированный на фиг. 2, показывает второй защитный слой 126, заполняющий зазоры между пьезоэлектрическими материалами 110-1~110-n, в другом примерном варианте осуществления, зазоры между пьезоэлектрическими материалами 110-1~110-n, можно оставляться в качестве пустых пространств.

[60] Пьезоэлектрические материалы 110-1~110-n могут формироваться с различными конфигурациями, такими как, например, униморфная, биморфная или пакетированная. "Униморфная" означает конфигурацию, в которой один пьезоэлектрический слой укладывается на дискообразном металлическом слое. "Биморфная" означает конфигурацию, в которой два пьезоэлектрических слоя укладываются последовательно. "Пакетированная" означает конфигурацию, в которой металлический электродный материал печатается на керамической пластине, после чего сжимаются несколько пластин, и сжатая структура, включающая в себя электрод, спекается.

[61] Фиг. 3 иллюстрирует поперечное сечение униморфного пьезоэлектрического материала. Ссылаясь на фиг. 3, униморфный пьезоэлектрический материал 110 включает в себя металлический слой 112 и пьезоэлектрический слой 111, укладываемый на поверхности металлического слоя 112. При виде сверху металлический слой 112 и пьезоэлектрический слой 111 могут иметь круглую конфигурацию. Пьезоэлектрический слой 111 может формироваться из пьезоэлектрической керамики или пьезоэлектрического полимера. Для пьезоэлектрической керамики, применимыми являются различные материалы, такие как PZT, PbTiO3, BaTiO3.

[62] При прикладывании сигнала возбуждения первой полярности к пьезоэлектрическому слою 111, как проиллюстрировано, краевая область перемещается вверх, в то время как центральная область перемещается вниз. При прикладывании сигнала возбуждения второй полярности, которая является противоположной первой полярности, форма изменяется противоположным способом.

[63] Фиг. 4 показывает поперечное сечение биморфного пьезоэлектрического материала. Ссылаясь на фиг. 4, биморфный пьезоэлектрический материал 110 включает в себя верхний пьезоэлектрический слой 111 и нижний пьезоэлектрический слой 113. Верхний и нижний пьезоэлектрические слои 111, 113 расширяются при прикладывании сигнала возбуждения первой полярности, в то время как они сжимаются при прикладывании сигнала возбуждения второй полярности. Первая полярность может быть положительной (+), а вторая полярность может быть отрицательной (-). Пьезоэлектрический материал 110 изгибается в направлении второго пьезоэлектрического слоя 113, когда расширяется первый пьезоэлектрический слой 111, и сжимается второй пьезоэлектрический слой 113. Наоборот, пьезоэлектрический материал 110 изгибается в направлении первого пьезоэлектрического слоя 111, когда сжимается первый пьезоэлектрический слой 111, и расширяется второй пьезоэлектрический слой 113.

[64] Фиг. 5 иллюстрирует другой пример конструкции биморфного пьезоэлектрического материала. Ссылаясь на фиг. 5, промежуточный слой 114 может предоставляться между верхним и нижним пьезоэлектрическими слоями 111, 113 в пьезоэлектрическом материале 110.

[65] Промежуточный слой 112 может формироваться из гибкого упругого материала. Промежуточный слой 112 может иметь форму прямоугольного параллелепипеда с небольшой толщиной. Верхний пьезоэлектрический слой 111 укладывается на верхней поверхности промежуточного слоя 112, и нижний пьезоэлектрический слой 113 укладывается на нижней поверхности промежуточного слоя 112. Как пояснено выше, верхний и нижний пьезоэлектрические слои 111, 113 могут формироваться из различных пьезоэлектрических материалов. Ссылаясь на фиг. 5, верхний и нижний пьезоэлектрические слои 111, 113 могут быть сконфигурированы с возможностью частично покрывать промежуточный слой 114. Иными словами, промежуточный слой 113 может формироваться таким образом, что он имеет большую длину. Длины соответствующих пьезоэлектрических слоев 111, 113 и промежуточного слоя 114 могут определяться на основе данных, измеренных посредством экспериментов.

[66] Например, частота и смещение согласно длине промежуточного слоя 114 могут быть измерены следующим образом посредством эксперимента.

[67]

Таблица 1
Промежуточный слой (мм) 80 90 100 110 120
Пьезоэлектрический слой (мм) 30 30 30 30 30
Частота (Гц) 40,621 32,389 24,845 20,045 19,875
Смещение (мм) 8,64 12,92 13,78 6,44 6,545

[68]

[69] Таблица 1 перечисляет смещения, измеренные посредством варьирования длины промежуточного слоя 114 до 80, 90, 100, 110, 120 мм в состоянии, в котором каждый конец пьезоэлектрических слоев 111, 113 и промежуточного слоя 114 совмещаются друг с другом, и длины пьезоэлектрических слоев 111, 113 задаются фиксированно равными 30 мм. Согласно таблице 1, измерено максимальное смещение, когда длина промежуточного слоя 114 составляет 100 мм, что меньше максимальной длины (т.е. 120 мм). "Смещение" означает ширину δ другого конца промежуточного слоя 114, деформированного в направлении вверх и вниз.

[70] Смещение может выражаться посредством следующей математической формулы.

[71] Математическая формула 1

[72] δ=k⋅d31⋅V⋅l2⋅/t2,

[73]

[74] где δ обозначает смещение, k является целым числом, d31 является пьезоэлектрической постоянной, V представляет собой приложенное напряжение, l является длиной пьезоэлектрического слоя, и t является толщиной. Согласно математической формуле 1, смещение δ увеличивается пропорционально приложенному напряжению, т.е. сигналу возбуждения.

[75] Хотя фиг. 5 иллюстрирует то, что промежуточный слой 114 больше пьезоэлектрических слоев 111, 113, в другом примерном варианте осуществления длины промежуточного слоя 114 и пьезоэлектрических слоев 111, 113 могут быть одинаковыми. Дополнительно, направление изгиба пьезоэлектрического материала 110 может определяться согласно разности напряжений между первым сигналом возбуждения, прикладываемым к верхнему пьезоэлектрическому слою 111, и вторым сигналом возбуждения, прикладываемым к нижнему пьезоэлектрическому слою 114.

[76] Ниже поясняется способ для регулирования направления деформации пьезоэлектрического материала 110, включающего в себя верхний пьезоэлектрический слой 111, промежуточный слой 114 и нижний пьезоэлектрический слой 113 с одинаковой длиной, со ссылкой на фиг. 6 и 7.

[77] Сначала ссылаясь на фиг. 6, первый сигнал V1 возбуждения прикладывается к верхнему пьезоэлектрическому слою 111, и второй сигнал V2 возбуждения прикладывается к нижнему пьезоэлектрическому слою 113. Верхний пьезоэлектрический слой 111 расширяется, а нижний пьезоэлектрический слой 113 сжимается, когда первый сигнал V1 возбуждения является положительным (+), а второй сигнал V2 возбуждения является отрицательным (-). Как результат, пьезоэлектрический материал 110 изгибается в первом направлении. Пьезоэлектрический материал 110 может изгибаться в первом направлении, даже когда V1 и V2 имеют идентичную полярность, если V1 превышает V2.

[78] Фиг. 7 иллюстрирует ситуацию, когда V1 и V2 прикладываются в направлении, противоположном направлению, проиллюстрированному на фиг. 6. Согласно фиг. 7, пьезоэлектрический материал 110 изгибается во втором направлении, которое является противоположным первому направлению.

[79] Когда изгибается пьезоэлектрический материал 110, как проиллюстрировано на фиг. 6 и 7, также изгибается корпус 110 гибкого устройства 1000, к которому присоединен пьезоэлектрический материал 110.

[80] Фиг. 8 иллюстрирует случай, в котором корпус 100 изгибается в первом направлении, когда пьезоэлектрические материалы 110-1~110-n, смонтированные на корпусе 100, изгибаются в первом направлении, как проиллюстрировано на фиг. 6. С другой стороны фиг. 9 иллюстрирует случай, в котором корпус 100 изгибается во втором направлении, когда пьезоэлектрические материалы 110-1~110-n, смонтированные на корпусе 100, изгибаются во втором направлении, как проиллюстрировано на фиг. 7.

[81] Между тем, верхний и нижний пьезоэлектрические слои 111, 113 имеют идентичный пьезоэлектрический эффект, когда идентичный сигнал возбуждения прикладывается к верхнему и нижнему пьезоэлектрическим слоям 111, 113.

[82] Фиг. 10 иллюстрирует случай, в котором прикладывается идентичный сигнал возбуждения. Ссылаясь на фиг. 10, соответствующие пьезоэлектрические материалы 110 поддерживают сбалансированное состояние и расширяются в длину, когда первый сигнал V1 возбуждения положительной полярности прикладывается к верхнему и нижнему пьезоэлектрическим слоям 111, 113. Соответственно, снижается зазор (g) между соответствующими пьезоэлектрическими материалами, как проиллюстрировано на фиг. 10, за счет этого создавая сжимающий эффект и упрочняя корпус 100 гибкого устройства 1000.

[83] Фиг. 11 и 12 являются видами, предоставленными для того, чтобы пояснять различные примеры структуры для того, чтобы прикладывать сигнал возбуждения биморфного пьезоэлектрического материала.

[84] Ссылаясь на фиг. 11, пьезоэлектрический материал 110 включает в себя верхний пьезоэлектрический слой 111, промежуточный слой 114, нижний пьезоэлектрический слой 113, первый электрод 115-1, расположенный на верхней поверхности верхнего пьезоэлектрического слоя 111, второй электрод 115-2, расположенный между верхним пьезоэлектрическим слоем 111 и промежуточным слоем 114, третий электрод 115-3, расположенный между промежуточным слоем 114 и нижним пьезоэлектрическим слоем 113, и четвертый электрод 115-4, расположенный на нижней поверхности нижнего пьезоэлектрического слоя 113.

[85] Ссылаясь на фиг. 11, электрическое поле положительной полярности формируется на верхнем пьезоэлектрическом слое 111, когда положительное напряжение прикладывается к первому и четвертому электродам 115-1, 115-4, и отрицательное напряжение прикладывается ко второму и третьему электродам 115-2, 115-3. Как результат, пьезоэлектрическое вещество в верхнем пьезоэлектрическом слое 111 поляризуется согласно направлению электрического поля, и увеличивается длина кристаллов. Иными словами, верхний пьезоэлектрический слой 111 расширяется в длину. Наоборот, электрическое поле отрицательной полярности формируется на нижнем пьезоэлектрическом слое 113. Соответственно, нижний пьезоэлектрический слой 113 сжимается в длину. Как результат, пьезоэлектрический материал 110 изгибается в направлении нижнего пьезоэлектрического слоя 113, как проиллюстрировано на фиг. 11.

[86] Фиг. 12 иллюстрирует компоновку, в которой электроды предоставляются на верхней и нижней сторонах пьезоэлектрического материала 110. Ссылаясь на фиг. 12, пьезоэлектрический материал 110 включает в себя верхний пьезоэлектрический слой 111, промежуточный слой 114, нижний пьезоэлектрический слой 113, первый электрод 116-1, расположенный на верхней поверхности верхнего пьезоэлектрического слоя 111, и второй электрод 116-2, расположенный на нижней поверхности нижнего пьезоэлектрического слоя 113. Соответственно, когда положительный сигнал прикладывается к первому электроду 116-1, а отрицательный сигнал прикладывается ко второму электроду 116-2, верхний пьезоэлектрический слой 111 расширяется, а нижний пьезоэлектрический слой 113 сжимается, так что пьезоэлектрический материал 110 изгибается вниз.

[87] Электродный рисунок может предоставляться для того, чтобы прикладывать отдельный сигнал возбуждения к верхнему и нижнему пьезоэлектрическим слоям, соответственно. Электродный рисунок электрически соединяет электроды, соединенные с верхним и нижним пьезоэлектрическими слоями, с внутренней схемой питания гибкого устройства 1000. Электродный рисунок может формироваться в нижней части подложки 125, как пояснено выше, или на втором защитном слое 126. Альтернативно, электродный рисунок может предоставляться в подложке 125, когда множество пьезоэлектрических материалов 110-1~110-n встраивается в подложку 125.

[88] Фиг. 13 иллюстрирует электродный рисунок согласно примерному варианту осуществления. Ссылаясь на фиг. 13, гибкое устройство 1000 включает в себя верхние электродные рисунки 117-1, 117-3, 117-5, соединенные с верхним пьезоэлектрическим слоем 111 каждого из пьезоэлектрических материалов 110-1~110-n, и нижние электродные рисунки 117-2, 117-4, 117-6, соединенные с нижним пьезоэлектрическим слоем 113 каждого из пьезоэлектрических материалов 110-1~110-n.

[89] Верхние электродные рисунки 117-1, 117-3, 117-5 и нижние электродные рисунки 117-2, 117-4, 117-6, в общем, соединяют пьезоэлектрические материалы, размещаемые в идентичных строках. Иными словами, первый верхний электродный рисунок 117-1, в общем, соединяется с нижними пьезоэлектрическими слоями 113 первого, четвертого и седьмого пьезоэлектрических материалов 110-1, 110-4, 110-7, размещаемых в первой строке. Аналогично, пьезоэлектрические материалы, размещаемые в оставшихся строках, также, в общем, соединяются посредством верхних и нижних электродных рисунков, соответствующих строкам пьезоэлектрических материалов.

[90] Верхние и нижние электродные рисунки 117-1, 117-3, 117-5 и 117-2, 117-4, 117-6 соединяются с электродными контактными площадками 118-1~118-6. Соответственно, когда сигнал возбуждения прикладывается к одной электродной контактной площадке, идентичный сигнал возбуждения может предоставляться в пьезоэлектрические материалы, которые, в общем, соединяются с электродным рисунком, соединенным с электродной контактной площадкой, при приеме сигнала возбуждения.

[91] Фиг. 13 иллюстрирует ситуацию, когда пьезоэлектрические материалы реализованы в многослойной структуре. В одном примерном варианте осуществления, верхние электродные рисунки 117-1, 117-3, 117-5 могут формироваться на слое, идентичном слою верхнего пьезоэлектрического слоя 111, и нижние электродные рисунки 117-2, 117-4, 117-6 могут формироваться на слое, идентичном слою нижнего пьезоэлектрического слоя 113. Иными словами, верхние электродные рисунки 117-1, 117-3, 117-5 могут формироваться на более высоком слое относительно нижних электродных рисунков 117-2, 117-4, 117-6, как проиллюстрировано на фиг. 13, на котором верхние электродные рисунки 117-1, 117-3, 117-5 проиллюстрированы с помощью сплошных линий, а нижние электродные рисунки 117-2, 117-4, 117-6, проиллюстрированы с помощью пунктирных линий. В зависимости от варианта применения, проникающий электрод может проходить через слои.

[92] В дополнение к примерному варианту осуществления, проиллюстрированному на фиг. 13, в котором множество пьезоэлектрических материалов размещаются в матричном рисунке и возбуждаются по строкам, возможны альтернативные варианты осуществления. Например, множество пьезоэлектрических материалов может быть возбуждено по столбцам, причем в этом случае дополнительно могут предоставляться верхние электродные рисунки (не проиллюстрированы) для того, чтобы, в общем, соединять верхние пьезоэлектрические слои (например, первый, второй и третий), размещаемые в столбцах, и нижние электродные рисунки (не проиллюстрированы) для того, чтобы, в общем, соединять нижние пьезоэлектрические слои пьезоэлектрических материалов, размещаемых в столбцах. Дополнительная иллюстрация и пояснение в отношении постолбцовых электродных рисунков опускается для краткости, поскольку специалисты в данной области техники должны легко понимать компоновку электродных рисунков на основе построчного верхнего и нижнего электродного рисунка. Хотя фиг. 13 иллюстрирует только три верхних электродных рисунка, в зависимости от вариантов осуществления, число электродных рисунков может варьироваться согласно числу пьезоэлектрических материалов.

[93] Дополнительно, хотя фиг. 13, в частности, иллюстрирует пример, в котором множество пьезоэлектрических материалов в построчной или постолбцовой компоновке равномерно возбуждаются, пьезоэлектрические материалы могут возбуждаться в качестве определенной единицы пьезоэлектрического материала.

[94] Фиг. 14 иллюстрирует электродный рисунок для того, чтобы возбуждать единицу пьезоэлектрического материала согласно варианту осуществления.

[95] Ссылаясь на фиг. 14, множество верхних электродных рисунков 117-1a, 117-1b, 117-1c, 117-3a, 117-3b, 117-3c, 117-5a, 117-5b, 117-5c по отдельности соединяются с вер