Диагностика, основанная на лазерной системе зажигания

Иллюстрации

Показать все

Изобретение относится способам и системам для использования лазерной системы зажигания для выполнения визуального контроля двигателя и диагностирования различных компонентов и условий цилиндра на основании позиционных измерений в двигателе. Лазерные импульсы могут испускаться на более низком уровне мощности во время такта впуска и/или выпуска, чтобы освещать внутреннюю часть цилиндра, в то время как фотодетектор захватывает изображения внутренней части цилиндра. Дополнительно, лазерные импульсы могут испускаться на более высоком уровне мощности, чтобы инициировать сгорание в цилиндре, наряду с тем, что фотодетектор захватывает изображения внутренней части цилиндра с использованием света, сформированного во время сгорания в цилиндре. Техническим результатом является сокращение времени и затрат, ассоциативно связанных с визуальным контролем двигателя, не снижая тщательности контроля. 3 н. и 16 з.п. ф-лы, 14 ил.

Реферат

ОБЛАСТЬ ТЕХНИКИ

Настоящая заявка относится к способам и системам для диагностирования двигателя с использованием компонентов лазерной системы зажигания.

УРОВЕНЬ ТЕХНИКИ И СУЩНОСТЬ ИЗОБРЕТЕНИЯ

Компоненты системы двигателя (такие как цилиндры, клапаны, поршни, форсунки и т.д.) могут периодически диагностироваться на повреждение, понесенное во время работы двигателя. Компоненты также могут диагностироваться для идентификации ухудшенных функциональных возможностей (например, неправильного потока, утечки и т.д.). Диагностика может включать в себя визуальный контроль компонентов на повреждение задирами, такой как снятие свечи зажигания и получение обзора отверстия цилиндра для осмотра внутренности цилиндра. В еще одном подходе, описанном Ялином и другими в US 2006/0037572, свет от события искрового зажигания в цилиндре и/или пламени сгорания используется для диагностирования на присутствие скоплений и загрязнений в цилиндре.

Изобретатели в материалах настоящей заявки осознали, что обсужденные выше подходы могут добавлять большое время, затраты и сложность к диагностике. В частности, большая часть вышеприведенных подходов требует квалифицированных технических специалистов, сложных средств диагностики, специализированного лабораторного оборудования и отнимающей много времени разборки двигателя. Ввиду этих проблем, изобретатели осознали, что, в системах двигателя, сконфигурированных возможностями лазерного зажигания, компоненты лазерной системы зажигания могут преимущественно использоваться для диагностирования различных компонентов системы двигателя. В одном из примеров, двигатель может диагностироваться посредством способа, содержащего: инициацию сгорания в цилиндре посредством приведения в действие лазерного устройства зажигания; формирование изображения внутри цилиндра после приведения в действие лазерного устройства зажигания с использованием света, вырабатываемого с помощью сгорания в цилиндре; и отображение сформированного изображения оператору (например, специалисту по обслуживанию) на устройстве отображения транспортного средства. Оператор затем может указывать ухудшение характеристик компонента цилиндра (например, днища поршня, линзы фотодетектора и т.д.) или характеристики сгорания в цилиндре (например, распространения пламени, зарождения пламени и т.д.) на основании отображенного изображения. Таким образом, диагностика цилиндра двигателя может ускоряться и упрощаться, не делая необходимой разборку двигателя.

Например, оптика лазерной системы зажигания может использоваться для диагностирования цилиндра во время события сгорания. В частности, световые импульсы высокой мощности могут испускаться лазерным устройством зажигания в цилиндр (например, во время такта сжатия), чтобы инициировать сгорание в цилиндре. Изображения внутри цилиндра, в таком случае, могут захватываться системой фотодетектирования, присоединенной к головке цилиндра, с использованием света, сформированного от события сгорания в цилиндре. Система фотодетектирования может включать в себя камеру (такую как ПЗС-камера) и линзу (такой как линза типа «рыбий глаз») для детектирования лазерных импульсов. В одном из примеров, световые импульсы могут испускаться в инфракрасном (ИК, IR) спектре лазерным устройством зажигания и детектироваться в ИК-спектре камерой. Изображения состояния внутренней части цилиндра во время сгорания, в таком случае, могут формироваться на основании детектированных импульсов. Изображения, например, могут быть указывающими состояние днища поршня, конфигурацию распространения пламени, место зарождения пламени, конфигурацию зарождения пламени, временные характеристики пика сгорания и т.д., и могут использоваться для логического вывода ухудшения характеристик. Изображения могут передаваться (например, беспроводным образом) в пределах системы двигателя и отображаться поставщику услуг (например, механику или оператору транспортного средства) на дисплее центральной консоли транспортного средства. В дополнение, опорное изображение диагностируемого компонента/состояния цилиндра может извлекаться из памяти контроллера и отображаться механику для сравнительного анализа.

Например, когда сформированное изображение является указывающим состояние днища поршня, отображаемое опорное изображение может быть указывающим ожидаемое состояние днища поршня. Расхождение между изображениями затем может использоваться для диагностирования днища поршня (например, идентификации оплавления днища поршня). В качестве еще одного примера, когда сформированное изображение является указывающим место зарождения пламени, отображаемое опорное изображение может быть указывающим ожидаемое место зарождения пламени. Расхождение между изображениями, в таком случае, может использоваться для диагностирования собирающей линзы системы фотодетектирования. По выбору, если двигатель присоединен в транспортном средстве с гибридным электрическим приводом, электродвигатель может эксплуатироваться во время работы двигателя, чтобы поддерживать условия числа оборотов-нагрузки на опорных числе оборотов-нагрузке, в то время как формируются изображения внутри цилиндра. Если механик определяет, что сформированное изображение является в достаточной мере отличным от опорного изображения, механик может определять, что есть ухудшение характеристик компонента, и может указывать то же самое контроллеру через устройство отображения. Соответственно, в контроллере двигателя может устанавливаться диагностический код.

Таким образом, может быть возможным использовать преимущества лазерной системы зажигания для сокращения времени и затрат, ассоциативно связанных с визуальным контролем двигателя, не снижая тщательности контроля. Посредством сравнения изображений цилиндра, собранных фотодетектором вслед за сгоранием в цилиндре, могут диагностироваться различные компоненты и условия цилиндра. Диагностические изображения могут отображаться механику наряду с опорными изображениями для сравнения, так чтобы механик мог идентифицировать ухудшение характеристик компонента цилиндра. Посредством использования оборудования, уже имеющегося в распоряжении в двигателе, сконфигурированном лазерной системой зажигания, необходимость в дорогостоящем, трудоемком и отнимающем много времени визуальном контроле может снижаться. В общем и целом, может упрощаться контроль двигателя без снижения тщательности контроля.

Должно быть понятно, что сущность изобретения, приведенная выше, предоставлена для знакомства с упрощенной формой подборки концепций, которые дополнительно описаны в подробном описании. Она не предполагается для идентификации ключевых или существенных признаков заявленного предмета изобретения, объем которого однозначно определен формулой изобретения, которая сопровождает подробное описание. Более того, заявленный предмет изобретения не ограничен реализациями, которые кладут конец каким-нибудь недостаткам, отмеченным выше или в любой части этого раскрытия.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг. 1 показывает примерную камеру сгорания двигателя внутреннего сгорания, присоединенного в системе транспортного средства с гибридным приводом.

Фиг. 2 показывает примерные захват и отображение изображения с использованием лазерной системы двигателя по фиг. 1.

Фиг. 3A-B показывают пример испускания импульса лазерного излучения в цилиндр двигателя.

Фиг. 4 показывает примерный четырехцилиндровый двигатель, остановленный в произвольном положении в своем ездовом цикле.

Фиг. 5 показывает два рабочих режима системы лазерного зажигания двигателя, используемой для идентификации положений поршня и впускного клапана цилиндра во время цикла двигателя.

Фиг. 6 показывает высокоуровневую блок-схему последовательности операций способа для диагностирования ухудшения характеристик одного или более компонентов цилиндра на основании изображений внутри цилиндра, сформированных фотоприемником во время такта впуска.

Фиг. 7 показывает высокоуровневую блок-схему последовательности операций способа для диагностирования ухудшения характеристик одного или более компонентов цилиндра на основании изображений внутри цилиндра, сформированных фотодетектором с использованием света от события сгорания в цилиндре.

Фиг. 8 показывает высокоуровневую блок-схему последовательности операций способа для диагностирования ухудшения характеристик одного или более компонентов двигателя на основании измерений положения поршня и положения впускного клапана, выполненных с использованием лазерной системы зажигания двигателя.

Фиг. 9-10 показывают примерное диагностирование конфигурации факела распыла топливной форсунки.

Фиг. 11-13 показывают примерные процедуры для диагностирования ухудшения характеристик различных компонентов двигателя согласно настоящему раскрытию.

ПОДРОБНОЕ ОПИСАНИЕ

Предусмотрены способы и системы для диагностирования одного или более компонентов цилиндра двигателя с использованием лазерной системы зажигания, такой как показанная на фиг. 1. Как показано на фиг. 2-3, испускание импульса лазерного излучения на более низких интенсивностях может использоваться для освещения внутренней части цилиндра, в то время как фотодетектор захватывает изображения внутри цилиндра. Испускание импульса лазерного излучения на более высоких интенсивностях также может использоваться для инициирования сгорания наряду с тем, что свет, вырабатываемый во время сгорания, используется фотодетектором для захвата изображений внутренней части цилиндра. Сформированные изображения могут использоваться для диагностирования различных компонентов внутри цилиндра и параметров сгорания в цилиндре. Кроме того еще, определение положения кулачков и поршня может точно выполняться с использованием испускания импульса лазерного излучения, как показано на фиг. 4-5, предоставляя возможность для диагностирования распределительных валов и коленчатых валов двигателя, как обсуждено на фиг. 8. Контроллер двигателя может быть выполнен с возможностью выполнять процедуру управления, такую как процедура по фиг. 6, чтобы диагностировать ухудшение характеристик одного или более компонентов цилиндра на основании изображений внутри цилиндра, сформированных фотодетектором во время такта впуска с использованием света от испускания лазерного импульса. Контроллер также может выполнять процедуру управления, такую как процедура по фиг. 7, чтобы диагностировать ухудшение характеристик компонентов цилиндра на основании изображений внутри цилиндра, сформированных фотодетектором с использованием света, вырабатываемого во время события сгорания в цилиндре. Примерные способы диагностики для выбранных компонентов двигателя конкретизированы на фиг. 9-13.

С обращением к фиг. 1, изображена примерная гибридная силовая установка 10. Гибридная силовая установка может быть сконфигурирована в пассажирском дорожном транспортном средстве. Система 10 гибридной силовой установки включает в себя двигатель 20 внутреннего сгорания. Двигатель может быть присоединен к трансмиссии (не показана), такой как ручная трансмиссия, автоматическая трансмиссия или их комбинация. Кроме того, могут быть включены в состав различные дополнительные компоненты, такие как гидротрансформатор, и/или другие зубчатые передачи, такие как звено главной передачи и т.д. Гибридная силовая установка также включает в себя устройство преобразования энергии (не показано), которое может включать в себя электродвигатель, генератор, среди прочего, и их комбинации. Устройство преобразования энергии может приводиться в действие, чтобы поглощать энергию от движения транспортного средства и/или двигателя и преобразовывать поглощенную энергию в форму энергии, пригодную для хранения в устройстве накопления энергии. Устройство преобразования энергии также может приводиться в действие, чтобы подводить отдаваемую мощность (энергию, работу крутящий момент, частоту вращения и т.д.) на двигатель, с тем, чтобы дополнять отдаваемую мощность двигателя. Должно быть принято во внимание, что устройство преобразования энергии, в некоторых вариантах осуществления, может включать в себя электродвигатель, генератор или оба, электродвигатель и генератор, в числе различных других компонентов, используемых для обеспечения надлежащего преобразования энергии между устройством накопления энергии и ведущими колесами и/или двигателем транспортного средства.

Двигатель 20 может быть многоцилиндровым двигателем внутреннего сгорания, один из цилиндров которого подробно изображен на фиг. 1. Двигатель 20 может управляться, по меньшей мере частично, системой управления, включающей в себя контроллер 12, и входными сигналами от оператора 132 транспортного средства через устройство 130 ввода. В этом примере, устройство 130 ввода включает в себя педаль акселератора и датчик 134 положения педали для формирования пропорционального сигнала PP положения педали.

Цилиндр 30 сгорания двигателя 20 может включать в себя стенки 32 цилиндра сгорания с поршнем 36, расположенным в них. Поршень 36 может быть присоединен к коленчатому валу 40, так чтобы возвратно-поступательное движение поршня преобразовывалось во вращательное движение коленчатого вала. Коленчатый вал 40 может быть присоединен к по меньшей мере одному ведущему колесу силовой установки 10 через промежуточную систему трансмиссии. Цилиндр 30 сгорания может принимать всасываемый воздух из впускного коллектора 45 через впускной канал 43 и могут выпускать газообразные продукты сгорания отработавших газов через выпускной канал 48. Впускной коллектор 45 и выпускной канал 48 могут избирательно сообщаться с цилиндром 30 сгорания через соответственные впускной клапан 52 и выпускной клапан 54. В некоторых вариантах осуществления, цилиндр 30 сгорания может включать в себя два или более впускных клапана и/или два или более выпускных клапана.

Двигатель 20 по выбору может включать в себя датчики 55 и 57 положения кулачков. Однако, в показанном примере, впускной клапан 52 и выпускной клапан 54 могут управляться посредством приведения в действие кулачков через соответственные системы 51 и 53 кулачкового привода. Каждая из систем 51 и 53 кулачкового привода может включать в себя один или более кулачков и может использовать одну или более из систем переключения профиля кулачков (CPS), регулируемой установки фаз кулачкового распределения (VCT), регулируемой установки фаз клапанного распределения (VVT) и/или регулируемого подъема клапана (VVL), которые могут управляться контроллером 12 для изменения работы клапанов. Чтобы давать возможность выявления положения кулачков, системы 51 и 53 кулачкового привода могут иметь зубчатые колеса. Положение впускного клапана 52 и выпускного клапана 54 может определяться датчиками 55 и 57 положения, соответственно. В альтернативных вариантах осуществления, впускной клапан 52 и/или выпускной клапан 54 могут управляться посредством возбуждения клапанного распределителя с электромагнитным управлением. Например, цилиндр 30, в качестве альтернативы, может включать в себя впускной клапан, управляемый посредством приведения в действие клапанного распределителя с электромагнитным управлением, и выпускной клапан, управляемый через кулачковый привод, включающий в себя системы CPS и/или VCT.

Топливная форсунка 66 показана присоединенной непосредственно к цилиндру 30 сгорания для впрыска топлива непосредственно в него пропорционально длительности импульса сигнала FPW, принятого из контроллера 12 через электронный формирователь 68. Таким образом, топливная форсунка 66 обеспечивает то, что известно в качестве непосредственного впрыска топлива в цилиндр 30 сгорания. Топливная форсунка, например, может быть установлена сбоку цилиндра сгорания или сверху камеры сгорания. Топливо может подаваться в топливную форсунку 66 топливной системой (не показана), включающей в себя топливный бак, топливный насос и направляющую-распределитель топлива. В некоторых вариантах осуществления, цилиндр 30 сгорания, в качестве альтернативы или дополнительно, может включать в себя топливную форсунку, скомпонованную во впускном канале 43, в конфигурации, которая обеспечивает то, что известно как впрыск топлива во впускное окно, выше по потоку от цилиндра 30 сгорания.

Впускной канал 43 может включать в себя клапан 74 управления движением заряда (CMCV) и заслонку 72 CMCV, и также может включать в себя дроссель 62, имеющий дроссельную заслонку 64. В этом конкретном примере, положение дроссельной заслонки 64 может регулироваться контроллером 12 посредством сигналов, выдаваемых на электродвигатель или исполнительный механизм, включенный дросселем 62, конфигурацией, которая может указываться ссылкой как электронный регулятор дросселя (ETC). Таким образом, дроссель 62 может приводиться в действие, чтобы регулировать всасываемый воздух, выдаваемый в цилиндр 30 сгорания, среди других цилиндров сгорания двигателя. Впускной канал 43 может включать в себя датчик 120 массового расхода воздуха и датчик 122 давления воздуха в коллекторе для выдачи соответственных сигналов MAF и MAP в контроллер 12.

Датчик 126 отработавших газов показан присоединенным к выпускному каналу 48 выше по потоку от каталитического нейтрализатора 70 отработавших газов. Датчик 126 может быть любым подходящим датчиком для выдачи показания топливо/воздушного соотношения в отработавших газах, таким как линейный датчик кислорода или UEGO (универсальный или широкодиапазонный датчик кислорода в отработавших газах), двухрежимный датчик кислорода или EGO, HEGO (подогреваемый EGO), датчик содержания NOx, HC, или CO. Система выпуска может включать в себя розжиговые каталитические нейтрализаторы и каталитические нейтрализаторы низа кузова, а также выпускной коллектор, расположенные выше по потоку и/или ниже по потоку датчики топливо-воздушного соотношения. Каталитический нейтрализатор 70 отработавших газов может включать в себя многочисленные блоки нейтрализатора в одном из примеров. В еще одном примере, могут использоваться многочисленные устройства снижения токсичности выбросов, каждое с многочисленными брикетами. Каталитический нейтрализатор 70 отработавших газов, в одном из примеров, может быть каталитическим нейтрализатором трехкомпонентного типа.

Контроллер 12 показан на фиг. 1 в качестве микрокомпьютера, включающего в себя микропроцессорный блок 102, порты 104 ввода/вывода, электронный запоминающий носитель для исполняемых программ и калибровочных значений, показанный в качестве микросхемы 106 постоянного запоминающего устройства в этом конкретном примере, оперативное запоминающее устройство 108, дежурную память 109 и шину данных. Контроллер 12 может принимать различные сигналы и информацию с датчиков, присоединенных к двигателю 20, в дополнение к тем сигналам, которые обсуждены ранее, в том числе, измерение вводимого массового расхода воздуха (MAF) с датчика 120 массового расхода воздуха; температуру охлаждающей жидкости двигателя (ECT) с датчика 112 температуры, присоединенного к патрубку 114 охлаждения; в некоторых примерах, сигнал профильного считывания зажигания (PIP) с датчика 118 на эффекте Холла (или другого типа), присоединенного к коленчатому валу 40, может быть по выбору включен в состав; положение дросселя (TP) с датчика положения дросселя; и сигнал абсолютного давления в коллекторе, MAP, с датчика 122. Датчик 118 на эффекте Холла по выбору может быть включен в двигатель 20, так как он действует в рабочем объеме, подобном лазерной системе двигателя, описанной в материалах настоящей заявки. Постоянное запоминающее устройство 106 запоминающего носителя может быть запрограммировано машинно-читаемыми данными, представляющими собой команды, исполняемые процессором 102 для выполнения способов, описанных ниже, а также их вариантов.

Лазерная система 92 включает в себя задающий генератор 88 лазерного излучения и блок 90 управления лазером (LCU). LCU 90 побуждает задающий генератор 88 лазерного излучения вырабатывать энергию лазерного излучения. LCU 90 может принимать операционные команды из контроллера 12. Задающий генератор 88 лазерного излучения включает в себя часть 86 лазерной накачки и часть 84 сведения излучения. Часть 84 сведения излучения сводит лазерное излучение, выработанное частью 86 накачки лазера, в фокусной точке 82 лазера цилиндра 30 сгорания. В одном из примеров, часть 84 сведения излучения может включать в себя одну или более линз.

Фотодетектор 94 может быть расположен в верхней части цилиндра 30 в качестве части лазерной системы 92 и может принимать обратные импульсы от верхней поверхности поршня 36. Фотодетектор 94 может включать в себя камеру с линзой. В одном из примеров, камера является прибором с зарядовой связью (ПЗС, CCD). ПЗС-камера может быть выполнена с возможностью детектировать и считывать лазерные импульсы, испущенные посредством LCU 90. В одном из примеров, когда LCU испускает лазерные импульсы в инфракрасном частотном диапазоне, ПЗС-камера может функционировать и принимать импульсы в инфракрасном частотном диапазоне. В таком варианте осуществления, камера также может указываться ссылкой как передающая тепловизионная камера. В других вариантах осуществления, камера может быть ПЗС-камерой полного спектра, которая способна к функционированию в видимом спектре, а также инфракрасном спектре. Камера может включать в себя линзу для фокусирования детектированных лазерных импульсов и формирования изображения внутренней части цилиндра. В одном из примеров, линза является линзой типа «рыбий глаз», которая создает панорамное или полусферическое изображение внутренности цилиндра. После испускания лазера из LCU 90, лазер осуществляет развертку в пределах внутренней области цилиндра 30 на фокальном пятне 82 лазера. Световая энергия, которая отражается от поршня 36, может детектироваться камерой в фотодетекторе 94. Фотодетектор 94 также может захватывать изображения внутренней части цилиндра, как конкретизировано ниже.

Лазерная система 92 выполнена с возможностью работать в большем, чем один рабочий объем, с синхронизацией каждой операции на основании положения двигателя по четырехтактному циклу сгорания. Например, энергия лазерного излучения может использоваться для воспламенения топливо/воздушной смеси во время рабочего такта двигателя, в том числе, во время проворачивания коленчатого вала двигателя, операции прогрева двигателя и работы прогретого двигателя. Топливо, впрыскиваемое топливной форсункой 66, может формировать топливо/воздушную смесь во время по меньшей мере части такта впуска, где воспламенение топливо/воздушной смеси энергией лазерного излучения, вырабатываемой задающим генератором 88 лазерного излучения, начинает сгорание негорючей в ином случае топливо/воздушной смеси и вытесняет поршень 36 вниз. Более того, свет, вырабатываемый во время события сгорания в цилиндре, может использоваться фотодетектором 94 для захвата изображений внутренней части цилиндра. Как конкретизировано на фиг. 9, сформированные изображения затем могут использоваться для диагностирования различных компонентов внутри цилиндра, а также параметров сгорания в цилиндре.

При второй работоспособности, LCU 90 может подавать импульсы с низкой мощностью в цилиндр. Импульсы с низкой мощностью могут использоваться для определения положения поршня и клапана во время четырехтактного цикла сгорания, как обсуждено на фиг. 4-7. Измерения положения поршня и положения клапана затем могут использоваться для диагностирования компонентов цилиндра, таких как распределительные валы и коленчатые валы, как обсуждено на фиг. 10. В дополнение, по возобновлению работы двигателя из условий выключения холостого хода, энергия лазерного излучения может использоваться для контроля положения, скорости и т.д., двигателя, для того чтобы синхронизировать подачу топлива и установку фаз клапанного распределения. Более того, свет, вырабатываемый посредством испускания импульса лазерного излучения на более низкой мощности, может использоваться для захвата изображений внутренней части цилиндра до того, как происходит событие сгорания в цилиндре, к примеру, во время такта впуска. Изображения также могут формироваться во время условий без сгорания, таких как при работе в специфичных диагностических режимах. Как конкретизировано на фиг. 8, сформированные изображения затем могут использоваться для диагностирования различных компонентов внутри цилиндра.

Изображения, сформированные на фотодетекторе 94, могут отображаться механику или специалисту по обслуживанию на центральной консоли транспортного средства, так чтобы он мог выполнять визуальный контроль и идентифицировать любое ухудшение характеристик компонентов цилиндра. Например, лазерное устройство зажигания, присоединенное к фотодетектору 94, может передавать световые импульсы в цилиндр 30 наряду с тем, что фотодетектор 94, включающий в себя инфракрасную камеру, оборудованную линзой типа рыбий глаз, формирует изображения, которые беспроводным образом передаются в контроллер двигателя и просматриваются на устройстве отображения транспортного средства. В некоторых примерах, как обсуждено со ссылкой на фиг. 2, во время эксплуатации лазерного устройства зажигания, управляемая оператором ручка на центральной консоли может настраивать положение двигателя. Эти настройки включают в себя проворачивание двигателя вперед или назад от исходного положения двигателя, предоставляя возможность для дополнительного обследования цилиндра для указания ухудшения характеристик.

LCU 90 может управлять задающим генератором 88 лазерного излучения, чтобы фокусировать энергию лазерного излучения в разных местоположениях в зависимости от условий эксплуатации. Например, энергия лазерного излучения может фокусироваться в первом местоположении в стороне от стенки 32 цилиндра в пределах внутренней области цилиндра 30, для того чтобы воспламенять топливо/воздушную смесь. В одном из вариантов осуществления, первое местоположение может находиться возле верхней мертвой точки (ВМТ, TDC) рабочего такта. Кроме того, LCU 90 может направлять задающий генератор 88 лазерного излучения, чтобы вырабатывать первое множество импульсов лазерного излучения, направленных в первое местоположение, и первое сгорание от состояния покоя может принимать энергию лазерного излучения из задающего генератора 88 лазерного излучения, которая является большей, чем энергия лазерного излучения, выдаваемая в первое местоположение для более поздних сгораний. В качестве еще одного примера, энергия лазерного излучения может фокусироваться во втором местоположении около стенки цилиндра, ближайшей к впускному окну цилиндра, для того чтобы диагностировать конфигурацию факела распыла форсунки или конфигурацию потока всасываемого воздуха.

Контроллер 12 управляет LCU 90 и имеет несъемный машинно-читаемый запоминающий носитель, включающий в себя машинную программу для настройки местоположения подачи энергии лазерного излучения на основании температуры, например, ECT. Энергия лазерного излучения может направляться в разные местоположения внутри цилиндра 30. Контроллер 12 также может заключать в себе дополнительные или альтернативные датчики для определения рабочего режима двигателя 20, в том числе, дополнительные датчики температуры, датчики давления, датчики крутящего момента, а также датчики, которые выявляют частоту вращения двигателя, количество воздуха и величину впрыска топлива. Дополнительно или в качестве альтернативы, LCU 90 может поддерживать прямую связь с различными датчикам, такими как датчики температуры для выявления ECT, для определения рабочего режима двигателя 20.

Как описано выше, фиг. 1 показывает один цилиндр многоцилиндрового двигателя 20, и каждый цилиндр может подобным образом включать в себя свой собственный набор впускных/выпускных клапанов, топливную форсунку, лазерную систему зажигания и т.д.

Фиг. 2 иллюстрирует примерный вариант 200 осуществления того, каким образом лазерная система 92 (по фиг. 1) может испускать лазерные импульсы в цилиндр 30, так чтобы фотодетектор лазерной системы мог захватывать изображения внутренней части цилиндра. Изображения могут отображаться оператору транспортного средства, чтобы давать возможность визуального контроля цилиндра касательно повреждения. По существу, компоненты, уже представленные на фиг. 1, на фиг. 2 повторно не представляются.

Фиг. 2 показывает лазерной системы 92, которая включает в себя задающий генератор 88 лазерного излучения, фотодетектор 94 и LCU 90. LCU 90 побуждает задающий генератор 88 лазерного излучения вырабатывать энергию лазерного излучения. Высокочастотные лазерные импульсы направляются в различные местоположения цилиндра, чтобы сканировать как можно большую часть цилиндра. Например, лазерные импульсы 202 могут направляться на стенки 215 цилиндра, внутреннюю часть цилиндра 30, верхнюю поверхность 213 поршня и внутреннюю поверхность клапанов 52 и 54 (то есть, поверхность, обращенную в цилиндр). Посредством сканирования как можно большей части цилиндра как можно быстрее, лазерный импульс 202 действует как источник света с широким пучком или допускающий электролампу фотодетектор 94 (в частности, ПЗС-камера) для захвата изображений 220 внутренней части цилиндра. Посуществу, при работе в качестве источника света для захвата изображений во время диагностики, лазерная система зажигания (или лазерное устройство) может считаться работающей в режиме проектора или осветителя, и LCU 90 может принимать рабочие команды, такие как режим мощности, из контроллера 12. При эксплуатации в выбранных диагностических режимах, лазерная система 92 испускает последовательность импульсов низкой мощности на высокой частоте. В сравнение, во время воспламенения, используемый лазер может подвергаться быстрой пульсации с высокой энергоемкостью, чтобы воспламенять топливо/воздушную смесь. В одном из примеров, во время диагностического режима, лазер может подвергаться пульсации на низком уровне энергии с частотной модуляцией, имеющей периодически повторяющееся линейное изменение частоты Частые лазерные импульсы низкой мощности могут испускаться в инфракрасном спектре. Система фотодетектирования, которая включает в себя ПЗС-камеру, работающую в инфракрасном спектре (например, инфракрасную ПЗС-камеру) с линзой типа «рыбий глаз», может быть расположена в верхней части цилиндра в качестве части лазера и может захватывать изображения 320 цилиндра с использованием световой энергии, отраженной от внутренней части цилиндра. Захваченные изображения могут включать в себя изображения стенок 215 цилиндра, обращенной в цилиндр поверхности впускного и выпускного клапанов 52 и 54, верхней поверхности 213 поршня и внутренней части цилиндра 30. Захваченные изображения 220 передаются беспроводным образом фотодетектором 94 в контроллер для просмотра на дисплее 135 в центральной консоли 140 транспортного средства.

Центральная консоль 140 может быть включена в приборную панель транспортного средства внутри кабины транспортного средства гибридной силовой установки 10 по фиг. 1. Центральная консоль 140 может быть несущей элементы управления поверхностью, расположенной в центральной части кабины транспортного средства, в частности, в передней части кабины транспортного средства. Центральная консоль 140 может включать в себя различные элементы управления, такие как ручки 138, циферблаты 142 и кнопки 136. Различные элементы управления могут приводиться в действие оператором транспортного средства для настройки условий в кабине. Различные элементы управления, например, могут включать в себя ручку 138 регулирования уровня громкости, присоединенную к музыкальной системе транспортного средства, для настройки уровня громкости музыки в кабине, кнопку 136 настройки, присоединенную к системе радиоприемника транспортного средства, для настройки выбора радиоканала, и циферблат 142 регулирования температуры, присоединенный к системе HVAC транспортного средства, для настройки температур отопления и охлаждения кабины.

Центральная консоль 140 также может включать в себя дисплей 135. Дисплей может быть сенсорным дисплеем, который дает оператору транспортного средства возможность выбирать регулировки транспортного средства посредством сенсорных взаимодействий. Дисплей также может использоваться для отображения текущих регулировок транспортного средства. В дополнение, дисплей может использоваться для отображения навигационной системы, такой как GPS, телефонных возможностей или интернет-приложений, к которым должен быть осуществлен доступ во время поездки. Во время условий, когда лазерное устройство зажигания эксплуатируется, чтобы захватывать изображения для диагностических целей, устройство 135 отображения используется, чтобы показывать изображения внутренности цилиндра 30, которые захвачены фотодетектором 94, присоединенным к лазерной системе 92 зажигания. Более точно, изображения внутренней части цилиндра, полученные ПЗС-камеры лазерной системой детектирования, передаются, например, беспроводным образом, в систему управления двигателем и отображаются на дисплее 135 оператору транспортного средства (например, механику). На основании предпочтения отображения оператора, выбранного посредством сенсорных взаимодействий на дисплее, могут отображаться изображения внутренней части цилиндра любого или всех цилиндров.

В некоторых примерах, во время диагностического режима, одна или более из ручек 138 могут вводиться в действие для управления положением двигателя (и выводиться из работы для управления кабиной). Например, при эксплуатации в диагностическом режиме, ручка регулирования уровня громкости может вводиться в действие для управления положением двигателя и выводиться из работы для регулирования уровня громкости. Следовательно, настройки в отношении ручки 138 регулирования уровня громкости могут использоваться для настройки положения двигателя из исходного положения двигателя, чтобы содействовать визуальному контролю цилиндра. Например, может определяться, что поршень цилиндра расположен в или возле верхней части цилиндра, отображаемый на данный момент на дисплее 135, заграждая полный обзор внутренней части цилиндра. Для улучшения обзора, оператор транспортного средства может медленно поворачивать ручку регулирования уровня громкости (например, по часовой стрелке или против часовой стрелки), которая, в свою очередь, перемещает положение двигателя (например, вперед или назад), из условия чтобы поршень медленно перемещался в направлении дна цилиндра, посредством настроек генератора/электродвигателя разделения мощности системы двигателя. В вариантах осуществления, где двигатель включает в себя трансмиссию с планетарной передачей, электродвигатель может удерживать наружное кольцо неподвижным (что поддерживает неподвижными колеса с шинами) наряду с тем, что генератор (или солнечная шестерня), вращает двигатель с использованием обратной связи с кругового датчика положения генератора или с использованием колеса кривошипа 60-2 с системой позиционирования на датчике Холла для действующей обратной связи по положению двигателя. Это перемещение поршня может предоставлять оператору возможность принимать изображения, представляющие более полный обзор внутренней части цилиндра, и давать ему возможность осуществлять более точный контроль. Например, улучшенный обзор может давать оператору возможность контролировать стенки цилиндра на повреждения задирами. Кроме того, во время диагностического режима, та же самая ручка регулирования уровня громкости или альтернативная ручка центральной консоли, циферблат или кнопка могут вводиться в действие, чтобы давать изображению цилиндра, отображаемому на дисплее 135 возможность увеличиваться (например, даваться крупным планом или мелким планом).

В одном из примеров, световые импульсы низкой мощности могут испускаться в инфракрасном (ИК) спектре лазерным устройством зажигания, а ПЗС-камера может быть выполнена с возможностью работать в ИК-спектре. В альтернативных вариантах осуществления, фотодетектор 94 может им