Способ подготовки зерна к осахариванию
Реферат
Изобретение относится к пивобезалкогольной промышленности. Сущность способа заключается в том, что термообработку сырья осуществляют потоком инфракрасного излучения с длиной волны 0,8 3,2 мкм до достижения температуры зерна 150 200°С. 2 табл.
Изобретение относится к средствам приготовления алкогольных и пивобезалкогольных напитков. Оно является одной из операций технологического процесса приготовления спирта этилового, а также пива, кваса и других прохладительных напитков, а именно операцией осахаривания зерна.
Известен способ получения спирта этилового, включающий операции приготовления солода из пророщенного зерна, разваривания крахмалистого зерна, осахаривания крахмала, брожения и перегонки [1] Подготовка зерна к осахариванию в описанном процессе включают длительную варку зернового сырья в специальных условиях, которые требуют большого количества тепловой энергии и воды, процесс является чрезвычайно неэкономичным и трудоемким. Известен также способ получения пива, включающий получение затора из сеян смеси несолошеного сырья и ячменя, затирание затора, осахаривание [2] Наиболее близким к предлагаемому решению по технической сущности и достигаемому результату является способ подготовки зерна к осахариванию, включающий его термообработку [3] Термообработка при этом осуществляется путем разваривания исходного продукта в специальных условиях. Описанный способ имеет следующие недостатки: необходимость использования установок повышенного (до 5 там.) давления; большая (до 75 мин) продолжительность процесса; необходимость использования энергоемкого оборудования, приготовление перегретого пара. Поэтому и указанный способ является неэкономичным и трудоемким. В известных технических решениях для осахаривания крахмала разваренной массы зерна в производстве спирта используют ферменты солода и плесневых грибов. Солодом называется зерно, пророщенное в особых условиях. В спиртовом производстве солод готовят непосредственно на спиртовых заводах и употребляют в производстве в невысушенном состоянии, в виде так называемого зеленого солода. Можно употреблять сухой солод, высушенный при определенных температурных условиях. Солод для производства спирта должен иметь, как минимум, три фермента амилазу, -амилазу и декстрино-фосфатазу или декстриназу. Крахмал, содержащий в зерне, недоступен для действия амилолитических ферментов солода, так как защищен стенками клеток. Кроме того, в нерастворенном состоянии он осахаривается чрезвычайно медленно. Поэтому одной из важнейших операций технологического процесса получения спирта является разваривание крахмалистого сырья (зерна), которое состоит в том, чтобы вскрыть клетки сырья и перевести крахмал в растворенное состояние. Крахмал растворяется при температуре 120оС, однако для ослабления клеточных стенок такой температуры недостаточно. Поэтому целое зерно обычно разваривают при температуре 145.155оС. В процессе тепловой обработки в разварнике клетки крахмала сохраняют свою структуру; она нарушается лишь при выдувании вследствие перепада давлений и адиабатического расширения пара. Таким образом, подготовка зерна к осахариванию в известных технических решениях, определяющих современный уровень техники в этой области, это длительный процесс разваривания зерна в специальных условиях, т.е. трудоемкий и дорогой этап. Задача, которая решается предлагаемым изобретением, снижение трудоемкости процесса за счет исключения операции разваривания зерна. Предлагаемый способ, как и известный способ подготовки зерна к осахариванию, включает операции его термообработки, а согласно изобретению, термообработку исходного зернового продукта осуществляют, воздействуя на него потоками инфракрасного излучения с длиной волны 0,8.3,2 мкм до снижения температуры зерна 150.200оС. Облучению подвергают зерно со стандартной влажностью. При этом благодаря выбору оптимальной длины волны влага диффундирует в середину зерновки, а при достижении температуры 150.200оС она из-за cоздания высокого давления пара внутри зерновки и герметизации ее наружной поверхности взрывается. Указанные режимы термообработки зерна существенным образом изменяют его биохимические показатели и физические свойства. Термообработка ведется в спектральном диапазоне 0,8.3,2 мкм, и плотность подающего потока излучений 20. 22 кВт/м2 до достижения температуры нагрева зерна 150.200оС. При этом энергетическая экспозиция излучений составляет 1500.2000 кВт/м2. Обработка зерна излучением с длиной волны менее 0,8 мкм практически не сказывается на эффективности прохождения биохимических процессов в продукте. Облучение зерна ИК-излучением с длиной волны более 3,2 мкм приводит к его медленному поверхностному нагреву без проникновения влаги внутрь продукта, что не решает поставленной задачи. Нагрев зерна до температуры менее 150оС не обеспечивает "взрыва" зерновки, т.е. получения требуемого количества декстринов и редуцирующих сахаров, а лишь подсушивает зерно. Нагрев свыше 200оС приводит к порче зерна к обугливанию. Физические характеристики твердой пшеницы и пшеницы после "взрыва" показаны в табл.1, биохимические показатели ячменя и пшеницы в табл.2. Термообработка зерна ИК-излучением с его "взрывом" резко изменяет все его физические характеристики. Зерно увеличивается в объеме, в 2-3 раза уменьшается его плотность и в 3-4 раза увеличивается гигроскопичность. "Взрыв" зерна приводит к разрушению крахмальных гранул, о чем свидетельствует резкое повышение содержания декстринов и глюкозы, что позволяет использовать взорванное зерно в технологии получения спирта, пива, а также хлебного кваса и других прохладительных напитков без использования процесса разваривания. П р и м е р 1. Зерно ячменя с влажностью 13,5% размещали слоем в 1.1,5 зерновки на поддоне. В процессе обработки поддон подвергали вибрации с частотой 100 Гц и амплитудой 0,2.0,5 мкм, что позволяет вращать каждую зерновку при ее облучении. Затем зерно облучали при помощи источника КГТ 220-1000 инфракрасным излучением с параметрами: длина волны 0,9.1,2 мкм, плотность потока излучения 20.22 кВт/м2, время облучения 40.60 с. Облучение проводили до достижения температуры зерна 170.180оС. При этом энергетическая экспозиция составляла 1500.1800 кВт/м2. Измерение температуры осуществляли при помощи пяти термопар типа хромель-копель, горячие спаи которых размещали в отверстиях, выполненных в зерновках, и вторичного прибора пятиточечного самописца КСП-4. При обеспечении указанных режимов каждая зерновка "взрывалась". Это происходило из-за cпекания ее поверхностных слоев закрывания пор и капилляров, т. е. герметизации наружной поверхности зерновки, диффузии влаги с поверхностных слоев к центру зерновки, образования пара, рост давления которого и приводил к "взрыву". После "взрыва" зерно заливали водой комнатной температуры. Так как зерно после "взрыва" чрезвычайно гигроскопично, оно впитывает воду и влажность его повышается до 35-40% при этом оно охлаждалось до 50-40оС. После этого полученную массу пропускали через дисконожевую дробилку. Полученная масса обеспечивает хороший контакт крахмала с ферментами солода. Далее процесс получения спирта, пива, а также кваса и других прохладительных напитков проходит по существующему технологическому циклу (осахаривание, брожение, перегонка, очистка). Аналогично проводили обработку зерна пшеницы с влажностью 13,5% П р и м е р 2. Зерно ячменя обрабатывали ИК-излучением при тех же режимах, после чего обработанное зерно расплющивали и полученные хлопья использовали в качестве добавки (20%) при получении несoложeного затора. Предлагаемый способ позволяет исключить процесс разваривания зерна, который является наиболее трудоемким, требующим большого расхода энергии и времени.Формула изобретения
СПОСОБ ПОДГОТОВКИ ЗЕРНА К ОСАХАРИВАНИЮ, включающий его термообработку, отличающийся тем, что термообработку осуществляют потоком инфакрасного излучения с длиной волны 0,8 3,2 мкм до достижения температуры зерна 150 - 200oС.РИСУНКИ
Рисунок 1