Способ производства коррозионностойкой стали с массовой долей углерода не менее 0,06%
Иллюстрации
Показать всеРеферат
Сущность изобретения: в дуговой печи осуществляют окончательное рафинирование металла от углерода, легирование металла на нижний предел содержания элементов в стали с учетом их восстановления из печного шлака, доводку металла до заданной температуры осуществляют по следующей зависимости: Тпечи Тр + АТСл + АТп + ДТр + АТа + ATs +A Тл, где Тр - оптимальная температура разливки данной марки стали, °С, ДТся потери температуры при сливе металла из шлака из печи в заливочный ковш. °С; АТр - потери температуры при выпуске металла из конвертера в разливаемый ковш,.°С; АТа - потери температуры, Связанные с аргонной продувкой. °С; ATs - потери температуры, связанные с проведением необходимой степени десульфурации, °С; ДТл - потери температуры, связанные с делегированием , °С; АТп - потери температуры при переливе металла и шлака из заливочного ковша в конвертер, °С, а в конвертере производится окончательная корректировка по химическому составу, довосстановление печного шлака и обработка расплава аргоном . Причем продувку аргоном в конвертере осуществляют в течение 2-Ю мин с интенсивностью I Q ( AS /с), где Q - нормальная интенсивность продувки, равная 0,010-0,040 м /мин; С - массовая доля углерода в металле аргонным рафинированием; AS - количество серы, которое необходимо удалить в конвертере, % . 1 з п ф-лы, 2 табл. (Л 4 N х| сл о
СОЮЗ СОВЕТСКИХ
СОЦИАЛИСТИЧЕСКИХ
РЕСПУБЛИК
ГОСУДАРСТВЕН 4Й КОМИТЕТ
ПО ИЗОБРЕТЕНИЯМ И ОТКР6!ТИЯМ
ПРИ ГКНТ СССР
ОПИСАНИЕ ИЗОБРЕТЕНИЯ
К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ
1 (21) 4804709/02; 4803543/02 (22) 20,03.90 (46) 15.07.92. Бюл. N. 26 (71) Украинский научно-исследовательский институт специальных сталей, сплавов и ферросплавов (72) В.П.Денисенко, К.П.Вербицкий, А.Ф. Старцев, О.И.Тищенко. А.И. Кравченко, С.Л.Сергиенко, Н,В.Стеценко и B.È.Ãeðîí (53) 669. 187.26(088,8) (56) Авторское свидетельство СССР
N 1339135, кл. С 21 С 5/28, 1985, Авторское свидетельство СССР
N. 924115, кл. С 21 С 5/52, 1979.
Садовник Ю.В, и др, Проблемы метал- лургического производства, вып. 99, — Киев: .
Техника, 1989, с. 32 — 35. (54) СПОСОБ ПРОИЗВОДСТВА КОРРОЗИОННОСТОЙКОЙ СТАЛИ С МАССОВОЙ ДОЛЕЙ УГЛЕРОДА НЕ МЕНЕЕ 0.06ф (57) Сущность изобретения: в дуговой печи осуществляют окончательное рафинирование металла от углерода, легирование металла на нижний предел содержания элементов в стали с учетом их восстановления из печноrо шлака, доводку металла до заданной температуры осуществляют по следующей
Предлагаемое изобретение относится к черной металлургии и может быть использовано при производстве коррозионностойких сталей типа 08-12Х18Н10Т.
Известен способ производства коррозионной стали в злектродуговой печи, включающий плавление шихты. продувку расплава газообразным кислородом. вос- . становление из шлака регистрирующих эле„„ Ы,, 1747501 А1 (я)з C 21 С 5 /52, 5 /28
1",1 j О 9, 2 зависимости: Тягачи =Тр+ ATcn+ ЛТп+ АТр< .+ AT> + ЬТз +А Тл, где Тр — оптимальная температура разливки данной марки стали, С, AT
hTn — потери температуры, связанные с делегированием, С; AT> — потери температуры и рй переливе металла и шлака из заливочного ковша в конвертер, С, а в конвертере производится окончательная корректировка по химическому составу,довосстановление печного шлака и обработка расплава аргоном. Причем продувку аргоном в конвертере осуществляют в течение 2 — 10 мин с интенсивностью! = Q (М /с), где Q — нормальная интенсивность продувки, равная 0,010-0,040 м /мин; С вЂ” массовая доля углерода в метал3 ле аргонным рафинированием; AS — количество серы, которое необходимо удалить в конвертере, . 1 з.п, ф-лы, 2 табл. ментов, ранее оксиленных в процессе продувки и плавления, охлаждение металла и удаление окислительного шлака, дОводку по химсоставу, десульфурацию металла, обновление шлака и легирование титаном.
Недостатком технологии является низкое усвоение легирующих элементов.
Существует также технология производства коррозионностойкой стали, включа1747501 ющая выплавку металла в дуговой печи одношлаковым и роцессом, восстановление легирующих элементов и десульфурацию в промежуточном ковше, легирование металла титаном а разливочном ковше при переливе расплава, Основными недостатками данной технологии является усвоение титана и невысокая степень десульфурации металла.
Наиболее близким по технической сущности и достигаемому эффекту к предлагаемому изобретению является способ производства коррозионнастойкой стали с газокислородным рафинированием высоколегираванного расплава в промышленном конвертере с донным подводом дутья. Данная технология заключается в следующем.
Дуговая печь используется для расплавления твердой шихты. в состав которой вводится павы шеи на я масса вы сокоуглеродистого феррохрома и получения полупродукта. После окончания расплавления шихты и набора температуры до 1630-1640 С производится отбор проб на химический анализ, по результатам которого в печь присаживаются легирующие материалы с учетом того, что их присадка в конвертер не должна превышать 10 (от общей массы металла. При 1600-1620 "С расплав выпускают в ковш и после отбора проб заливают в конвертер, где производится продувка газообразным кислородом, природным газом, аргоном и рафинирование металла. Легирование титана производится в разливочном ковше при выпуске металла из агрегата, Недостатками прототипа являются: высокая себестоимость металла, обусловленная повышенным расходом дорогостоящих огнеупоров {мощная кислородная продувка е конвертере, наличие агрессивного шлака, длительное пребывание расплава в конвертере. равное 1,0-1,5 ч) и раскислйтелей (в основном алюминийсодержащий, до 4,0 кг/т) для проведения успешной десульфурации металла; повышенный расход аргона.
Цель изобретения — снижение расхода раскислителей и аргона, повышение стойкости футеровки конвертера.
Поставленная цель достигается за счет того, что в дуговой печи осуществляют окончательное рафинирование металла от углерода, легирование металла на нижний предел содержания элементов в стали с учетом их восстановления из печного шлака, доводку металла до заданной температуры осуществляют по следующей зависимости
Тпечи = Тр + Мсл + ЛТп +Л Тр +Л Те +
Лтэ+ ЬТл, где Тр — оптимальная температура разливки данной марки стали, С:
ЬТел — потери температуры при сливе металла и шлака из печи в заливочный ковш, оС, AT> — потери температура при выпуске
5 металла из конвертера в разливаемый ковш, ОС .AT< — потери температуры, связанные с аргонной продувкой, С;
ATs — потери температуры, связанные с
10 проведением необходимой степени десульфурации, C, .: .
ЛТл — потери температуры, связанные с делегированием металла, С;
ЛТл — потери температуры при переливе
15 металла и шлака из заливочного ковша в конвертер. С, а в конвертере производится окончательная . корректировка по химическому составу, довосстановление печного шлака и обработка
20 расплава аргоном.- Причем продувку аргоном в конвертере осуществляют в течение
2 — 10 мин с интенсивностью
AS
С
25 где 0 — нормальная интенсивность продувки, равная 0,010-0,040 мзlт мин;
AS — количество серы, которое необходимо удалить в конверторе, :
С вЂ” массовая доля углерода в металле
30 перед аргонным рафинированием, g,, Организованная предлагаемым способом внепечная обработка коррозионностойкой стали позволяет избежать недостатков, присущих прототипу, а имен35 но: исключается использование плавикового шпата для разжижения шлака, десульфурации металла, поскольку металл и шлак в предлагаемом способе выпускаются в заливочный ковш в жидкоподвижном состоянии; повышается в 1,5-3 раза стойкость футеровки конвертера и увеличивается его производительность вследствие исключения трехстадийной продувки расплава кис-45 лородом и аргоном и сокращения длительности пребывания шлакометаллического расплава в конвертере с 1-1,5 ч до 210 мин; значительным образом уменьшается
50 расход аргона, исключается использование кускового алюминия для восстановления шлака,.поскольку восстановление шлака в данном случае осуществляется при переливах расплава.
Если ограничиться только удалением углерода в печи, то это обычн <й монопроцесс с высокой себестоимостью стали, обуслов. ленной высоким расходом легирующих элементов (табл.1, пример 1).
1747501
При восстановлении печного шлака в заливочном ковше с одновременным легированием титаном происходит крайне нестабильное и низкое усвоение титана (табл.1, пример 2).
Исполнение предлагаемой технологии, кроме удалени углерода в печи, восстановления печного шлака в заливочном ковше, довосстановления печного шлака в конвертере приводит либо к резкому уменьшению стойкости футеровки конвертера (табл. I, пример 5), либо к ухудшению качества металла из-за ограниченного взаимодействия металла и шлака (табл.1, примеры 6 и 7).
Если же доводку металла в печи осуществлять, не применяя предлагаемую формулу, то возможны либо аварийная разливка металла из-за недостатка тепла, либо необоснованные тепловые потери (табл.1, пример 3), При переносе рафинирования металла от углерода в конвертер для наведения основного восстановительного шлака в конвертере потребуется еще более длительное время, чем в протетипе, что приводит к повышению себестоимости стали из-за еще более значительного расхода огнеупоров и кускового алюминия (табл,2, пример 2)., Если при обработке полупродукта в конвертере не испольэовать предлагаемую формулу для расчета интенсивности аргонной продувки, то появляются сложности с образованием в агрегате основного восстановительного шлака и связанные с этим последствия (табл.2, пример 4), Длительность обработки металла в конвертере основнь м восстановительным шлаком и аргоном в течение менее 2 мин и в течение более 10 мин нецелесообразно. B первом случае ухудшаются условия для десульфурации металла, удаление кислорода и восстановления легирующих элементов из печного шлака, Во втором происходит необоснованное увеличение тепловых потерь (табл.2, группа примеров 5).
Продувка расплава аргоном с интенсивЛЯ ностью менее,чем 0,010 — -- — и более чем
С
AS
0,040 —. невыгодна. В первом случае
С возможно заметалливание фурмы, во вто. ром происходит необоснованное увеличение расхода ар она и огнеупоров (табл.2, группа примеров 6).
Представленные результаты опытно промышленного опробования предлагаемого способа происходили при практически неизменных величин М и С, равных соответственно 0,016 и 0,08%.
Однако в реальных условиях содержание серы в исходном металле может колебаться от 0,015 до 0,04 (AS - 0,007 — 0,032 %), массовая доля углерода — от 0,06 до 0,010 $.
5 Чем выше содержание серы в исходном металле и чем ниже массовая доля углерода. тем более интенсивнее должна быть продувка расплава аргоном и наоборот.
Если же йе учитывать массовые доли
10 серы и углерода в исходном металле для определения значения интенсивности аргонной продувки, то взамен происходит либо необоснованный перерасход аргона, огнеупоров, либо ухудшение качества ме15 талла из-за трудности с формированием основного восстановительного шлака и недостаточного перемешивания металла и шлака (табл.2, примеры 10 и 11).
Пример. Полупродукт для стали
20 12Х18Н10Т выплавляли в 50-тонной электродуговой печи. Рафинирование металла от углерода осуществляли в печи до 0,06-0,10 .
Плавку вели одношлаковым процессом.
Легирование металла никелем, хромом
25 осуществляли в печи по расчету.
Затем осуществляли одну из включенных операций — доводку металла по температуре с использованием предлагаемой формулы.
30 B связи с тем, что наиболее энергетически выгодным является охлаждение металла, в качестве управляющих воздействий для получения оптимальной температуры стали перед ее выпуском из печи является
35 различная количественная присадка металлических и шлакообразующих добавок; фер- росплавы, охладители (отходы стали), известь.
Оптимальная температура разливки
40 стали 08-12Х18Н10Т 1540-1560 "С. После продувки расплава кислородом в печи температура металла колеблется от 1950 до
2000 "С, в зависимости от содержания хрома и углерода в металле, 45 Нам известно, что вне печи ожидаются следующие тепловые потери, определенные эмпирически в результате промышленного эксперимента: потери температуры при сливе металла
5 0 и шлака из печи в заливочный ков (20-30 С в зависимости от исходной температуры и температуры футеровки ковша); потери температуры при транспортировке и переливе металла и шлака из зали55 вочного ковша в конвертер (20-30 " С в зависимости от длительности транспортировки ковша и температуры футеровки конвертера); потери температуры при продувке расплава аргоном (10 15 С в зависимости от
1747501
20
55 времени нахождения расплава в конвертере); потери температуры при долегировании металла (15-30 С в зависимости от количества легирующих добавок); потери температуры при вйпуске металла из конвертера в разливочный ков(1520 С f3 зав имости от температуры футеровки разливочного ковша); потери температуры при проведении десульфурации (20-40 С в зависимости от количества извести, отданной для достижения необходимой степени десульфурации).
Таким образом, возможные тепловые потери могут колебаться от 120 до 160 OÑ, В связи с тем, что подогрев металла в процессе внепечной обработки в данном способе исключен, необходимо для предотвращения аварийной разливки стали или необоснованныхтепловых потерь, приводя щих к увеличению износа футеровки. очень точно выдерживать температуру металла в печи перед выпуском, С учетом приведенных практических данных эта температура должна колебаться от 16 80 до 1720 С. в основном в зависимости от содержания серы в исходйом металле, степени долегирования металла в конвертере, температуры футеровки агрега тов и др.
При достижении температуры металла в печи 1700.1 20 С металл и шлак выливали в эаливочный ковш, где.происходило восстановление печного шлака металлом и частичная десульфурация стали до 0,015-0,040 (».
Затем металл и шлак заливали в агрегат, где производили обработку аргоном с интенсивностью (0,005-0,050) х (Л S изAS
С меняли от 0,007 до 0,032 7,, а С изменяли от
0 06 до 0,107,. В качестве агрегата использовали конвертер для газокислородного рафинирования особо низкоуглеродистой стали в период межплавочных простоев. В конвертер также присаживаки твердые шлакообраэующие (известь, плавиковый шпат и в малых количествах кусковой алюминий), Двойная обработка печного шлака ме.таллом при переливах и присадка твердых шлакообразующих позволило сформировать основной восстановительный шлак в конвертере и обрабатывать этим шлаком и аргоном металл в течение 5-12 мин.
В конвертере также осуществляли долегирование металла по хрому и никелю.
Легирование металла титаном производили s разливочном ковше при сливе расплава иэ конвертера, Таким образом. несмотря на использование в большем количестве более дорогого
8 с источника хрома (низкоуглеродистого феррохрома), по сравнению с прототипом предлагаемый способ за счет уменьшения длительности нахождения расплава в конвертере, исключения интенсивной кислородной продувки в конвертере и формирования менее агрессивного шла а позволяет существенным образом снизить расход дорогостоящих огнеупоров, раскислителей и повысить производительность
В итоге фактическая себестоимость выплавки одной тонны стали.08x12X1SH10T уменьшается в среднем на 42 руб:
Обработка металла на заключительной
15 стадии основным восстановительным шлаком и аргоном по предлагаемому способу позволила повысить качество стали по кислороду и сере.
Обобщенные результаты опытно-промышленного опробования предлагаемого способа сведены в табл. 1 и 2.
Формула изобретения
1. Способ производства коррозионно25 стойкой стали с массовой долей углерода не менее 0.06 $, включающий выплавку полупродукта в дуговой печи одношлаковым процессом, выпуск в ковш, отбор пробы, заливку полупродукта в конвертер, рафини30 рование и доводку металла в конвертере, выпуск металла в ковш и легирование его титаном, отличающийся тем, что, с целью снижения расхода раскислителей и аргонов, повышения стойкости, в дуговой
35 печи осуществляют окончательное рафинирование металла от углерода, легирование металла на нижний предел содержания элементов с учетом их последующего восстановления иэ печного шлака, доводку
40 металла до заданной температуры осуществляют по следующей зависимости
Тпечи = Tp + Ю сл + ATn +A Tp + ATa +
AT+ ЬТ., где Тр — оптимальная температура разливки данной марки стали, С;
AT« — потери температуры при сливе металла и шлака из печи е эаливочный ковш, оС.
ATp — потери температуры при выпуске металла из конвертера в раэливочный ковш, оС, ATa — потери температуры, связанные с аргонной продувкой, ОС;
AT — потери температуры, связанные с проведением необходимой степени десульфурации, С;
ЬТл — потери температуры, связанные с долегированием металла, С; f747S01
: Габлица1
Восстановление печного шлаке в залйвочном ковше: да(+}, нет (-) Удаление углерода в печи: да (+)нет(-) Себестоимость стали, руб/
Способ производства стали, пример
bhhb
Доводка металла по температуре в печи с использованием формулы: да
+, нет—
Довосстановлений печйого елэкв в конвертере при переливе: да Янет
Известный
Промежуточ .. ный. 1
723,0 726.0
Низкое и нестабильное усвоение ти-, тана
Либо аварийная разливка, либо необоснованные тепловые потери
673;0
Резкое уменьшение стойкости футеровки
Ухудшение качества металла
Ухудшение качества металла
Предлагаемый 4
+ ..
+ Промежуточные 6
9,, 10
ЬТп — потери температурй при йереливе ществляют в течение 2- 10 мин с интенсивметэлла и шлака из заливочного ковша э . „ -О Ь$ онвертер, С, - .:.::: -.:.. : ::; ;,:.- . : .:;:;; С а в конвертере осуществляют окончэтель- где 0 — нормальная интенсивность продувную доводку металла по химическому аоста- б ки, равная 0,01-0,04 м /т мин; . з ву, довосстановление печного алака и: .- ЬЗ-необходимоеудалениесерывконобработку расплава аргоном.. ::,: - в@рте@в, ф;2. Способ по пЛ. отличающийся . С вЂ” массовая доля углерода в металле . тем,чтопродувкуаргономвконвертервосу- ., йеред аргонным рафинированием, . . 30
1747601 табпицаг фактическак себесто>в>ость метапла,руб/т
Способ
npo>>eвод» ства ста хи, при- мер, 1г, .
Обработка нетвппа в конвертере восстанови» тепьнь>ч в>пакон: да (+), нет (-) Обработка нетаппв в конвертере аргонон по фОРНУпе 1 да(т),нет(-) . Уда пение углерода а печи> да (+) нет (") йассовав допй серн в готовой стапи, Ф
Длительность об» работки в конвертере, мин
Обработ ка нетайна с отнпонени» ем от фор мулы да (+), нет () > * ° н
« °
725,0
687,0
728,0
Нестабильное . увеличение титана
Яааестный
60-90
6 более 90
0,015
O >008
O,012
0,015
»
+(0,825 8„-,-) Предлагаемый (при Я » е 0,0162, С 0,082)
0,5
6
0,005х аь/с ..
0>010х пв/с
0,025х ав/с
0,04ox z s/с
0>050х л9/С
Поедпагаеный (при равпичных внвчени>lxxS è С) лб 0,007
С а 0>010
t i 0 025 х-ь-->
О 007
Oi10
0>007
»>S ы О 032
1» 0,025 х»олхв>
dS "0,016
С»0,08,„, I»O O25 х-e-0 00
О ° 010
689
687
О, 008
Пеобоснованный перересход аргонв, огнеупоров
1O.
695 у 0,015
«»»»
«»
Составитель П.Г:Терзиян
Редактор M,Êîáûëÿíñêàÿ ) ехред M.Моргентал Корректор Т, Ма((о
Заказ 2474 Тираж
ВНИИПИ Гос а ст
Подписное
Государственного комитета по изобретениям и открытиям при ГКНТ СССР
113035, Москва. Ж 35, Раушская наб„4/5
Производственно-издательский комбинат "Патент" r, Ужг, .Г жгород, ул. агаринэ, 101
6 л б 0,007
С O ° 1О
1 0>025х-а"вф
О 01"
O„áá, 6 аб - 00)2
С i 0,06
1 0,025 X-б-@8
0 016
Отсутствие еос» 0>015 становнтельного нпака
692 0,015
696 0,014
687 0,008
687 О ° 008
Необоснованные тепповые потери ваметеппнванне фурии
691 0 >012
687 -" 0,008
689 0,008
11еобоснованное увеличение расхода аргона