Способ времяпролетной масс-спектрометрии
Реферат
Использование: относится к времяпролетной масс-спектрометрии. Сущность изобретения: заключается в разделении испущенных источником ионов в первом бесполевом пространстве дрейфа по времени пролета на пакеты, отражении пакетов ионов в электростатическом поле с их последующим направлением во второе бесполевое пространство дрейфа, где осуществляется поочередное отклонение пакетов ионов определяемых масс, и последующей регистрацией. 2 ил.
Изобретение относится к масс-спетрометрии, а именно времяпролетной масс-спектрометрии, и может быть использовано в микроэлектронике для анализа состава вещества по массам ионов химических элементов и соединений.
Известен способ времяпролетной масс-спектрометрии [1], в котором направляют исследуемые ионы с одинаковой энергией из источника ионов в бесполевое пространство дрейфа и регистрируют после прохождения фиксированного пути разделенные в нем по времени пакеты ионов с одинаковой массой. Недостатком известного способа является низкая разрешающая способность из-за наличия начального разброса по энергиям в источнике ионов. Наиболее близким по технической сущности к заявляемому является способ времяпролетной масс-спектрометрии [2], в котором испущенные источником ионы разделяются в первом бесполевом пространстве дрейфа по времени пролета, далее разделенные пакеты ионов отражаются в электростатическом поле и направляются во второе бесполевое пространство дрейфа, где происходит компенсация начального разброса ионов с одинаковой массой по энергиям с последующей регистрацией пакетов ионов. Недостатками известного способа являются недостаточная разрешающая способность, обусловленная конечной временной протяженностью регистрируемых ионных пакетов, и низкая чувствительность, связанная с угловой расходимостью ионов после отражения в ионном зеркале. Целью изобретения является повышение разрешающей способности и чувствительности. Сущность изобретения заключается в том, что в способе времяпролетной масс-спектрометрии, заключающемся в разделении испущенных источником ионов в первом бесполевом пространстве дрейфа по времени пролета на пакеты, отражении пакетов ионов в электростатическом поле с их последующим направлением во втрое бесполевое пространство дрейфа и регистрацией, регистрацию пакетов ионов осуществляют посредством поочередного отклонения пакетов ионов определяемых масс во втором бесполевом пространстве дрейфа импульсным электрическим полем, напряженность которого (t) и время воздействия на отклоняемые пакеты ионов выбирают из соотношения: (t)dt = tg; (1) где - угол регистрации, рад; Uист - ускоряющее напряжение источника ионов, В; Мi - масса определяемого иона, кг; е - элементарный заряд, Кл. На фиг.1 схематически представлено устройство, реализующее предлагаемый способ времяпролетной масс-спектрометрии; на фиг.2 изображены траектории ионов с массой Mi после отражения в ионном зеркале. Устройство состоит из источника 1 ионов, ионного зеркала 2, отклоняющих электродов 3, детектора 4 ионов, расположенного на оси, отклоненной от оси первого пространства дрейфа на угол . Устройство работает следующим образом. Вылетающие из источника 1 в виде короткого пакета ионы массами Mi, Mj, Mк и т.д. с одинаковыми энергиями разделяются в первом пространстве дрейфа на пакеты по массам Mi, Mj, Mк и т.д. После отражения пакета ионов массой Mi в двухступенчатом (U1 и U2) поле на него воздействуют импульсом электрического поля, создаваемым при приложении к отклоняющим электродам 3 импульса напряжения с параметрами U3i, 3i. При этом длительность импульса напряжения 3i выбирают, исходя из того, что: 3i < < tпрол, (2) где tпрол - время пролета ионами с массой Mi отклоняющих электродов 3. В случае выполнения этого требования импульс электрического поля длительностью 3i, создаваемый между отклоняющими электродами 3, будет воздействовать на ионы с небольшим различием в массах Mi, дающие основной вклад в ухудшение разрешения, одинаковое время 3i, поскольку эти ионы имеют слабые различия в скоростях vi= пролета отклоняющих электродов 3. Этот импульс сообщает ионам в промежутке между отклоняющими электродами 3 скорость vоткл.i, перпендикулярно оси первого пространства дрейфа и определяемую по формуле vоткл.i= Uзi(t)dt, (3) где е - элементарный разряд; d3 - расстояние между отклоняющими электродами 3. Для случая прямоугольного отклоняющего импульса, формула (3) принимает вид: vоткл.i= Uзiзi, (4) где Uзi - амплитуда прямоугольного импульса. В случае треугольного отклоняющего импульса формула (3) имеет вид: vоткл.i= 2 Uзimax3imax. (5) В случае, когда импульсное электрическое поле реализуется в области плоского конденсатора, параметры отклоняющего импульса напряжения на электродах конденсатора (амплитуда U3i и длительность 3i) могут быть определены из соотношения: для прямоугольного импульса Uзiз = dзitg, (6) где d3 - расстояние между электродами конденсатора 3; для импульса треугольной формы Uзiзi= dзtg (7) Подачу отклоняющего импульса поля на электроды 3 длительностью 3iнеобходимо осуществлять в момент пролета ионами массы Mi половины длины отклоняющих электродов 3. Время подачи отклоняющего импульса tп можно определить следующим образом: tп = tпрол.1 + tотр + t, (8) где tпрол.1 - время пролета ионами массой Mi первого пространства дрейфа; tотр - время пролета ионами массой Mi ионного зеркала 2; t'прол.2 - время пролета ионами массой Mi от ионного зеркала 2 до середины отклоняющих электродов 3. tпрол.1=, где l1 - длина первого пространства дрейфа; Е - кинетическая энергия ионов на выходе из ионного источника 1 tотр= 2 , (9) где U1 - напряжение между электродами первого отражающего промежутка ионного зеркала 2 длиной d1; U2 - напряжение между электродами второго отражающего промежутка ионного зеркала 2 длиной d2; е - элементарный заряд. Так как на выходе из ионного зеркала 2 ионы массой Mi имеют ту же скорость, что и в первом дрейфовом пространстве, то есть vотр.i= vi= , (10) то t= , (11) где l21 - расстояние от ионного зеркала 2 до середины отклоняющих электродов 3. Значение tпрол. в требовании (11) определяется как: tпрол. = , (12) где lэл.3 - длина отклоняющих электродов 3. Попавшие в это же время в пространство между отклоняющими электродами 3 ионы с массами Mj, MK и т.д. также приобретут в направлении, перпендикулярном оси первого пространства дрейфа, различные скорости vоткл.j, vоткл.к и т.д.: vоткл.j = Uзi(t)dt; (13) vоткл.к = Uзi(t)dt. Поскольку в это же время в отражательном поле ионного зеркала 2 ионы меняют направления своего движения на противоположные с той же скоростью vi, vj, vк, суммарная скорость движения ионов vEi, vEj, veкбудет являться результатом векторного сложения скоростей вдоль оси первого пространства дрейфа vотр.i, vотр.j, vотр.к и скорости vоткл.i, vоткл.j, vоткл.к, причем очевидно: v = v; v = v; v = v. (14) Таким образом, ионы с массами Mi, Mj, Mк отклонятся на разные углы i, j, к от первоначального направления движения i= arctg Uзi(t)dt; j= arctg Uзi(t)dt; (15) к= arctg Uзi(t)dt.. В случае прямоугольного и треугольного выталкивающих импульсов формулы (14) примут, соответственно, вид (16) и (17): i= arctg = arctg ; j= arctg ; (16) к= arctg ; i= arctg ; j= arctg ; (17) к= arctg ; Поскольку детектор 4 ионов расположен на оси, отстоящей от оси первого пространства дрейфа на угол =i, после прохождения второго пространства дрейфа будут регистрироваться только ионы массой Mi, сфокусированные по энергии в ионном зеркале 2. Таким образом, за счет дополнительного разделения ионов по углу разлета, зависящему от массы, осуществляется повышение разрешения ионов по массам в предлагаемом способе времяпролетной масс-спектрометрии. Дополнительное слагаемое, вносимое предлагаемым способом в разрешение по массам, имеет вид: = , (18) где 0 . Подавая в момент нахождения в область между отклоняющими электродами 3 пакет ионов с другой массой (например, Mj, Mк) tj l; tк l (см. формулу импульса напряжения на отклоняющие электроды 3 с параметрами U3j, 3i, U3к, 3к для ионов с массой Mj, Mк соответственно) и, подбирая параметры U3j, 3j или U3к, 3к из соображения отклонения ионов с массой Mj или Мк на угол регистрации (фиг.1), можно осуществлять исследование масс-спектра ионов из источника 1. В способе [2], взятом за прототип, происходит снижение чувствительности за счет угловой расходимости ионов после отражения в ионном зеркале. В предлагаемом способе происходит подфокусировка ионов на детектор 4 за счет воздействия импульса электрического поля, отклоняющего ионы в направлении, перпендикулярном оси первого пространства дрейфа. Это связано с тем, что при отражении ионов в зеркале они приобретают скорости, противоположные направлению первоначального движения, но равные по величине скоростям до отражения (см. формулу (14)). Таким образом, ионы массой Mi, имеющие большую скорость vi ' из-за начального разброса в источнике 1 ионов (фиг.1) и прилетающие к отражательному промежутку раньше, после отражения в ионном зеркале, имея по величине ту же скорость viотр' = vi', оказываются сзади по отношению к ионам массой Mi, вылетевшим из источника с начальной скоростью vi '' < vi ' (vотр.i ''< vотр.i'). Но в пространстве между электродами 3 за время действия отклоняющего импульса электрического поля 3i они приобретут одну и ту же скорость в направлении, перпендикулярном оси первого пространства дрейфа v откл.i' = v откл.i'' = vоткл.i. Поэтому суммарные скорости ионов пакета массой Mi v' и v являющиеся результатом векторного сложения скоростей = + , = v+ имеют тенденцию к сходимости в направлении движения к детектору (фиг.2). Минимальный размер фокусировки ионов пакета по массам driподбирается путем оптимизации параметров отклоняющего импульса соответственно для случаев прямоугольного и треугольного импульсов напряжения: dri= dvi; (19) dri= dvi, где l2 - длина второго пространства дрейфа. Таким образом, в предлагаемом способе времяпролетной масс-спектрометрии происходит повышение разрешающей способности по массам ионов за счет дополнительного разделения ионов разных масс на различные углы отклонения и чувствительности за счет подфокусировки пакета ионов отклоняющим импульсом электрического поля. Предлагаемый способ может быть использован для проведения масс-анализа различных ионных пучков, применяемых в технологии и аналитике микроэлектроники, физических исследованиях с высокой чувствительностью и разрешающей способностью по массам.Формула изобретения
СПОСОБ ВРЕМЯПРОЛЕТНОЙ МАСС-СПЕКТРОМЕТРИИ, заключающийся в разделении испущенных источников ионов в первом бесполевом пространстве дрейфа по времени пролета на пакеты, отражении пакетов ионов в электростатическом поле с их последующим направлением в второе бесполевое пространство дрейфа и регистрацией, отличающийся тем, что, с целью повышения разрешающей способности и чувствительности, регистрацию пакетов ионов осуществляют посредством поочередного отклонения пакетов ионов определяемых масс в втором бесполевом пространстве дрейфа импульсным электрическим полем, напряженность которого (t) и время воздействия на отклоняемые пакеты ионов выбирают из соотношения (t)dt = tg, где - угол регистрации пакетов ионов, рад; Uист. - ускоряющее напряжение источника ионов, В; Mi - масса определяемого иона, кг; l - элементарный заряд, Кл.РИСУНКИ
Рисунок 1, Рисунок 2