Команда запуска виртуального выполнения для диспетчеризации множественных потоков в компьютере
Иллюстрации
Показать всеИзобретение относится к команде запуска виртуального выполнения для диспетчеризации множественных потоков на компьютере. Технический результат – сокращение непроизводительных издержек администрирования гипервизора в многопоточном окружении. Система для диспетчеризации множественных потоков в конфигурации, содержащая ядро, которое включает в себя физические потоки и являющееся эксплуатируемым в режиме единственного потока (ST) и в многопоточном (МТ) режиме, хост-программу, сконфигурированную для запуска виртуального выполнения (запуска VE) для диспетчеризации гостевого логического объекта, который включает в себя гостевую виртуальную машину (VM). Команда запуска VE выполняется ядром и включает в себя получение из заданного командой запуска VE местоположения описания состояния, имеющего гостевое состояние. Выполнение включает в себя выявление на основании гостевого состояния того, включает ли гостевой логический объект в себя единственный гостевой поток или множественные гостевые потоки, и на основании гостевого состояния и при выявлении того, что гостевой логический объект включает в себя единственный гостевой поток или множественные гостевые потоки, запуск гостевых потоков на ядре в режиме МТ или режиме ST. 2 н. и 8 з.п. ф-лы, 14 ил.
Реферат
Уровень техники
Настоящее изобретение относится, в общем, к многопоточности (МТ), и прежде всего к команде запуска виртуального выполнения (запуска VE) для диспетчеризации множественных потоков в компьютере.
Многопоточность (МТ) предоставляет средства для увеличения числа потоков процессора, которые могут работать параллельно в единственном ядре физического процессора без потребности в добавлении дополнительных ядер. В идеальном случае МТ предоставляет эту повышенную производительность при наличии одного или нескольких использующих потоки частей аппаратного оборудования ядра, которые в данный момент времени не используются другим потоком (потоками), работающим на том же ядре. Например, во время латентности, вызванной неудачным обращением в кэш или другой задержкой одного потока, один или несколько других потоков могут использовать ресурсы ядра, увеличивая тем самым использование ресурсов ядра. Несмотря на то, что на практике, такое совместное использование приводит к некоторому взаимному вмешательству между потоками, и требует некоторых дополнительных аппаратных средств, тем не менее, МТ предоставляет способность к выполнению работы каждого потока с помощью меньшего количества аппаратных средств, нежели требуется в том случае, если каждый поток должен работать на его собственном изолированном аппаратном оборудовании ядра. Зачастую, дополнительная выгода может быть получена из МТ, когда совместное использование аппаратных ресурсов потоками также уменьшает полную напряженность в компьютерной системе для предоставления информации, такой как данные из памяти, к двум уникальным ядрам.
Как правило, хотя МТ предоставляет экономию средств на оборудование, добавление другого рабочего потока требует тех же издержек координации на уровне гипервизора, которые требуются для предоставления повышенной производительности с помощью дополнительного отдельного ядра. Во многих случаях, как только достигается конкретное значение масштабного коэффициента, издержки для координирования ресурсов между рабочими потоками, независимо от их выполнения на совместно используемом или отдельном ядре, являются существенными, и могут уменьшить или даже перевесить преимущества, обусловленные способностью к выполнению независимого рабочего потока. Это означает, что, в целом, по мере увеличения числа администрируемых объектов, непроизводительные издержки администрирования возрастают.
Сущность изобретения
Предложены компьютерно-реализуемый способ диспетчеризации множественных потоков в конфигурации, содержащей ядро, активированное для действия в режиме единственного потока (ST) и в многопоточном (МТ) режиме и содержащее физические потоки (по пункту 1 формулы), а также соответствующая система аналогичного назначения (по пункту 10 формулы).
Краткое описание нескольких видов чертежей
Рассматриваемый в качестве вариантов осуществления объект изобретения, прежде всего, указан и недвусмысленно заявлен в пунктах формулы изобретения в конце описания. Упомянутые ранее и другие признаки и преимущества вариантов осуществления являются очевидными из последующего подробного
описания, рассматриваемого совместно с сопровождающими чертежами, на которых:
Фиг. 1 изображает вычислительное окружение, которое может быть реализовано согласно варианту осуществления,
Фиг. 2 изображает физический процессор, который может быть реализован согласно варианту осуществления,
Фиг. 3 изображает вычислительное окружение, которое может быть реализовано согласно варианту осуществления,
Фиг. 4 изображает описание состояния многопоточного (МТ) логического потока согласно варианту осуществления,
Фиг. 5 изображает блок-диаграмму маски (TVM) допустимости потока согласно варианту осуществления,
Фиг. 6 изображает группу описания состояния фиксированного смещения согласно варианту осуществления,
Фиг. 7 изображает группу описания состояния, заданную как список адресов согласно варианту осуществления,
Фиг. 8 изображает группу описания состояния, заданную как связанный список согласно варианту осуществления,
Фиг. 9 изображает группу описания состояния, заданную как циклический список или кольцо согласно варианту осуществления,
Фиг. 10 изображает процесс диспетчеризации ядра согласно варианту осуществления,
Фиг. 11 изображает скоординированный выход из виртуального выполнения согласно варианту осуществления,
Фиг. 12 изображает блок-схему области управления системы согласно варианту осуществления,
Фиг. 13 изображает последовательность операций для координирования между многопоточными ядрами согласно варианту осуществления, и
Фиг. 14 изображает машиночитаемый носитель согласно варианту осуществления.
Подробное описание
Описанные в настоящем документе варианты осуществления могут быть использованы для сокращения непроизводительных издержек администрирования гипервизора в многопоточном (МТ) окружении. Как описано в настоящем документе, администрирование множественными потоками может быть разделено между гипервизором, администрирующим множественные потоки как единственное логическое ядро, и машиной, администрирующей взаимодействия между множественными потоками по мере получения ими доступа к ресурсам физического ядра. Это может привести к существенному сокращению многопоточных (МТ) непроизводительных издержек за счет позволения гипервизору администрировать большую часть инфраструктурных ресурсов гипервизора на базе логического ядра, и позволения машине администрировать другие ресурсы на более дробной базе потока. Вариант осуществления включает в себя команду диспетчеризации ядра, которая может быть выполнена работающим на единственном потоке (ST) гипервизором. Выполнение команды диспетчеризации ядра, упомянутой в настоящем документе как «команда запуска VE с заданной МТ», может вызывать множественные гостевые логические потоки, которые составляют, полностью или частично, гостевую виртуальную машину (VM), которая подлежит диспетчеризации на единственном физическом ядре. В варианте осуществления используемая гипервизором для диспетчеризации гостя команда задает однопоточность или многопоточность подлежащего диспетчеризации гостя.
Описанные в настоящем документе варианты осуществления могут включать в себя структуры, такие как маска допустимости потока для указания на то, какие логические потоки в пределах гостевого логического ядра на текущий момент являются допустимыми, и группа описания состояния, включающая в себя кольцо описания состояния и служащая для управления диспетчеризацией многопоточного логического ядра. Кроме того, первичные и вторичные описания состояния и типы полей (например, первичное, общее для ядра, специфичное для потока) могут быть реализованы для эффективного администрирования ресурсов компьютера при диспетчеризации логического ядра с множественными потоками. Кроме того, для упрощения администрирования функций гипервизора и логического ядра может быть предоставлен скоординированный выход, при котором все потоки в пределах логического ядра одновременно выходят из виртуального выполнения.
Варианты осуществления могут включать в себя поддерживаемую гипервизором управляющую структуру, называемую в настоящем документе ориентированной на ядро областью (COSCA) управления системы. COSCA используется как гипервизором, так и машиной для администрирования конкретными функциями, которые могут затрагивать множественные логические процессоры в гостевой конфигурации. Вариант осуществления COSCA реализуется в виде древовидной структуры, где листья представляют логические ядра, а каждый лист содержит соответствующий потокам соответствующего ядра список. Структура COSCA может содержать поля (например, адреса описания состояния), которые позволяют гипервизору с легкостью получать доступ к описаниям состояния для всех потоков в конкретном ядре.
При рассмотрении в настоящем документе, термин «поток» относится к единственному потоку команд и его связанному состоянию. Таким образом, на уровне архитектуры каждый логический поток представляет независимый ЦП или процессор. На аппаратном уровне физический поток является выполнением связанного с логическим потоком потока команд, объединенным с поддержанием того гостевого состояния, при котором данный поток диспетчеризуется. Именно поддержание данного состояния потока посредством машины позволяет уменьшить объем администрирования, требуемого на уровне гипервизора. Общее число доступных для использования логическими ядрами логических потоков ограничивается общим числом доступных для физических ядер физических потоков.
При рассмотрении в настоящем документе, термин «физическое ядро» относится к аппаратному процессору, выполняющему один или несколько независимых потоков команд или потоков исполнения, но совместно использующему несколько базовых ресурсов, таких как устройства выполнения и кэши низкого уровня. Такое совместное использование может быть осуществлено многими способами, включая сюда использование каждым потоком тех же аппаратных ресурсов в независимые моменты времени или логическое совместное использование ресурсов каждым физическим входом, тегированным идентификатором потока. Надлежащий синергетический эффект взаимодействия между потоками, например одним потоком, который часто нуждается в ресурсе А, но только изредка в ресурсе В, и другим потоком, который обычно использует ресурс В, но не ресурс А, может повысить эффективность такого совместного использования. При рассмотрении в настоящем документе, термин «машина» относится к аппаратным средствам, входящим в состав физического ядра, а также к милликоду и другому встроенному программному обеспечению, используемому для поддержки физического ядра.
При рассмотрении в настоящем документе, термины «гостевая VM» и «гость» используются попеременно для обращения к единственной гостевой конфигурации, которая может включать в себя единственный ЦП или множественные ЦП. При рассмотрении в настоящем документе, термин «логическое ядро» относится к группе логических гостевых потоков или ЦП, заданных для совместной диспетчеризации в качестве части команды запуска VE, где задается МТ. Гостевая VM может быть образована из единственного логического ядра (либо ST, либо МТ) или из множественных логических ядер (каждое из которых также может быть представлено ST или МТ).
При рассмотрении в настоящем документе, термин «программное обеспечение» относится или к программе гипервизора (например, PR/SM или zVM) или к гостевой операционной системе или к прикладной программе, которая диспетчеризирется в результате команды запуска VE.
При рассмотрении в настоящем документе, термины «гипервизор» и «хост» относятся к программе, администрирующей системные ресурсы и диспетчеризирующей гостевой логический процессор (процессоры) для выполнения на физическом оборудовании.
Операнд команды запуска VE, используемый для диспетчеризации гостя, указывает на описание состояния или на группу описаний состояния, которая задает состояние данного гостевого процессора или ядра. Описание состояния как таковое имеет указатели на «вспомогательные блоки», которые могут быть рассмотрены как расширение описания состояния, и включают в себя дополнительную информацию, которая, кроме того, задает состояние данного гостевого ядра или процессора. При рассмотрении в настоящем документе, термин «описание состояния» относится не только к самому описанию состояния, но также и к соответствующим вспомогательным блокам. Ориентированная на ядро область (COSCA) управления системы, один из таких вспомогательных блоков изображен на фиг. 12.
Теперь, со ссылкой на фиг. 1, в общем, показано вычислительное окружение 100, которое может быть реализовано посредством образцового варианта осуществления. Вычислительное окружение 100 может базироваться, например, на z/Архитектуре, предлагаемой International Business Machines Corporation, Армонк, Нью-Йорк, z/Архитектура описана в публикации IBM® под названием «z/Архитектура, принципы работы» (z/Architecture Principles of Operation), публикация патента IBM №SA22-7832-09, август 2012. В одном примере вычислительное окружение на основании zl Архитектуры включает в себя eServer zSeries, предлагаемый International Business Machines Corporation, Армонк, Нью-Йорк.
В качестве примера, вычислительное окружение 100 может включать в себя процессорный комплекс 102, присоединенный к контроллеру 120 системы. Процессорный комплекс 102 может включать в себя, например, один или несколько разделов 104 (например, логических разделов LP1-LPn), одно или несколько физических ядер 106 (например, Core 1, Core m), а также гипервизор 108 уровня 0 (например, администратор логического раздела), каждый из которых элементов описан ниже.
Каждый логический раздел 104 может быть способным к функционированию в качестве отдельной системы. Это означает, что каждый логический раздел 104 может быть при желании независимо сброшен, первоначально загружен операционной системой 110, и может работать с различными программами. Операционная система 110 или прикладная программа, работающая в логическом разделе 104, представляется как имеющая доступ к полной системе, но в действительности, только ее часть является доступной. Комбинация аппаратных средств и лицензированного внутреннего кода (обычно называемого микрокодом или милликодом или встроенным программным обеспечением) предохраняет программу в одном логическом разделе 104 от вмешательства со стороны программы в другом логическом разделе 104. Это позволяет нескольким различным логическим разделам 104 действовать на единственном или множественных физических ядрах 106 способом с квантованием времени. В варианте осуществления каждое физическое ядро включает в себя один или несколько центральных процессоров (также называемых в настоящем документе «физическими потоками»). В показанном на фиг. 1 примере каждый логический раздел 104 имеет резидентную операционную систему 110, которая может отличаться для одного или нескольких логических разделов 104. Операционная система 110, выполняющаяся в каждом логическом разделе 104, является примером гостевой конфигурации или виртуальной машины. В одном варианте осуществления операционная система 110 является z/OS® операционной системой, предлагаемой International Business Machines Corporation, Армонк, Нью-Йорк.
Физические ядра 106 включают в себя физические процессорные ресурсы, которые выделены для логических разделов 104. Логический раздел 104 может включать в себя один или несколько логических процессоров, каждый из которых представляет, полностью или частично, выделенные разделу 104 физические процессорные ресурсы. Физические ядра 106 могут быть либо выделены разделу таким образом, что физические процессорные ресурсы лежащего в основе ядра (ядер) 106 резервируются для данного раздела 104, либо быть используемыми совместно с логическими ядрами другого раздела 104 таким образом, что физические процессорные ресурсы лежащего в основе ядра (ядер) 106 являются потенциально доступными другому разделу.
В варианте осуществления, показанном на фиг. 1, логическими разделами 104 управляет гипервизор 108 уровня 0, который реализован посредством встроенного программного обеспечения, работающего на физических ядрах 106. Каждый из числа логических разделов 104 и гипервизора 108 содержит одну или несколько программ, находящихся в соответствующих, связанных с физическими ядрами 106 участках центрального запоминающего устройства (памяти). Один пример гипервизора 108 представлен администратором ресурсов процессора/системы Processor Resource/Systems Manager (PR/SM™), предлагаемым International Business Machines Corporation, Армонк, Нью-Йорк.
Контроллер 120 системы, который на фиг. 1 соединен с центральным вычислительным комплексом 102, может включать в себя централизованную логику, ответственную за арбитраж между различными выдающими запросы процессорами. Например, когда контроллер 120 системы получает запрос на доступ к памяти, он выявляет, позволен ли доступ к данному местоположению памяти и, если позволен, предоставляет содержимое данного местоположения памяти центральному вычислительному комплексу 102 при поддержании непротиворечивости памяти между процессорами в пределах этого комплекса.
Теперь, со ссылкой на фиг. 2 показана, в общем, согласно варианту осуществления блок-диаграмма устройства 200 обработки данных для реализации машины или физического ядра, такого как физическое ядро 106 на фиг. 1. Устройство обработки данных 200 может включать в себя одно физическое ядро из нескольких физических ядер в многопроцессорном окружении. Показанное на фиг. 2 устройство 200 обработки данных включает в себя интерфейсное устройство 202 контроллера системы, которое может соединять устройство 200 обработки данных с другими ядрами и периферийными устройствами. Интерфейсное устройство 202 контроллера системы может также соединять Dcache 204, который считывает и сохраняет значения данных, Icache 208, который считывает программные команды, а также интерфейсное устройство 206 кэша с внешней памятью, процессорами и другими периферийными устройствами.
Icache 208 может предоставлять загрузку потоков команд совместно с устройством 210 выборки команд (IFU), которое выбирает команды с упреждением и может включать в себя инструменты упреждающей загрузки и предсказания ветвлений. Выбранные команды могут быть предоставлены устройству 212 декодирования команд (IDU) для декодирования в данные для обработки команд.
IDU 212 может предоставлять команды выпускающему устройству 214, которое может управлять выпуском команд к различным устройствам выполнения, таким как одно или несколько арифметических устройств 216 для выполнения операций с фиксированной точкой (FXU) для выполнения общих операций, а также одному или нескольким устройствам 218 для операций с плавающей точкой (FPU) для выполнения операций с плавающей точкой. Устройства FPU 218 могут включать в себя двоичное устройство 220 для операций с плавающей точкой (BFU), десятичное устройство 222 для операций с плавающей точкой (DFU) или любое другое устройство для операций с плавающей точкой. Выпускающее устройство 214 может также быть соединено с одним или несколькими устройствами 228 загрузки и хранения (LSU) через один или несколько конвейеров LSU. Множественные конвейеры LSU обрабатываются как устройства выполнения для выполнения загрузок и сохранений и генерации адресов для ответвлений. Как LSU 228, так и IFU 210 могут использовать ассоциативный буфер 230 трансляции (TLB) для предоставления буферизованных трансляций для адресов операндов и команд.
FXU 216 и FPU 218 соединены с различными ресурсами, такими как регистры 224 общего назначения (GPR) и регистры 226 с плавающей точкой (FPR). GPR 224 и FPR 226 предоставляют память значений данных для значений данных, загруженных и сохраненных от Dcache 204 посредством LSU 228.
Теперь, со ссылкой на фиг. 3, в общем, показано вычислительное окружение 300, которое может быть реализовано посредством варианта осуществления. Показанное на фиг. 3 вычислительное окружение 300 является подобным вычислительному окружению 100, показанному на фиг. 1, с добавлением гипервизора 302 уровня 1, который производит выполнение в логическом разделе 104, промаркированном LP2. Как показано на фиг. 3, гипервизор 302 уровня 1 может предоставлять те же функции гипервизора, как описанные ранее относительно гипервизора 108 (также называемого в настоящем документе «гипервизором уровня 0»), такие как прозрачное временное квантование ресурсов между множественными операционными системами (например, OS1 314, OS2 312 и OS3 310, работающими в виртуальных машинах VM1 304, VM2 306 и VM3 308), а также изоляция таких операционных систем друг от друга в пределах логического раздела 104, промаркированного LP2. Показанный на фиг. 3 вариант осуществления включает в себя, в качестве примера, три виртуальные машины, а другие варианты осуществления могут включать в себя большее или меньшее число виртуальных машин, в зависимости от требований к приложению.
Как показано на фиг. 3, промаркированный LP1 логический раздел 104 имеет резидентную операционную систему 110, а промаркированный LP2 логический раздел 104 выполняет гипервизор 302 уровня 1, который, в свою очередь, создает виртуальные машины 304, 306, 308, каждая из которых выполняет свои собственные резидентные операционные системы 314, 312, 310. Любой из логических разделов 104 может выполнять гипервизор 302 уровня 1. В варианте осуществления гипервизор 302 уровня 1 является z/VM гипервизором, предлагаемым International Business Machines Corporation, Армонк, Нью-Йорк. Резидентные операционные системы, работающие в различных логических разделах, могут отличаться друг от друга и, при выполнении под гипервизором 302 уровня 1, резидентные операционные системы (например, операционные системы 314, 312, 310) в пределах единственного раздела 104 (например, LP2) также могут отличаться. В варианте осуществления операционная система 110 в промаркированном LP1 логическом разделе 104 является операционной системой z/OS, предлагаемой International Business Machines Corporation, Армонк, Нью-Йорк. В варианте осуществления операционные системы 310 и 312 представлены Linux, а операционная система 314 представлена z/OS.
Когда гипервизор 302 уровня 1 работает в логическом разделе 104, он может предоставлять ту же виртуализацию ресурсов, которую предоставляет гипервизор уровня 0, такой как гипервизор 108, к логическим разделам 104 к операционным системам 310, 312, 314, работающим в виртуальных машинах 308, 306, 304. Как и на первом уровне, каждая виртуальная машина может включать в себя множественные виртуальные процессоры.
Физические ядра 106 включают в себя физические процессорные ресурсы, которые, как описано для фиг. 1, могут быть выделены логическим разделам 104 LP1, LP2, LP3 и LP4 или разделены между ними. Когда логический раздел LP2 диспетчеризуется на одно или несколько физических ядер, гипервизор 302 уровня 1 может в этом случае прозрачно разделить эти ресурсы между его виртуальными машинами VM1 304, VM2 306 и VM3 308. В одном варианте осуществления гипервизор 108 уровня 0 использует команду запуска VE с заданной МТ для диспетчеризации многопоточного гипервизора 302 уровня 1, который в этом случае использует команду запуска VE с заданной ST для диспетчеризации однопоточных виртуальных машин VM1 304, VM2 306 и VM3 308. В другом варианте осуществления гипервизор 108 уровня 0 использует команду запуска VE с заданной ST для диспетчеризации однопоточного гипервизора 302 уровня 1, который в этом случае использует команду запуска VE с заданной МТ для диспетчеризации многопоточных виртуальных машин VM1 304, VM2 306 и VM3 308. В другом варианте осуществления как гипервизор 302 уровня 1, так и все его гостевые VM 304, 306, 308 являются однопоточными.
В гостевом многопроцессорном (MP) окружении гипервизор может поддерживать управляющую структуру, известную как область управления системы (SCA), использующуюся как гипервизором, так и машиной для администрирования определенных функций, которые могут затрагивать множественные логические процессоры в гостевой конфигурации. Для всех гостевых процессоров в конфигурации или виртуальной машины в описании состояния задают одинаковый адрес (SCAO) начала SCA. В варианте осуществления эта область может включать в себя общую область (используемую, в целом, для координирования гостевых функции по всей конфигурации) и отдельные, специфичные для процессора записи. Общая область, например, содержит информацию относительно того, какие виртуальные процессоры в пределах гостевой конфигурации являются допустимыми. Отдельная, специфичная для процессора область в пределах SCA может, например, использоваться для интерпретирования или эмулирования межпроцессорных гостевых функций, таких как межпроцессорное прерывание, или для предоставления легкодоступных указателей на соответствующее описание состояния каждого логического процессора. В варианте осуществления используемая для ST SCA расширяется для использования МТ путем добавления дополнительных, специфичных для потока записей для каждого потенциального гостевого потока.
Вариант осуществления диспетчеризации ядра может позволять работающему на единственном потоке гипервизору диспетчеризовать многопоточного гостя на его ядре с помощью модификации команды запуска VE, иногда называемой командой запуска многопоточного виртуального выполнения (запуска MVE).
Каждый поток в многопоточном госте может представлять гостевое логическое центральное вычислительное устройство (ЦП) или гостевой поток. Команда запуска VE может активировать многопоточное (МТ) гостевое выполнение на физическом ядре посредством поля управления в описании состояния. Операнд команды запуска VE при использовании для диспетчеризации ядра может задавать либо единственное описание состояния, содержащее состояние всех гостевых потоков, либо группу описаний состояния, каждое из которых, например, представляет состояние единственного гостевого потока. В варианте осуществления логическое ядро включает в себя эту группу описаний состояния. Диспетчеризации ядра требует записи виртуального выполнения для загрузки состояния логического ядра и каждого из его гостевых логических потоков в поток физического ядра и его потоки. Эти потоки могут быть представлены потоками команд, работающими независимо друг от друга. В различных вариантах осуществления группа описаний состояния может быть задана многими способами, включая сюда фиксированные смещения друг от друга, список адресов описания состояния или описаний состояния, или циклический список (кольцо) описаний состояния, который относится к ядру, причем каждое описание состояния в этой группе представляет отдельный гостевой поток. Такие методы обеспечивают легкий доступ со стороны гипервизора и машины к другим потокам в логическом ядре, а также обеспечивают поддержание в единственном месте относящихся ко всему логическому ядру полей.
Гостевая OS может использовать многопоточность путем простого выпуска команды задания МТ, обеспечивающей многопоточность в госте. Это позволяет гостевой OS обрабатывать эти новые потоки как дополнительные независимые ЦП и администрировать ими как в отсутствие многопоточности. Кроме того, гостевая OS может использовать эти потоки способом, усиливающим то обстоятельство, что они совместно используют ядро, или оно может принудить их к работе более взаимозависимым способом. Все это является прозрачным для гипервизора и машины. Гипервизор в этом случае предоставляет эти дополнительные потоки гостевой OSB в то время как сам гипервизор продолжает работать на единственном потоке на ядро и управлять большой частью гостевого МТ окружения на базе ядра. Активирование OS многопоточности описано более подробно в патентной заявке США под номером 14/226 895 и под названием «Сохранение контекста потока в многопоточной компьютерной системе» (Thread Context Preservation in a Multithreading Computer System).
В варианте осуществления диспетчеризации ядра описание состояния, заданное как операнд команды запуска VE с заданной МТ, является «первичным» описанием состояния, и связанный гостевой логический поток является «первичным» потоком. Другие описания состояния в группе в настоящем документе называют «вторичными» описаниями состояния и, если применяются, относятся к вторичным логическим потокам. Когда группа описания состояния реализована или как список или как кольцо, в первичном описании состояния может наличествовать поле описания (NSD) следующего состояния, указывающего на первое вторичное описание состояния, которое, в свою очередь, либо 1) указывает на следующее вторичное описание состояния в группе, либо 2) содержит значение для указания на конец группы. Значение NSD в описании состояния для последнего в списке может быть представлено адресом первичного описания состояния, в котором случае список образует кольцо описаний состояния.
В реализации без МТ гипервизор диспетчеризует одновременно на данном физическом ядре один гостевой логический процессор (также называемый в настоящем документе «логическим потоком»). Если конкретный логический процессор находится в недопустимом состоянии, например, в остановленном состоянии или в деактивированном ожидании, то гипервизор не диспетчеризует этого гостя. В окружении МТ диспетчеризация ядра позволяет гипервизору одновременно диспетчеризовать на ядре множественные гостевые потоки. С целью приспособления к возможности того, что один или несколько из потоков в группе описаний состояния данного логического ядра являются недопустимыми, вариант осуществления использует в первичном описании состояния маску (TVM) допустимости потока, каждый бит которой указывает на допустимость, с точки зрения программного обеспечения, логического потока в соответствующем описании состояния в группе.
В другом варианте осуществления только допустимые потоки включаются в состав группы описаний состояния, и какой-либо указатель допустимости не является необходимым. Вариант осуществления, включающий в себя недопустимые логические потоки в группе описаний состояния, позволяет гипервизору поддерживать состояния, связанные с этими недопустимыми потоками, и эти потоки могут вновь стать допустимыми в будущем. Машина инициализирует и выполняет только те потоки, которые имеют допустимое состояние. Гипервизор диспетчеризует гостевое логическое ядро только в том случае, если по меньшей мере один поток в группе является допустимым.
Теперь, со ссылкой на фиг. 4, в общем, показано согласно варианту осуществления описание состояния логического потока, включающего в себя большую часть архитектурно спроектированного состояния гостя.
В этом контексте термин «описание состояния» включает в себя не только само описание состояния, но также и вспомогательные блоки, указатели которых находятся в описании состояния, и которые действуют в качестве расширения. Как показано на фиг. 4, описание 400 состояния может включать в себя гостевые общие регистры (GR) 402, регистры 404 доступа (AR), регистры 406 управления (CR), гостевые таймеры 408 (включающие в себя компаратор часов и таймер ЦП), гостевой регистр 410 префикса, номер 412 (VCN) виртуального ЦП, слово (PSW) состояния программы и адрес 414 (IA) команды. Кроме того, оно может включать в себя управляющую информацию, такую как биты 420 управления (IC) перехватом, для указания на то, требуют ли конкретные команды (например, загрузки слова (LPSW) состояния программы и объявления недопустимой записи (IPTE) таблицы страниц) перехвата к хосту, или требуется очистка гостевого ассоциативного буфера (TLB) трансляции перед началом выполнения гостевой команды. Описание состояния также содержит описание 422 следующего состояния (NSD), которое используется для задания списков и колец описаний состояния, как описано на фиг. 6-9. Первичное описание состояния также включает в себя TVM 430, как описано на фиг. 5, и номер логического раздела (LPN) 432.
Номер (VCN) 412 виртуального ЦП эквивалентен номеру ЦП и потенциально приспособлен для включения в себя номера потока в режиме МТ, как описано в патентной заявке США под номером 14/226 947 и под названием «Расширение и сокращение адреса в многопоточной компьютерной системе» (Address Expansion and Contraction in a Multithreading Computer System).
Потоки в ядре могут быть идентифицированы посредством двоичной идентификации (TID) потока. Для краткости, на описываемых ниже чертежах поток х зачастую обозначается термином TIDx, что в данном случае, имеет значение «поток с TID х».
Теперь, со ссылкой на фиг. 5 показана, в общем, согласно варианту осуществления блок-диаграмма маски (TVM) 520 допустимости потока. Как показано на фиг. 5, бит 0 530 в составе TVM 520 представляет допустимость логического потока 0 в группе описаний состояния, бит 1 531 представляет допустимость потока 1, бит 2 532 представляет допустимость потока 2, бит 3 533 представляет допустимость потока 3 и т.д., вплоть до бита n 537, представляющего допустимость потока n, последнего логического потока в группе описаний состояния, связанной с этим ядром. TVM может находиться в первичном описании состояния для группы.
Теперь, со ссылкой на фиг. 6 показана, в общем, согласно варианту осуществления структура группы описаний состояния фиксированного смещения. Как показано на фиг. 6, группы описаний состояния задаются на фиксированных смещениях (N) друг от друга. В этом случае, операнд команды 602 запуска VE указывает на первичное описание 603 состояния для логического потока 0. Вторичное описание 605 состояния для логического потока х располагается с фиксированным смещении в N байтов после первичного описания состояния, и вторичное описание 607 состояния для логического потока у располагается на N байтов позади вторичного описания состояния для потока х. Такое расположение сохраняется для всех потоков в группе. Число потоков в группе может быть задано многими способами, включая сюда число отсчетов в первичном описании состояния или концевой маркер после последнего адреса описания состояния в списке.
Фиг. 6 может представлять два случая, в первом случае группа включает в себя описания состояния для всех логических потоков в группе, независимо от их допустимости или недопустимости, и во втором случае только допустимые описания состояния включаются в состав группы. В первом случае описание 605 состояния для потока х представляет состояние потока 1, а описание состояния 607 для потока у представляет состояние потока 2. TVM 620, которая является необходимой только в этом первом случае, представляет допустимость каждого из этих логических потоков. Во втором случае описание 605 состояния для потока х представляет состояние первого допустимого логического вторичного потока, а описание 607 состояния для логического потока у представляет состояние второго допустимого вторичного потока. Например, если поток 1 не является допустимым, а потоки 2 и 3 оба являются допустимыми, то поток х по описанию 605 представляет поток 2, а поток у по описанию 607 представляет поток 3.
В составе группы отсутствует какое-либо описание состояния для потока 1, поскольку он является недопустимым. Те же два случая могут также относиться к вариантам осуществления, показанным на фиг. 7-9 ниже, однако описан и изображен только случай 1.
Теперь, со ссылкой на фиг. 7 показана, в общем, согласно варианту осуществления структура группы описаний состояния, задаваемой в виде списка. В этом случае операнд команды 702 запуска VE представляет список адресов описания состояния с первой записью 704 в списке, указывающей на первичное описание 705 состояния для потока 0, второй записью 706 в списке, указывающей на вторичное описание 707 состояния для потока 1, третьей записью 708 в списке, указывающей на вторичное описание 709 состояния для потока 2, и так далее, продолжаясь для всех потоков в группе. TVM 720 представляет допустимость каждого из этих потоков.
Теперь, со ссылкой на фиг. 8 показана, в общем, согласно варианту осуществления структура группы описаний состояния, задаваемой в виде связанного списка. В этом случае, как в случае, изображенном на фиг. 6, операнд команды 802 запуска VE указывает на первичное описание 803 состояния для потока 0, но, в отличие от примера на фиг. 6, указатель 804 для вторичного описания 805 состояния для потока 1 предоставляется в виде поля 804 следующего описания (NSD) состояния в первичном описании состояния. В свою очередь, указатель 806 для вторичного описания 807 состояния для потока 2 предоставляется как NSD 806 во вторичном описании состояния для потока 1. Это продолжается для всех потоков в группе с NSD 810 в описании 809 состояния для последнего n потока, которое задают нолями или некоторым другим уникальным значением, указывающим на конец списка. Предоставляемая в первичном описании 803 состояния TVM 820 представляет допустимость каждого из этих потоков.
Теперь, со ссылкой на фиг. 9 показана, в общем, согласно варианту осуществления структура группы описания состояния, задаваемой в виде циклического списка или кольца. Этот случай является идентичным случаю показанному на фиг. 8 случаю в том отношении, что операнд команды 902 запуска VE указывает на первичное описание 903 состояния для потока 0, которое содержит NSD 904 для вторичного описания 905 состояния для потока 1, которое содержит NSD 906 для вторичного описания 907 состояния для потока 2, и это продолжается для всех потоков вплоть до последнего потока n. В варианте осуществления, показанном на фиг. 9, о