Способ и система контроля преждевременного воспламенения
Иллюстрации
Показать всеИзобретение относится к системам управления двигателем транспортного средства в ответ на обнаружение аномального сгорания топлива. Технический результат заключается в повышении точности определения и разграничения (от детонации) преждевременного воспламенения в двигателе транспортного средства. Предложены способы и системы подавления детонации и/или преждевременного воспламенения. Каждое из запаздывания установки момента зажигания, обогащения цилиндра и ограничения нагрузки двигателя настраивается на основании выходного сигнала датчика детонации, сформированного в едином определенном интервале углов поворота коленчатого вала, а не на основании выходного сигнала датчика детонации, сформированного вне определенного интервала углов поворота коленчатого вала. Серьезность подавляющих действий настраивается пропорционально интенсивности выходного сигнала датчика детонации, причем серьезность подавляющего действия повышается по мере того, как повышается интенсивность выходного сигнала датчика детонации. 2 н. и 17 з.п. ф-лы, 9 ил.
Реферат
ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ
Настоящая заявка испрашивает приоритет по предварительной заявке № 61/912,370 на выдачу патента США, озаглавленной «СПОСОБ И СИСТЕМА КОНТРОЛЯ ПРЕЖДЕВРЕМЕННОГО ВОСПЛАМЕНЕНИЯ » («METHOD AND SYSTEM FOR PRE-IGNITION CONTROL»), поданной 5 декабря 2013 года, полное содержание которой настоящим фактически включено в состав посредством ссылки.
ОБЛАСТЬ ТЕХНИКИ
Настоящее описание в целом относится к способам и системам для управления двигателем транспортного средства в ответ на обнаружение аномального сгорания.
УРОВЕНЬ ТЕХНИКИ И СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В определенных условиях эксплуатации двигатели, которые имеют высокие степени сжатия или форсированы для увеличения удельной выходной мощности, могут быть предрасположены к событиям аномального сгорания на низком числе оборотов, таким как вследствие преждевременного воспламенения. Раннее аномальное сгорание, обусловленное преждевременным воспламенением, может вызывать очень высокие давления внутри цилиндра и может приводить к волне давления сгорания, подобной детонации при сгорании, но с большей интенсивностью. Такие события аномального сгорания вызывают быстрое ухудшение характеристик двигателя. Соответственно, были разработаны стратегии для заблаговременного обнаружения и подавления событий аномального сгорания на основании условий эксплуатации двигателя.
Один из примерных подходов проиллюстрирован Хашизуми в US 5,632,247. В нем, аномальное сгорание в цилиндре, обусловленное преждевременным воспламенением и/или детонацией обнаруживается датчиком детонации, прикрепленным к блоку цилиндров. Более точно, на основании оценки показаний датчика детонации в двух разных временных окнах, каждое с отличающимися пороговыми значениями, события преждевременного воспламенения определяются и отличаются от детонации.
Однако изобретатели в материалах настоящей заявки идентифицировали потенциальные проблемы у такого подхода. В одном из примеров подход требует существенной обработки сигналов для проведения различия аномального сгорания вследствие преждевременного воспламенения от аномального сгорания вследствие детонации до того, как может выполняться надлежащее подавляющее действие. По существу, это может добавлять сложность в выявление и разграничение событий сгорания. В качестве еще одного примера, подход использует отдельные, не перекрывающиеся интервалы. Однако могут быть области в интервале детонации, где преждевременное воспламенения может идентифицироваться лучше, и наоборот. Чувствительность подхода также может меняться в зависимости от расположения датчика. В общем и целом, сложность и себестоимость системы повышается, не обязательно улучшая рабочие характеристики выявления детонации или преждевременного воспламенения в цилиндре. По существу, пониженная точность определения и разграничения (от детонации) преждевременного воспламенения в двигателе может приводить к быстрому ухудшению характеристик двигателя. Дополнительно, проведение различия между детонацией и преждевременным воспламенением может быть неточным и приводить неправильным действиям, предпринимаемым для каждого типа события, приводя к ухудшенным рабочим характеристикам.
В одном из примеров некоторые из вышеприведенных проблем могут быть препоручены способу для выявления и принятия мер в ответ на аномальное сгорание. Способ содержит: в ответ на интенсивность выходного сигнала датчика детонации, проявляющуюся в пределах первого интервала для данного события сгорания в цилиндре, обогащение цилиндра в качестве функции интенсивности выходного сигнала. Способ дополнительно содержит, в ответ на интенсивность выходного сигнала датчика детонации, проявляющуюся в пределах второго интервала для события сгорания, являющуюся более высокой, чем пороговое значение, осуществление запаздывания установки момента искрового зажигания, первый интервал частично перекрывает второй интервал. Таким образом, аномальное сгорание, обусловленное детонацией и/или преждевременным воспламенением, может лучше подвергаться принятию ответных мер.
В качестве примера, система двигателя может включать в себя один или более датчиков детонации, скомпонованных в, на или по блоку цилиндров двигателя или присоединенных к цилиндрам двигателя. Выходной сигнал датчика детонации, сформированный в одном или более из первого и второго интервала выбора времени по углу поворота коленчатого вала, может использоваться для принятия мер в ответ на аномальное сгорание, такое как обусловленное детонацией и/или преждевременным воспламенением. Первый и второй интервалы могут быть частично перекрывающимися, причем, первый интервал начинается до того, как начинается второй интервал, первый интервал заканчивается до того, как заканчивается второй интервал. Интервалы могут быть определены заданными углами поворота коленчатого вала в качестве функции условий эксплуатации двигателя, таких как число оборотов и нагрузки двигателя. Для данного события сгорания в цилиндре, первый интервал выбора времени по углу поворота коленчатого вала может начинаться раньше события искрового зажигания в цилиндре (к примеру, на 15 градусах после верхней мертвой точки (ATC)), а заканчиваться в такте расширения цилиндра (к примеру, на 40 градусах после верхней мертвой точки), наряду с тем, что второй интервал выбора времени по углу поворота коленчатого вала может начинаться после события искрового зажигания в цилиндре, а заканчиваться в такте расширения после того, как заканчивается первый интервал. Выходной сигнал датчика, сформированный в первом и втором интервалах, может обрабатываться (например, фильтроваться полосовым фильтром, выпрямляться и интегрироваться), чтобы определять соответственные интенсивности выходного сигнала. На основании интенсивности выходного сигнала в первом интервале, может определяться первый набор подавляющих аномальное сгорание действий (например, подавляющих преждевременное воспламенение действий). Например, цилиндр может обогащаться, причем, величина обогащения, которая должна применяться (уровень обогащения, количество обогащаемых циклов двигателя, количество цилиндров двигателя, которые должны обогащаться, и т.д.), определяется в качестве функции интенсивности выходного сигнала. Справочная таблица, хранимая в памяти контроллера в качестве функции числа оборотов двигателя и интенсивности детонационного стука, может использоваться для определения обогащения. В дополнение, в то время как количество циклов обогащения превышает пороговое значение, может применяться некоторая величина ограничения нагрузки двигателя. Кроме того, установка момента зажигания может настраиваться (например, подвергаться опережению) на основании применяемого обогащения, чтобы возмещать потерю крутящего момента от эксплуатации с большим обогащением, чем RBT. На основании интенсивности выходного сигнала во втором интервале, находящейся выше, чем пороговое значение, может определяться иной набор подавляющих аномальное сгорание действий (например, подавляющих детонацию действий). Например, установка момента искрового зажигания может подвергаться запаздыванию, величина применяемого запаздывания искрового зажигания увеличивается, в то время как интенсивность выходного сигнала превышает пороговое значение во втором интервале. Таким образом, по мере того, как интенсивность выходного сигнала датчика детонации возрастает в первом и/или вором интервалах, может выполняться пропорционально более сильное и более серьезное подавляющее действие.
Изобретатели в материалах настоящей заявки, кроме того, осознали синергическую зависимость между подавляющими аномальное сгорание действиями, такими как те, которые принимают меры в ответ на детонацию, и теми, которые принимают меры в ответ на преждевременное воспламенение. Более точно, по мере того, как обогащение цилиндра возрастает (пропорционально повышенной интенсивности детонационного стука), результирующее охлаждение заряда в цилиндре понижает вероятность дальнейших событий аномального сгорания в цилиндре (таких как обусловленные детонацией), к тому же, наряду с увеличением допуска опережения установки момента зажигания. Как результат, по мере того, как обогащение цилиндра, определенное на основании выходного сигнала в первом интервале, возрастает (например, превышает пороговый уровень), величина запаздывания искрового зажигания, применяемая в ответ на выходной сигнал во втором интервале, может уменьшаться.
Таким образом, аномальное сгорание в цилиндре может подвергаться принятию ответных мер, тем временем, понижая сложность обработки выходного сигнала датчика детонации. Например, аномальное сгорание, обусловленное событиями аномального сгорания, такими как одно или более из детонации и преждевременного воспламенения, может подавляться, не делая необходимым разграничение сигналов. В дополнение, уменьшается необходимость в многочисленных датчиках детонации, многочисленных интервалах считывания детонации или многочисленных пороговых значениях. Посредством настройки серьезности подавляющих действий, применяемых в ответ на событие аномального сгорания, на основании интенсивности выходного сигнала датчика детонации в определенных интервалах, аномальное сгорание, обусловленное каждым из детонации и преждевременного воспламенения, может подвергаться принятию ответных мер, не требуя разграничения детонации и преждевременного воспламенения. Посредством использования частично перекрывающихся интервалов, точность выявления аномального сгорания может улучшаться. Посредством увеличения обогащения и ограничения нагрузки, применяемых к двигателю, в то время как повышается интенсивность выходного сигнала датчика детонации в первом, более раннем интервале, могут предотвращаться вызванные аномальным сгоранием дальнейшие события очень сильной детонации. Посредством настройки применяемой величины запаздывания установки момента зажигания на основании интенсивности датчика детонации во втором, более позднем интервале, частично перекрывающем первый интервал, детонация может подвергаться принятию ответных мер. Посредством использования одного и того же датчика детонации для принятия мер в ответ на разные виды событий аномального сгорания в цилиндре, могут достигаться выгоды от сокращения компонентов.
Должно быть понятно, что сущность изобретения, приведенная выше, предоставлена для знакомства с упрощенной формой подборки концепций, которые дополнительно описаны в подробном описании. Она не предполагается для идентификации ключевых или существенных признаков заявленного предмета изобретения, объем которого однозначно определен формулой изобретения, которая сопровождает подробное описание. Более того, заявленный предмет изобретения не ограничен реализациями, которые кладут конец каким-нибудь недостаткам, отмеченным выше или в любой части этого раскрытия.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг. 1 - местный вид двигателя.
Фиг. 2 показывает высокоуровневую блок-схему операций способа для выполнения подавляющих аномальное сгорание действий в двигателе по фиг. 1 на основании сигналов датчика детонации, сформированных в двух частично перекрывающихся интервалах.
Фиг. 3 показывает структурную схему процедуры по фиг. 2.
Фиг. 4 показывает альтернативный вариант осуществления процедуры по фиг. 3.
Фиг. 5-7 показывают структурные схемы, изображающие настройку ограничения нагрузки двигателя и установки момента зажигания на основании интенсивности выходного сигнала у сигналов датчика детонации, сформированных в первом интервале.
Фиг. 8 показывает примерные справочные таблицы, которые могут использоваться контроллером двигателя для определения запаздывания установки момента зажигания, обогащения цилиндра и ограничения нагрузки согласно настоящему раскрытию.
Фиг. 9 показывает примерные подавляющие аномальное сгорание операции согласно настоящему раскрытию.
ПОДРОБНОЕ ОПИСАНИЕ
Последующее описание относится к системам и способам для подавления вызванных аномальным сгоранием событий очень сильной детонации в двигателе, таком как система двигателя по фиг. 1. Контроллер двигателя может быть выполнен с возможностью выполнять процедуру управления, такую как процедура по фиг. 2-4, для выполнения одной или более подавляющих настроек на основании интенсивности выходного сигнала у сигналов датчика детонации, сформированных в двух частично перекрывающихся интервалах выбора времени по углу поворота коленчатого вала. Контроллер может не выполнять никаких настроек на основании сигналов датчика детонации, сформированных вне определенных интервалов. Контроллер может настраивать применяемую величину обогащения цилиндра на основании интенсивности выходного сигнала у сигнала датчика детонации, сформированного в первом, более раннем из двух интервалов. Как дополнительно конкретизировано со ссылкой на фиг. 5-7, контроллер дополнительно может определять величину ограничения нагрузки двигателя, которое должно быть наложено, а также настройки установки момента зажигания, которая должна применяться, на основании определенного обогащения. Контроллер двигателя дополнительно может настраивать применяемую величину запаздывания или опережения искрового зажигания на основании интенсивности выходного сигнала у сигнала датчика детонации, сформированного во втором, более позднем из двух интервалов. Контроллер может использовать одну или более справочных таблиц, таких как справочные таблицы по фиг. 8, чтобы определять серьезность подавляющего действия для применения, к тому же, наряду с обновлением подсчетчика приращения частоты, указывающего частоту аномального сгорания. Примерные операции подавления описаны на фиг. 9.
Фиг. 1 изображает примерный вариант осуществления камеры сгорания или цилиндра двигателя 10 внутреннего сгорания. Двигатель 10 может принимать параметры управления из системы управления, включающей в себя контроллер 12, и входные данные от водителя 130 транспортного средства через устройство 132 ввода. В этом примере, устройство 132 ввода включает в себя педаль акселератора и датчик 134 положения педали для формирования пропорционального сигнала PP положения педали. Цилиндр 14 (в материалах настоящей заявки также «камера сгорания») двигателя 10 может включать в себя стенки 136 камеры сгорания с поршнем 138, расположенным в них. Поршень 138 может быть присоединен к коленчатому валу 140, так чтобы возвратно-поступательное движение поршня преобразовывалось во вращательное движение коленчатого вала. Коленчатый вал 140 может быть присоединен к по меньшей мере одному ведущему колесу пассажирского транспортного средства через систему трансмиссии. Кроме того, стартерный электродвигатель может быть присоединен к коленчатому валу 140 через маховик, чтобы давать возможность операции запуска двигателя 10.
Цилиндр 14 может принимать всасываемый воздух через последовательность впускных воздушных каналов 142, 144 и 146. Впускной воздушный канал 146 может сообщаться с другими цилиндрами двигателя 10 в дополнение к цилиндру 14. В некоторых вариантах осуществления, один или более впускных каналов могут включать в себя устройство наддува, такое как турбонагнетатель или нагнетатель. Например, фиг. 1 показывает двигатель 10, сконфигурированный турбонагнетателем, включающим в себя компрессор 174, скомпонованный между впускными каналами 142 и 144, и турбину 176 в системе выпуска, скомпонованную вдоль выпускного канала 148. Компрессор 174 может по меньшей мере частично приводиться в действие турбиной 176 с приводом от отработавших газов через вал 180, где устройство наддува сконфигурировано в качестве турбонагнетателя. Однако, в других примерах, таких как где двигатель 10 снабжен нагнетателем, турбина 176 с приводом от отработавших газов, по выбору, может быть не включена в состав, где компрессор может приводиться в действие механической подводимой мощностью от электродвигателя или двигателя. Дроссель 20, включающий в себя дроссельную заслонку 164, может быть установлен вдоль впускного канала двигателя для изменения расхода и/или давления всасываемого воздуха, подаваемого в цилиндры двигателя. Например, дроссель 20 может быть расположен ниже по потоку от компрессора 174, как показано на фиг. 1, или, в качестве альтернативы, может быть предусмотрен выше по потоку от компрессора 174.
Выпускной канал 148 может принимать отработавшие газы из других цилиндров двигателя 10 в дополнение к цилиндру 14. Датчик 128 отработавших газов показан присоединенным к выпускному каналу 148 выше по потоку от устройства 178 снижения токсичности выбросов. Датчик 128 может быть выбран из числа различных пригодных датчиков для выдачи указания топливо/воздушного соотношения в отработавших газах, например, таких как линейный кислородный датчик или UEGO (универсальный или широкодиапазонный датчик количества кислорода в отработавших газах), двухрежимный кислородный датчик или датчик EGO (который изображен), HEGO (подогреваемый EGO), NOx, HC, или CO. Устройство 178 снижения токсичности выбросов может быть трехкомпонентным каталитическим нейтрализатором (TWC), уловителем NOx, различными другими устройствами снижения токсичности выбросов или их комбинациями.
Температура отработавших газов может оцениваться одним или более датчиков температуры (не показаны), расположенных в выпускном канале 148. В качестве альтернативы, температура отработавших газов может логически выводиться на основании условий эксплуатации двигателя, таких как число оборотов, нагрузка, топливо-воздушное соотношение (AFR), запаздывание искрового зажигания, и т.д. Кроме того, температура отработавших газов может вычисляться по одному или более датчиков 128 отработавших газов. Может быть принято во внимание, что температура отработавших газов, в качестве альтернативы, может оцениваться любой комбинацией способов оценки температуры, перечисленных в материалах настоящей заявки.
Каждый цилиндр двигателя 10 может включать в себя один или более впускных клапанов и один или более выпускных клапанов. Например, цилиндр 14 показан включающим в себя по меньшей мере один впускной тарельчатый клапан 150 и по меньшей мере один выпускной тарельчатый клапан 156, расположенные в верхней области цилиндра 14. В некоторых вариантах осуществления, каждый цилиндр двигателя 10, в том числе, цилиндр 14, может включать в себя по меньшей мере два впускных тарельчатых клапана и по меньшей мере два выпускных тарельчатых клапана, расположенных в верхней области цилиндра.
Впускной клапан 150 может управляться контроллером 12 посредством приведения в действие кулачков через систему 151 кулачкового привода. Подобным образом, выпускной клапан 156 может управляться контроллером 12 через систему 153 кулачкового привода. Каждая из систем 151 и 153 кулачкового привода может включать в себя один или более кулачков и может использовать одну или более из систем переключения профиля кулачков (CPS), регулируемой установки фаз кулачкового распределения (VCT), регулируемой установки фаз клапанного распределения (VVT) и/или регулируемого подъема клапана (VVL), которые могут управляться контроллером 12 для изменения работы клапанов. Положение впускного клапана 150 и выпускного клапана 156 может определяться датчиками 155 и 157 положения клапана, соответственно. В альтернативных вариантах осуществления, впускной и/или выпускной клапан могут управляться посредством клапанного распределителя с электромагнитным управлением. Например, цилиндр 14, в качестве альтернативы, может включать в себя впускной клапан, управляемый посредством приведения в действие клапанного распределителя с электромагнитным управлением, и выпускной клапан, управляемый через кулачковый привод, включающий в себя системы CPS и/или VCT. В кроме того еще других вариантах осуществления, впускной и выпускной клапаны могут управляться системой золотникового привода или распределителя либо системой привода или распределителя с переменной установкой фаз клапанного распределения.
Цилиндр 14 может иметь степень сжатия, которая является отношением объемов того, когда поршень 138 находится в нижней мертвой точке, к тому, когда в верхней мертвой точке. Традиционно степень сжатия находится в диапазоне от 9:1 до 10:1. Однако в некоторых примерах, где используется другое топливо, степень сжатия может быть увеличена. Это, например, может происходить, когда используется более высокооктановое топливо или топливо с более высоким скрытым теплосодержанием испарения. Степень сжатия также может быть повышена, если используется непосредственный впрыск, вследствие его воздействия на работу двигателя с детонацией.
В некоторых вариантах осуществления, каждый цилиндр двигателя 10 может включать в себя свечу 192 зажигания для инициирования сгорания. Система 190 зажигания может выдавать искру зажигания в камеру 14 сгорания через свечу 192 зажигания в ответ на сигнал SA опережения зажигания из контроллера 12, в выбранных рабочих режимах. Однако в некоторых вариантах осуществления, свеча 192 зажигания может быть не включена в состав, таких как где двигатель 10 может инициировать сгорание самовоспламенением или впрыском топлива, как может иметь место у некоторых дизельных двигателей.
В некоторых вариантах осуществления, каждый цилиндр двигателя 10 может быть сконфигурирован одной или более топливных форсунок для подачи топлива в него. В качестве неограничивающего примера, показан цилиндр 14, включающий в себя одну топливную форсунку 166. Топливная форсунка 166 показана присоединенной непосредственно к цилиндру 14 для впрыска топлива непосредственно в него пропорционально ширине импульса сигнала FPW, принятого из контроллера 12 через электронный формирователь 168. Таким образом, топливная форсунка 166 обеспечивает то, что известно как непосредственный впрыск (в дальнейшем, также указываемый ссылкой как «DI») топлива в цилиндр 14 сгорания. Несмотря на то, что фиг. 1 показывает форсунку 166 в качестве боковой форсунки, она также может быть расположена выше поршня, к примеру, возле положения свечи 192 зажигания. Такое положение может улучшать смешивание и сгорание при работе двигателя на спиртосодержащем топливе вследствие низкой летучести некоторых спиртосодержащих видов топлива. В качестве альтернативы, форсунка может быть расположена выше и возле впускного клапана для улучшения смешивания. Топливо может подаваться в топливную форсунку 166 из топливной системы 8 высокого давления, включающей в себя топливные баки, топливные насосы и направляющую-распределитель для топлива. В качестве альтернативы, топливо может подаваться однокаскадным топливным насосом на низком давлении, в каком случае, установка момента непосредственного впрыска топлива могут ограничиваться в большей степени во время такта сжатия, чем если используется топливная система высокого давления. Кроме того, несмотря на то, что не показано, топливные баки могут иметь преобразователь давления, выдающий сигнал в контроллер 12. Будет приниматься во внимание, что в альтернативном варианте осуществления форсунка 166 может быть форсункой оконного впрыска, выдающей топливо во впускное окно выше по потоку от цилиндра 14.
Также будет принято во внимание, что, несмотря на то что изображенный вариант осуществления иллюстрирует двигатель, приводимый в действие посредством впрыска топлива через одиночную форсунку непосредственного впрыска; в альтернативных вариантах осуществления, двигатель может приводиться в действие посредством использования двух форсунок (например, форсунки непосредственного впрыска и форсунки оконного впрыска) и регулированием относительной величины впрыска из каждой форсунки.
Топливо может подаваться форсункой в цилиндр в течение одного цикла цилиндра. Кроме того, распределение и/или относительный объем топлива, подаваемого из форсунки может меняться в зависимости от условий эксплуатации. Кроме того, для одиночного события сгорания, многочисленные впрыски подаваемого топлива могут выполняться за каждый цикл. Многочисленные впрыски могут выполняться в течение такта сжатия, такта впуска или любой надлежащей их комбинации. К тому же, топливо может впрыскиваться в течение цикла для настройки отношения количества воздуха к количеству впрыскиваемого топлива (AFR) сгорания. Например, топливо может впрыскиваться для обеспечения стехиометрического AFR. Датчик AFR может быть включен в состав для выдачи оценки AFR в цилиндре. В одном из примеров, датчик AFR может быть датчиком состава отработавших газов, таких как датчик 128 Посредством измерения количества остаточного кислорода (для бедных смесей) или несгоревших углеводородов (для богатых смесей) в отработавших газах, датчик может определять AFR. По существу, AFR может выдаваться в качестве значения лямбда (λ), то есть, в качестве отношения действующего AFR к стехиометрии для данной смеси. Таким образом, лямбда 1,0 указывает стехиометрическую смесь, более богатые, чем стехиометрические, смеси могут иметь значение лямбда, меньшее чем 1,0, а более бедные, чем стехиометрические, смеси могут иметь лямбда, большее чем 1.
Как описано выше, фиг. 1 показывает только один цилиндр многоцилиндрового двигателя. По существу, каждый цилиндр, подобным образом, может включать в себя свой собственный набор впускных/выпускных клапанов, топливной форсунки(ок), свечи зажигания, и т.д.
Топливные баки в топливной системе 8 могут хранить топливо с разными качествами топлива, такими как разные составы топлива. Эти отличия могут включать в себя разное содержание спирта, разное октановое число, разную теплоту испарения, разные топливные смеси и/или их комбинации, и т.д.
Двигатель 10 дополнительно может включать в себя датчик 90 детонации, присоединенный к каждому цилиндру 14 для идентификации событий аномального сгорания в цилиндре. В альтернативных вариантах осуществления, один или более датчиков 90 детонации могут быть присоединены к выбранным местоположениям блока цилиндров двигателя. Датчик детонации может быть датчиком вибраций на блоке цилиндров или датчиком ионизации, сконфигурированным в свече зажигания каждого цилиндра. Выходной сигнал датчика детонации может комбинироваться с выходным сигналом датчика ускорения коленчатого вала, чтобы указывать событие аномального сгорания в цилиндре. В одном из примеров, на основании выходного сигнала датчика 90 детонации в одном или более определенных интервалов (например, интервалов выбора времени по углу поворота коленчатого вала), аномальное сгорание, обусловленное одним или более из детонации и преждевременного воспламенения, может подвергаться принятию ответных мер. В частности, серьезность применяемого подавляющего действия может настраиваться, чтобы принимать меры в ответ на возникновение детонации и преждевременного воспламенения, а также для уменьшения вероятности дальнейших событий детонации или преждевременного воспламенения.
На основании сигнала датчика детонации, к примеру, временных характеристиках, амплитуде, интенсивности, частоте, и т.д. сигнала, а кроме того, на основании сигнала ускорения коленчатого вала, контроллер может принимать меры в ответ на события аномального сгорания в цилиндре. Например, контроллер может идентифицировать и различать аномальное сгорание, обусловленное детонацией и/или преждевременным воспламенением. В качестве примера, преждевременное воспламенение может указываться в ответ на сигналы датчика детонации, которые формируются в более раннем интервале (например, до события искрового зажигания в цилиндре), наряду с тем, что детонация может указываться в ответ на сигналы датчика детонации, которые формируются в более позднем интервале (например, после события искрового зажигания в цилиндре). Кроме того, преждевременное воспламенение может указываться в ответ на выходные сигналы датчика детонации, которые являются большими (например, более высокими, чем первое пороговое значение) и/или менее частыми, наряду с тем, что детонация может указываться в ответ на выходные сигналы датчика детонации, которые являются меньшими (например, более высокими, чем второе пороговое значение, второе пороговое значение находится ниже, чем первое пороговое значение) и/или более частыми Дополнительно, преждевременное воспламенение может отличаться от детонации на основании условий эксплуатации двигателя во время обнаружения аномального сгорания. Например, высокие интенсивности детонации на низких числах оборотов двигателя могут быть признаками преждевременного воспламенения на низком числе оборотов. В других вариантах осуществления, аномальное сгорание, обусловленное детонацией и преждевременным воспламенением, может различаться на основании выходного сигнала датчика детонации в одинарном определенном интервале. Например, преждевременное воспламенение может указываться на основании выходного сигнала датчика детонации, находящегося выше порогового значения в более ранней части интервала, наряду с тем, что детонация указывается на основании выходного сигнала датчика детонации, находящегося выше, чем пороговое значение в более поздней части интервала. Более того, каждый интервал может иметь отличающиеся пороговые значения. Например, первое, более высокое пороговое значение может применяться в первом (более раннем) интервале преждевременного воспламенения наряду с тем, что второе, более низкое пороговое значение применяется во втором (более позднем) интервале детонации.
Подавляющие действия, предпринятые для принятия мер в ответ на детонацию, могут отличаться от предпринятых контроллером для принятия мер в ответ на раннее зажигание. Например, детонация может подвергаться принятию ответных мер с использованием запаздывания искрового зажигания и EGR наряду с тем, что преждевременное зажигание подвергается принятию ответных мер с использованием обогащения цилиндра, обеднения цилиндра, ограничения нагрузки двигателя и/или подачи охлажденной внешней EGR.
Как конкретизировано со ссылкой на фиг. 2-4, изобретатели осознали, что, взамен выявления и разграничения событий аномального сгорания, а затем настройки подавляющего действия на основании природы аномального сгорания, подавляющие действия могут выполняться на основании интенсивности выходного сигнала датчика детонации в одном или более интервалов. Более точно, природа применяемого подавляющего действия может выбираться на основании интенсивности выходного сигнала датчика детонации в одном или более интервалов, и более того, серьезность применяемого подавляющего действия(ий) может повышаться по мере того, как возрастает интенсивность выходного сигнала датчика детонации в определенном интервале. Подавляющее действие также может настраиваться на основании числа оборотов двигателя, на котором выявлен выходной сигнал датчика детонации. Например, выходной сигнал датчика детонации, сформированный в первом интервале, может подвергаться принятию ответных мер с помощью обогащения цилиндра наряду с тем, что выходной сигнал датчика детонации, сформированный во втором интервале, может подвергаться принятию ответных мер с помощью запаздывания установки момента зажигания. В качестве еще одного примера, обогащение цилиндра может увеличиваться по мере того, как повышается интенсивность выходного сигнала датчика детонации в первом интервале, наряду с тем, что установка момента зажигания может подвергаться запаздыванию от MBT, в то время как интенсивность выходного сигнала датчика детонации во втором интервале превышает пороговое значение.
Возвращаясь к фиг. 1, контроллер 12 показан в качестве микрокомпьютера, включающего в себя микропроцессорный блок 106, порты 108 ввода/вывода, электронный запоминающий носитель для исполняемых программ и калибровочных значений, показанный в качестве микросхемы 110 постоянного запоминающего устройства в этом конкретном примере, оперативное запоминающее устройство 112, дежурную память 114 и шину данных. Контроллер 12 может принимать различные сигналы с датчиков, присоединенных к двигателю 10, в дополнение к тем сигналам, которые обсуждены ранее, в том числе, измерение вводимого массового расхода воздуха (MAF) с датчика 122 массового расхода воздуха; температуру охлаждающей жидкости двигателя (ECT) с датчика 116 температуры, присоединенного к патрубку 118 охлаждения; сигнал профильного считывания зажигания (PIP) с датчика 120 на эффекте Холла (или другого типа), присоединенного к коленчатому валу 140; положение дросселя (TP) с датчика положения дросселя; сигнал абсолютного давления в коллекторе (MAP) с датчика 124, AFR цилиндра с датчика 128 EGO, и аномальное сгорание с датчика 90 детонации и датчика ускорения коленчатого вала. Сигнал числа оборотов двигателя, RPM, может формироваться контроллером 12 из сигнала PIP. Сигнал давления в коллекторе, MAP, с датчика давления в коллекторе может использоваться для выдачи указания разряжения или давления во впускном коллекторе.
Постоянное запоминающее устройство 110 запоминающего носителя может быть запрограммировано машинно-читаемыми данными, представляющими команды, исполняемые процессором 106 для выполнения способов, описанных ниже, а также вариантов, которые предвосхищены, но специально не перечислены. Пример
Далее, с обращением к фиг. 2, описана примерная процедура 200 для принятия мер в ответ на аномальное сгорание в цилиндре на основании интенсивности выходного сигнала датчика детонации, вырабатываемой в двух частично перекрывающихся интервалах. Процедура настраивает сущность и серьезность применяемых подавляющих действий в ответ на аномальное сгорание на основании интенсивности выходного сигнала датчика детонации в определенных интервалах.
На 202, процедура включает в себя, во время каждого события сгорания в цилиндре, прием выходного сигнала датчика детонации, сформированного в первом интервале. Параллельно, на 222, для данного события сгорания, процедура включает в себя прием выходного сигнала датчика детонации, сформированного во втором интервале. По существу, один или более сигналов могут формироваться датчиком детонации в разные моменты времени в пределах первого или второго интервала. Датчик детонации может быть присоединен к цилиндру, подвергающемуся событию сгорания в цилиндре, или может быть присоединен к блоку цилиндров двигателя. В дополнение, выходные сигналы у любых сигналов, сформированных датчиком детонации вне определенных интервалов, могут игнорироваться.
Первый и второй интервалы могут быть интервалами выбора времени по углу поворота коленчатого вала, и первый интервал может частично перекрывать второй интервал. Например, установка момента начала первого интервала может находиться до события искрового зажигания для данного события сгорания в цилиндре (например, на 15 градусах до верхней мертвой точки (BTDC)), а установка момента окончания первого интервала может находиться в такте расширения данного события сгорания в цилиндре (например, на 40 градусах после верхней мертвой точки). В сравнение, установка момента начала второго интервала может находиться после события искрового зажигания, а установка момента окончания второго интервала может находиться после окончания первого интервала. Интервалы могут настраиваться, с тем чтобы захватывать многообразие событий аномального сгорания, таких как обусловленные детонацией в цилиндре, пропусками зажигания в цилиндре, а так же обусловленные преждевременным воспламенением в цилиндре. В одном из примеров, размер интервалов может настраиваться на основании числа оборотов двигателя. Кроме того, размер интервалов может настраиваться относительно друг друга. Например, второй интервал может иметь абсолютное значение относительно ВМТ (TDC), а первый интервал может калиброваться на основании второго интервала, или первый интервал может иметь абсолютное значение относительно ВМТ, а второй интервал может калиброваться на основании первого интервала. В качестве примера, первый интервал может калиброваться, чтобы заканчиваться за 3,0 градуса CA (угла поворота коленчатого вала) до того, как заканчивается второй интервал, при числах оборото