Производные амидов аминокислот, способ получения, фунгицидная композиция для сельского хозяйства и садоводства

Реферат

 

Производное амида аминокислоты формулы I, в которой радикалы принимают значения, указанные в п. 1 формулы изобретения, проявляют широкий спектр противогрибковой активности, особенно против ложной мучнистой росы огурцов, против ложной мучнистой росы винограда и фитофтороза томата. 4 с. и 7 з.п. ф-лы, 20 табл.

Область техники, к которой относится изобретение.

Настоящее изобретение относится к производным амидов аминокислот, а также к фунгицидам для сельского хозяйства и садоводства, содержащим такие соединения в качестве активных ингредиентов. Настоящее изобретение также относится к способам получения производных амидов аминокислот.

Предпосылка создания изобретения Производные амидов аминокислот раскрываются в качестве промежуточных соединений для лекарственных препаратов в заявках на патент Японии, первичные публикации NN Sho 56-8352 и Sho 62-89696. Однако эти документы не раскрывают полезность производных амидов аминокислот. Хотя в заявках на патент Японии, первичные публикации NN Hei - 3-5451, Hei 3-153657, Hei - 4-230652, Hei 4-230653, Hei 4-283554, Hei 4-308507 и Hei 4-338372, раскрывается, что некоторые амиды аминокислот пригодны для биоцидов, соединения, о которых идет речь в этих документах, отличаются от производных амидов аминокислот, соответствующих настоящему изобретению.

Описание изобретения Изобретатели синтезировали различные производные амидов аминокислот и осуществляли широкие исследования, связанные с действием этих соединений на физиологическую активность грибов. В результате обнаружено, что соединения, соответствующие настоящему изобретению, проявляют широкий спектр противогрибковой активности, в особенности против ложной мучнистой росы огурцов, ложной мучнистой росы винограда и фитофтороза томата.

В соответствии с отличительной особенностью настоящего изобретения предлагается производное амида аминокислоты, изображаемое формулой (I) в которой R1 представляет собой низшую алкильную группу (необязательно имеющую по крайней мере один из одинаковых или разных заместителей, выбираемый из группы, состоящей из атома галогена, алкоксигруппы и цианогруппы), низшую алкенильную группу, низшую алкинильную группу, циклоалкильную группу (необязательно содержащую по крайней мере один из одинаковых или различных заместителей, выбираемый из группы, состоящей из метильной группы и атома галогена), циклоалкилакильную группу, циклоалкенильную группу, алкеноксидную группу, аралкильную группу (необязательно содержащую по крайней мере один из одинаковых или различных заместителей, выбираемый из группы, состоящей из метильной группы, цианогруппы и нитрогруппы), фенильную группу (необязательно имеющую по крайней мере один из одинаковых или различных заместителей, выбираемый из группы, состоящей из атомов галогена; низшей алкильной группы, которая может быть замещена одинаковыми или разными атомами галогена; низшей алкоксигруппы, которая может быть замещена одинаковыми или разными атомами галогена; цианогруппы и нитрогруппы), или гетероциклическую группу; R2 представляет собой этильную группу, н-пропильную группу, изопропильную группу, изобутильную группу, втор-бутильную группу, трет-бутильную группу, алкенильную группу, циклоалкенильную группу, фенильную группу (необязательно содержащую по крайней мере один заместитель из числа атомов галогена); R3 представляет собой атом водорода или низшую алкильную группу; R4 представляет собой атом водорода, низшую алкильную группу или цианогруппу; R5, R6 и R7 независимо представляют собой атомы водорода или низшие алкильные группы; R8 представляет собой атом водорода, низшую алкильную группу, аралкильную группу, фенильную группу, алкоксикарбонильную группу или цианогруппу, Z1 и Z2 независимо представляют собой атомы кислорода или атомы серы; Z3 представляет собой атом кислорода, атом серы, группу N-R10 (где R10 представляет собой атом водорода, метильную группу, метилкарбонильную группу, фенилкарбонильную группу, метоксикарбонильную группу или метоксиметильную группу), сульфинильную группу, сульфонильную группу, группу COO, группу CONR11 (где R11 представляет собой атом водорода или низшую алкильную группу), Q представляет собой фенильную группу (необязательно содержащую по крайней мере один из одинаковых или разных заместителей, выбираемый из группы, состоящей из атома галогена; низшей алкильной группы, которая может быть замещена по крайней мере одним из атомов галогена; низшей алкоксигруппой, которая может быть замещена одинаковыми или разными атомами галогена; цианогруппы; нитрогруппы; низшей алкоксикарбонильной группы; метилсульфинильной группы; метилтиогруппы, которая может быть замещена атомом галогена; диметиламиногруппы; фенилсульфонилгруппы; ацильной группы и фенильной группы), алкиленоксидную группу, гетероциклическую группу (необязательно содержащую заместитель, выбираемый из группы, состоящей из атома галогена, алкильной группы, трифторметильной группы и нитрогруппы, алкильной группы, трифторметильной группы и нитрогруппы) или конденсированную гетероциклическую группу, необязательно содержащую заместитель, выбираемый из группы, состоящей из атома галогена и нитрогруппы; m является целым числом от 0 до 2, n равен 0 или 1, и фунгицид для сельского хозяйства или садоводства, содержащий такое производное в качестве активного ингредиента.

Термины, используемые в настоящем изобретении, означают перечисленное далее. Используемый здесь термин "алкильная группа" означает линейную или разветвленную алкильную группу, содержащую от 1 до 6 атомов углерода, включая, но не ограничиваясь этими группами, метильную группу, этильную группу, н-пропильную группу, изопропильную группу, н-бутильную группу, изобутильную группу, втор-бутильную группу, трет-бутильную группу, н-пентильную группу, 1-метилбутильную группу, 2-метилбутильную группу, 3-метилбутильную группу, 2,2-диметилпропильную группу, 1,1-диметилпропильную группу, 1-этилпропильную группу, н-гексильную группу или подобные группы.

Используемый здесь термин "атом галогена" означает атом фтора, атом хлора, атом брома или атом йода.

Используемый здесь термин "низшая алкенильная группа" означает линейную или разветвленную алкенильную группу, содержащую от 2 до 6 атомов углерода и включающую, но не ограничивающуюся этими группами, винильную группу, 1-пропенильную группу, изопропенильную группу, 1-бутенильную группу, 2-бутенильную группу, 3-бутенильную группу, 1-метил-1-пропенильную группу, 2-метилпропенильную группу, 1-этилвинильную группу или подобные группы.

Используемый термин "низшая алкинильная группа" означает линейную или разветвленную алкинильную группу, содержащую от 2 до 6 атомов углерода и включающую, например, этинильную группу, пропинильную группу, бутинильную группу, 1-метил-2-пропинильную группу или подобные.

Используемый здесь термин "циклоалкильная группа" означает циклоалкильную группу, содержащую от 3 до 8 атомов углерода и включающую, но не ограничивающуюся этими группами, циклопропильную группу, циклобутильную группу, циклопентильную группу, циклогексильную группу, циклогептильную группу или подобные.

Используемый здесь термин "циклоалкенильная группа" означает циклоалкенильную группу, содержащую от 4 до 8 атомов углерода и включающую, например, циклобутинильную группу, циклопентенильную группу, циклогексенильную группу, циклогептенильную группу или подобные группы.

Используемый здесь термин "аралкильная группа" означает аралкильную группу, содержащую 7 - 8 атомов углерода и включающую, но не ограничивающуюся этими группами, бензильную группу, фенетильную группу или подобные группы.

Используемый здесь термин "алкиленоксидная группа" означает алкиленоксидную группу, содержащую от 2 до 6 атомов углерода и включающую, например, оксиранильную группу, оксиэтанильную группу, тетрагидрофуранильную группу, тетрагидропиранильную группу или подобные группы.

Предпочтительными соединениями настоящего изобретения являются соединения, изображаемые формулой I, в которой R1 является линейной или разветвленной алкильной группой, сордержащей от 2 до 6 атомов углерода; линейной или разветвленной алкенильной группой, содержащей 3 атома углерода; циклоалкильной группой, содержащей 5 - 6 атомов углерода, или фенильной группой, необязательно содержащей заместитель; R2 представляет собой этильную группу, н-пропильную группу, изопропильную группу, или втор-бутильную группу; R3 представляет собой атом водорода или метильную группу; R4 представляет собой атом водорода или метильную группу; R5 представляет собой атом водорода или метильную группу; R6 представляет собой атом водорода или метильную группу; Q представляет собой фенильную группу, необязательно содержащую заместитель; m равен целому числу - 0 или 1; n равен 0; Z1, Z2 или Z3 представляют собой атомы кислорода или атомы серы; и аминокислота является L-изомером.

Соединения, изображаемые, в соответствии с изобретением формулой I, могут существовать в виде стереоизомеров, благодаря присутствию двух или большего числа хиральных центров. Настоящее изобретение относится ко всем таким стереоизомерам, включая диастереомеры, энантиомеры и их смеси, которые могут быть разделены соответствующими способами.

Далее в таблицах с 1 по 12 приводится список соединений формулы I в соответствии с изобретением. Однако следует понимать, что изобретение не ограничивается этими соединениями. На номера соединений, которые даны в таблицах с 1 по 12, будут даваться ссылки в последующем описании.

В таблицах с 1 по 12 соединения NN 108, 433, 456, 459, 460, 461, 462, 464, 467, 470, 471, 472 и 475 обладают частицами аминокислот с D,L-конфигурациями; соединение 109 обладает аминокислотным остатком с D-конфигурацией; соединения NN 233, 234, 235, 236, 237, 238, 425, 426, 427 обладают остатками (2S)-масляной кислоты; другие, не упомянутые выше соединения имеют аминокислотные остатки L-конфигурации. Соединения NN 33, 345 и 346; соединения NN 107, 116 и 117; соединения NN 135, 395 и 396; соединения NN 228, 414 и 415; соединения NN 452, 453 и 454 представляют собой смеси диастереомеров и также являются отдельными диастереомерами. Кроме того, соединения NN 26 и 27, соединения NN 45 и 356; соединения NN 335 и 336; соединения NN 397 и 401 и соединения NN 409 и 410 представляют собой смеси диастереомеров и также являются одним из отдельных диастереомеров соответственно. Соединение N 108 является смесью четырех изомеров и соединение N 433 является смесью двух изомеров. Соединения NN 483 - 501, 504, 505, 510 - 518, 521 и 522 представляют собой L-Val-DL-Ala; соединения NN 502, 503, 508, 509, 519 и 525 представляют собой L-Val-D-Ala; соединение N 520 является L-Val-Ala; соединения NN 506 и 523 представляют собой L-Ile-D-Ala; соединение N 526 является L-Val-Gly и соединения NN 507 и 524 являются (2S)-бутилил-D-Ala.

В таблицах, приведенных в настоящем описании, выражения "C3H7-i", "C4H9-t", "C4H9-s" и "C4H9-i" используются для того, чтобы обозначить изопропильную групп, трет-бутильную группу, втор-бутильную группу и изобутильную группу соответственно.

Соответствующие настоящему изобретению соединения, изображаемые формулой I, могут быть получены, например, описанными далее способами.

Способ получения A (Реакционная схема 1) Здесь R1, R2, R3, R4, R5, R6, R7, R8, Z1, Z2, Z3, Q, m и n имеют установленные выше значения.

Соответствующие изобретению соединения, изображаемые формулой I, могут быть получены при взаимодействии производных аминокислот, изображаемых формулой IX, или производных аминокислот, в которых активирована карбоксильная группа, с амином, представленным формулой X, в присутствии основания и/или, при необходимости, катализатора.

В представленной реакции в качестве аминокислотных производных с активированной карбоксильной группой, изображаемых формулой IX, могут выступать, например, галоидангидриды кислот, такие как хлорангидриды, и ангидриды кислот, образованные двумя молекулами производных аминокислот, изображаемых формулой IX, смешанные ангидриды, образованные производными аминокислоты формулы IX и другой кислотой или О-алкилкарбоновой кислотой, и активированные эфиры, такие как п-нитрофениловый эфир, 2-тетрагидропираниловый эфир, 2-пиридиловый эфир и т.п. Такие производные аминокислот с активированными карбоксильными группами могут быть получены обычными способами (см., например, Methoden der Organischen Chemie, Vol. 15, N 2, from p. 2; Georg Thieme Verlag Stuttgart: 1974; Chemische Berichte, Vol. 38, p. 605 (1905); Journal of the American Chemical Society, Vol. 74, p. 676 (1952); и Journal of the American Chem. Soc., Vol 86, p. 1839 (1964)).

Кроме того, упомянутую реакцию можно осуществить, используя конденсирующий агент, такой как N,N'-дициклогексилкарбодиимид, карбонилдиимидазол, 2-хлор-1,3-диметилимидазолийхлорид или подобные.

Упомянутая реакция может быть осуществлена в стандартном растворителе, этот растворитель может представлять собой любой растворитель, который не мешает осуществлению реакции, например углеводород, такой как пентан, гексан, гептан, циклогексан, петролейный эфир, лигроин, бензол, толуол, ксилол и т. п. ; галогенированный углеводород, такой как дихлорметан, дихлорэтан, хлороформ, четыреххлористый углерод, хлорбензол, дихлорбензол и т. п.; простой эфир, такой как диэтиловый эфир, диизопропиловый эфир, диметиловый эфир этиленгликоля, тетрагидрофуран, диоксан и т.п.; кетон, такой как ацетон, метилэтилкетон, метилизопропилкетон, метилизобутилкетон и т.п.; сложный эфир, такой как метилацетат, этилацетат и т.п.; нитрил, такой как ацетонитрил, пропионитрил, бензонитрил и т.п.; апротонный полярный растворитель, такой как диметилсульфоксид, диметилформамид, сульфолан и т.п.; и смешанный растворитель, представляющий собой сочетание растворителей из числа упомянутых выше.

В реакции такого типа может быть использовано основание любого типа. Можно упомянуть, например, гидроксиды щелочных металлов, такие как гидроксид натрия, гидроксид калия и т.п.; гидроксиды щелочноземельных металлов, такие как гидроксид кальция и т.п.; карбонаты щелочных металлов, такие как карбонат натрия, карбонат калия и т.п.; бикарбонаты щелочных металлов, такие как бикарбонат натрия, бикарбонат калия и т.п.; органические основания, такие как триэтиламин, триметиламин, диметиланилин, пиридин, N-метилморфолин, N-метилпиперидин, 1,5-диазабицикло[4.3.0] нон-5-ен (DBN), 1,8-диазабицикло[5.4.0] ундец-7-ен (DBV) и т.п.; и предпочтительными являются третичные амины, такие как триэтиламин, пиридин, N-метилпиперидин и т.п.

В качестве катализатора можно упомянуть 4-диметиламинопиридин, 1-гидроксибензотриазол, диметилформамид и т.п. Такая реакция может быть осуществлена при температуре от -75oC до 100oC, предпочтительно - от -60oC до 40oC. Время реакции составляет предпочтительно от 1 до 20 часов.

Кроме того, соединения, изображаемые формулой IX, как исходные вещества, могут быть синтезированы, вообще, стандартными методами (см., например, Methoden der Organischen Chemie vol. 15, N 2, со стр. 2; Georg Thieme Verlag Stuttgart: 1974; Chemistry of the Amino Acids, vol. 2 p. 891; John Wiley и Sons., N. Y. (1964); и Juornal of the American Chemical Society, vol. 79, p. 4686 (1957)). Также могут быть рассмотрены различные способы получения соединений X, такие как методы, предложенные в заявке на патент Японии, первичная публикация N Sho 63-146876, Tetrahedron Letters, p. 21, 1973, и в заявке на патент Японии, первичная публикация N Hei5-271206.

Способ получения B (Реакционная схема 2) Здесь R1, R2, R3, R4, R5, R6, R7, R8, Z1, Z2, Z3, Q, m и n имеют значения, установленные выше и Y представляет собой атом галогена, 4,6-диметилпиримидинилтиогруппу, группу R1OC-(O)O- или группу -ON=C(CN)Ph (где Ph означает фенильную группу).

Соединения настоящего изобретения, изображаемые формулой I, могут быть получены при взаимодействии соединения формулы XI с амином формулы XII или с солью амина неорганической кислоты, такой, как гидрохлорид и т.п., или с солью амина и органической кислоты, так как тозилат и т.п., в присутствии основания, если требуется.

Представленная реакция может быть осуществлена в традиционном растворителе; такой растворитель может представлять собой любой растворитель, который не мешает проведению реакции, например углеводород, так как пентан, гексан, гептан, циклогексан, петролейный эфир, лигроин, бензол, толуол, ксилол и т.п.; галогенированный углеводород, такой как дихлорметан, дихлорэтан, хлороформ, четыреххлористый углерод, хлорбензол, дихлорбензол и т.п.; простой эфир, такой как диэтиловый эфир, диизопропиловый эфир, диметиловый эфир этиленгликоля, тетрагидрофуран, диоксан и т.п.; кетон, такой как ацетон, метилэтилкетон, метилизопропилкетон, метилизобутилкетон и т.п.; сложный эфир, такой как метилацетат, этилацетат и т.п.; нитрил, такой как ацетонитрил, пропионитрил, бензонитрил и т.п.; апротонный полярный растворитель, такой как диметилсульфоксид, диметилформамид, сульфолан и т.п., вода и смешанный растворитель, представляющий собой сочетание растворителей, выбираемых из числа упомянутых выше.

Для реакции такого типа может быть использовано основание любого типа. Например, можно упомянуть гидроксиды щелочных металлов, такие как гидроксид натрия, гидроксид калия и т.п.; гидроксиды щелочноземельных металлов, такие как гидроксид кальция и т.п.; карбонаты щелочных металлов, такие как карбонат натрия, карбонат калия и т.п.; бикарбонаты щелочных металлов, такие как бикарбонат натрия, бикарбонат калия и т.п.; органические основания, такие как триэтиламин, триметиламин, диметиланилин, N-метилморфолин, пиридин, N-метилпиперидин, 1,5-диазабицикло 4,3,0 нон-5-ен (DBN) 1,8-диазабицикло 5,4,0 ундец-7-ен (DBU) и т.п.; и предпочтительными являются третичные амины, такие как триэтиламин, пиридин, N-метилпиперидин и т.п. Упомянутая реакция осуществляется при температуре от -20oC до 100oC, предпочтительно - от 0oC до 40oC. Время реакции составляет предпочтительно от 30 минут до 20 часов.

Соединения формулы XII как исходные вещества являются новыми соединениями и могут быть получены, например, путем обработки карбаматов соединений I, синтезированных по способу получения A, при использовании обычного способа удаления защитной группы, защищающей аминогруппу в аминокислоте, такого как каталитическое восстановление, или путем обработки кислотами, такими как жидкая фтористоводородная кислота, сульфоновые кислоты, хлористоводородная кислота, бромистоводородная кислота, муравьиная кислота и т.п.

Далее в качестве ссылочных примеров приводятся примеры синтеза производных амидов аминокислот, которые являются новыми промежуточными соединениями для соединений настоящего изобретения, изображаемыми формулами X и XII.

Ссылочный пример 1 Синтез 2-(4-цианофенокси)-1-метилэтиламина (промежуточное соединение N 1) К раствору, содержащему 66,5 г 4-цианофеноксиацетона, растворенного в 1500 мл метанола, добавляют 293 г ацетата аммония и 16,7 г цианоборогидрида натрия и полученную в результате смесь перемешивают в течение 30 часов при комнатной температуре. Реакционную смесь затем концентрируют при пониженном давлении и подкисляют концентрированной соляной кислотой. Затем в нее добавляют 500 мл диэтилового эфира и 300 мл воды. После этого полученный в результате водный слой подщелачивают 5% водным раствором гидроксида натрия, раствор экстрагируют 1000 мл диэтилового эфира и эфирный слой промывают водой. Органический слой затем сушат над безводным сульфатом натрия и затем диэтиловый эфир удаляют при пониженном давлении. Полученный остаток перегоняют при пониженном давлении и получают 13,0 г нужного продукта (19%). Температура кипения 132oC при 0,26 мм рт.ст.

Ссылочный пример 2 Синтез 2-(4-хлор-2-метилфенокси)-1-метилэтиламина (промежуточное соединение N 2) К раствору, содержащему 31 г (4-хлор-2-метилфенокси)ацетона, растворенного в 700 мл метанола, добавляют 12 г ацетата аммония и 9,8 г цианоборогидрида натрия и полученную в результате смесь перемешивают в течение 20 часов при комнатной температуре. Затем реакционную смесь концентрируют при пониженном давлении и к остатку добавляют 180 мл концентрированной соляной кислоты и 100 мл воды. Всю смесь перемешивают в течение 1 часа и затем экстрагируют 300 мл диэтилового эфира. Водный слой подщелачивают, используя 5% водный раствор гидроксида натрия, и затем экстрагируют 500 мл этилацетата. Органический слой промывают водой, сушат над безводным сульфатом магния и затем концентрируют при пониженном давлении. Из полученного маслянистого продукта удаляют фракцию с низкой температурой кипения и получают 25 г (выход 81%) нужного продукта. Показатель преломления 1,5360.

Ссылочный пример 3 Синтез 2-(4-хлорфенокси)-1-метилпропиламина (промежуточное соединение N 3) К раствору, содержащему 21 г 3-(4-хлорфенокси)-2-бутанона, растворенного в 500 мл метанола, добавляют 82 г ацетата аммония и 6,7 г цианоборогидрида натрия и реакционную смесь перемешивают в течение 20 часов при комнатной температуре. Реакционную смесь затем концентрируют при пониженном давлении и к остатку добавляют 180 мл концентрированной соляной кислоты и 100 мл воды. Всю смесь экстрагируют 300 мл диэтилового эфира. Полученный водный слой подщелачивают, используя 5% водный раствор гидроксида натрия, и затем экстрагируют 500 мл этилацетата. Органический слой промывают водой, сушат над безводным сульфатом магния и затем концентрируют при пониженном давлении. Из полученного маслянистого продукта удаляют фракцию с низкой температурой кипения и получают 18 г (выход 86%) нужного продукта. Показатель преломления 1,5360.

Ссылочный пример 4 Синтез 1-метил-2-(2-метилфенокси) этиламина (промежуточное соединение N 4) Раствор, содержащий 36 г 0-метилового эфира 2-(2-метилфенокси)ацетоноксима, растворенного в 150 мл диметоксиэтана, добавляют по каплям к суспензии, содержащей 13 г борогидрида натрия в 500 мл диметоксиэтана, при комнатной температуре. Затем смесь перемешивают в течение 15 минут при комнатной температуре и к смеси, при комнатной температуре, добавляют по каплям раствор, содержащий 66 г комплекса трифторборана с диэтиловым эфиром, растворенного в 100 мл диметоксиэтана. Реакционную смесь перемешивают в течение 30 минут при комнатной температуре и затем кипятят с обратным холодильником в течение 3 часов. Полученную в результате смесь оставляют остывать естественным путем до комнатной температуры и затем ее подкисляют, используя 10% соляную кислоту. Диметоксиэтановый слой концентрируют и соединяют с водным слоем. Смесь подщелачивают, используя карбонат натрия, и затем экстрагируют дихлорметаном, после чего промывают водой. Органический слой сушат над безводным сульфатом магния и затем удаляют дихлорметан при пониженном давлении. Остаток перегоняют при пониженном давлении и получают 6,4 г (выход 21%) нужного продукта. Температура кипения 65oC при 0,08 мм рт.ст.

Ссылочный пример 5 Синтез 2-(4-цианофенокси)-1-метилэтиламина (промежуточное соединение N 1) При перемешивании при 0oC к смеси 29,8 г 60% гидрида натрия и 300 мл N, N-диметилформамида добавляют по каплям 50,0 г 2-амино-1-пропанола. После перемешивания реакционной смеси в течение 30 минут при 0oC к ней добавляют по каплям раствор, содержащий 121,2 г 4-бромбензонитрила, растворенного в N, N-диметилформамиде. Полученную в результате смесь перемешивают в течение 20 часов при комнатной температуре. После завершения реакции полученную в результате смесь выливают в воду и экстрагируют этилацетатом. Органический слой промывают водой и затем сушат над безводным сульфатом магния. Этилацетат удаляют при пониженном давлении. Остаток перегоняют при пониженном давлении и получают 48,0 г нужного продукта (выход 41%). Температура кипения 132oC при 0,26 мм рт.ст.

Ссылочный пример 6 Синтез (-)-2-(4-цианофенокси)-1-метилэтиламина (промежуточное соединение N 5) При перемешивании, при температуре от 5oC до 10oC, к смеси 14,0 г 60% гидрида натрия и 200 мл N,N-диметилформамида добавляют по каплям 25,0 г R (-)-2-амино-1-пропанола. После перемешивания реакционной смеси в течение 30 минут к ней добавляют по каплям раствор, содержащий 45,0 г 4-хлор- бензонитрила, растворенного в N,N-диметилформамиде. Реакционную смесь перемешивают в течение 20 часов при комнатной температуре. После завершения реакции реакционную смесь выливают в воду и экстрагируют этилацетатом. Органический слой промывают водой и затем сушат над безводным сульфатом магния. Этилацетат удаляют при пониженном давлении. Остаток перегоняют при пониженном давлении и получают 33,0 г нужного продукта (выход 56%). Температура кипения 60 - 66oC при 0,08 мм рт.ст., []2D0 - 15,7o (C 1,0 CH3OH).

Ссылочный пример 7 Синтез 1-метил-2-(2-пиримидилокси) этиламина (промежуточное соединение N 6) При перемешивании, при комнатной температуре, к смеси 1,3 г 60% гидрида натрия и 30 мл N,N-диметилформамида добавляют по каплям 2,0 г 2-амино-1-пропанола. После перемешивания реакционной смеси в течение 30 минут к ней добавляют по каплям раствор, содержащий 3,7 г 2-хлорпиримидина, растворенного в N,N-диметилформамиде. Реакционную смесь перемешивают в течение 2 часов при 100oC. После завершения реакции реакционную смесь охлаждают. Твердые вещества отфильтровывают. Растворитель из фильтрата удаляют при пониженном давлении. Остаток очищают колоночной хроматографией на силикагеле и получают 2,1 г нужного продукта (выход 50%). Показатель преломления 1,5481.

Ссылочный пример 8 Синтез 1-метил-2-(4-пиридилокси)этиламина (промежуточное соединение N 7) При перемешивании, при 5oC - 10oC, к смеси 4,0 г 60% гидрида натрия и 50 мл N,N-диметилформамила добавляют по каплям 6,2 г 2-амино-1-пропанола. После перемешивания реакционной смеси в течение 30 минут к ней небольшими порциями добавляют 12,5 г гидрохлорида 4-хлорпиридина. Смесь перемешивают в течение 20 часов при комнатной температуре. После завершения реакции твердые вещества отфильтровывают. Растворитель из фильтрата удаляют при пониженном давлении. Остаток очищают колоночной хроматографией на силикагеле и получают 3,8 г нужного продукта (выход 30%). Показатель преломления 1,5469.

Конкретные примеры промежуточных соединений X, полученных по методике ссылочных примеров с 1 по 8, приведены в табл. 13.

Ссылочный пример 9 Синтез гидрохлорида N1[-2-(4-цианофенокси)-1-метилэтил] -L- валинамида (промежуточное соединение N 23) В раствор, содержащий 3,7 г N2-трет-бутоксикарбонил- N1[-2-(4-цианофенокси)-1-метилэтил] -L-валинамида, растворенного в 100 мл метиленхлорида, в течение 1 часа при комнатной температуре вводят газообразный хлористый водород. После завершения реакции метиленхлорид удаляют при пониженном давлении и получают таким образом сырые кристаллы. Сырые кристаллы промывают ацетоном и получают 3,1 г нужного продукта (выход 100%). Т.пл. 59-63oC.

Ссылочный пример 10 Синтез N1[-2-(4-цианофенокси)-1-метилэтил]-L- изолейцинамида (промежуточное соединение N 24) В раствор, содержащий 15,0 г N2-трет-бутоксикарбонил- N1[-2-(4-цианофенокси)-1-метилэтил] -L-изолейцинамида, растворенного в 300 мл метиленхлорида, в течение 1 часа при комнатной температуре вводят газообразный хлористый водород. После завершения реакции метиленхлорид удаляют при пониженном давлении и таким образом получают сырое кристаллическое вещество. К сырому кристаллическому веществу добавляют 200 мл насыщенного водного раствора бикарбоната натрия и 200 мл метиленхлорида, смесь перемешивают в течение 30 минут и экстрагируют метиленхлоридом. Органический слой промывают водой и сушат над безводным сульфатом натрия. Метиленхлорид удаляют при пониженном давлении. Полученный сырой продукт промывают ацетоном и получают 10,0 г нужного продукта (выход 90%). Т.пл. 64-67oC.

Специфические примеры промежуточных соединений XII, получаемых по методикам ссылочных примеров 9 и 10, приводятся в табл. 14.

Предпочтительные варианты осуществления изобретения Способы получения соединений, соответствующих настоящему изобретению, а также применение соединений, будут подробно описаны в следующих далее примерах синтеза.

Пример синтеза 1 Синтез N2-трет-бутоксикарбонил-N1-[1-метил-2- (4-нитрофенокси)-этил]-L-валинамида (соединение N 16) К раствору, содержащему 1,1 г N-трет-бутоксикарбонил-L-валина, растворенного в 40 мл метиленхлорида, при -20oC добавляют 0,5 г N-метилпиперидина. После перемешивания смеси в течение 10 минут при той же температуре к ней добавляют 0,7 г изобутилхлорформиата уже при -40oC. К такой смеси при -60oC добавляют 1 г 1-метил-2-(4-нитрофенокси)этиламина и затем реакционную смесь оставляют нагреваться естественным путем до комнатной температуры, продолжая перемешивание, и перемешивают в течение 15 часов при комнатной температуре. Затем к реакционной смеси добавляют воду. После того, как дихлорметановый слой последовательно промывают 5% водным раствором бикарбоната натрия и водой, органический слой сушат над безводным сульфатом магния и метиленхлорид удаляют при пониженном давлении. Остаток, который представляет собой сырое кристаллическое вещество, очищают колоночной хроматографией на силикагеле и получают таким образом 0,7 г нужного продукта в виде желтого порошка (выход 55%).

Пример синтеза 2 Синтез N1-[2-(4-цианофенокси)-1-метилэтил] -N2- изопропенилоксикарбонил-L-валинамида (соединение N 77) К раствору, содержащему 0,9 г гидрохлорида N1-[2-(4-цианофенокси)-1-метилэтил] -L-валинамида, растворенного в 50 мл метиленхлорида, при -15oC добавляют 0,6 г N-метилморфолина и затем 0,4 г изопропилхлорформиата. Смесь оставляют нагреваться естественным путем до комнатной температуры и затем перемешивают при комнатной температуре в течение 15 часов. Затем к реакционной смеси добавляют воду. После промывания дихлорметанового слоя водой этот органический слой сушат над безводным сульфатом магния и затем метиленхлорид удаляют при пониженном давлении. Остаток очищают колоночной хроматографией на силикагеле и получают таким образом 0,23 г нужного продукта в виде бесцветных крупинок (выход 13%).

Пример синтеза 3 Синтез N1-[2-(4-цианофенокси)-1-метилэтил] -N2- феноксикарбонил-L-валинамида (соединение N 107) К раствору, содержащему 3 г N-феноксикарбонил-L-валина, растворенного в 50 мл метиленхлорида, при -20oC добавляют 1,3 г N-метилморфолина. После перемешивания смеси в течение 10 минут при той же температуре, при -40oC к смеси добавляют 2,2 г 2-(4-цианофенокси)-1-метилэтиламина, реакционную смесь при перемешивании оставляют нагреваться естественным путем до комнатной температуры и в течение 20 часов перемешивают при комнатной температуре. Затем к реакционной смеси добавлляют воду. Затем метиленхлоридный слой последовательно промывают 5% водным раствором бикарбоната натрия и водой, этот органический слой сушат над безводным сульфатом магния и метиленхлорид удаляют при пониженном давлении. Остаток который представляет собой сырое кристаллическое вещество, очищают колоночной хроматографией на силикагеле и получают таким образом 1,1 г нужного продукта в виде белого порошка (выход 22%).

Пример синтеза 4 Синтез N2-трет-бутоксикарболнил-N1[-2-(4- цианофенокси)-1-метилэтил]-L-изолейцинамида (соединение N 228) К раствору, содержащему 3 г N-трет-бутоксикарбонил-L-изолейцина, растворенного в 60 мг метиленхлорида, при -20oC добавляют 1,3 г N-метилпиперидина. После перемешивания смеси в течение 10 минут при этой же температуре, при -40oC, добавляют 1,8 г изобутилхлорформиата и перемешивают смесь в течение 1 часа при -20oC. К этой смеси при -60oC добавляют 2,3 г 2-(4-цианофенокси)-1-метилэтиламина и затем смесь оставляют нагреваться естественным путем до комнатной температуры, продолжая перемешивание, и при комнатной температуре смесь перемешивают в течение 20 часов. Затем к реакционной смеси добавляют воду. После последовательного промывания метиленхлоридного слоя 5% водным раствором бикарбоната натрия и водой органический слой сушат над безводным сульфатом магния и метиленхлорид удаляют при пониженном давлении. Остаток очищают колоночной хроматографией на силикагеле, получая таким образом 0,6 г нужного продукта в виде белого порошка (выход 12%).

Пример синтеза 5 Синтез N2-трет-бутоксикарбонил-N1-(2-фенилтиоэтил)-L- валинамида (соединение N 551) К раствору, содержащему 2,1 г N-трет-бутоксикарбонил-L-валина, растворенного в 40 мл метиленхлорида, при -20oC добавляют 1 г N-метилпиперидина. После перемешивания смеси в течение 10 минут при этой температуре к ней добавляют 1,3 г изобутилхлорформиата и смесь перемешивают в течение 1 часа при -20oC. К этой смеси при -60oC добавляют 1,5 г 2-фенилтиоэтиламина и затем реакционную смесь оставляют достигать естественным путем комнатной температуры, продолжая перемешивание, и перемешивают при комнатной температуре в течение 20 часов. Затем к реакционной смеси добавляют воду. После последовательного промывания метиленхлоридного слоя 5% водным раствором бикарбоната натрия и водой, органический слой сушат над безводным сульфатом магния и метиленхлорид удаляют при пониженном давлении. Остаток очищают колоночной хроматографией на силикагеле и получают таким образом 0,4 г нужного продукта в виде желто-кремовых крупинок (выход 12%).

Пример синтеза 6 Синтез N2-трет-бутоксикарбонил-N1-[1-метил-2- (4-нитрофенокси)пропил]-L-валинамида (соединение N 606) К раствору, содержащему 1 г N-трет-бутоксикарбонил-L- валина, растворенного в 40 мл метиленхлорида, при -20oC добавляют 0,5 г N-метилпиперидина. После перемешивания смеси в течение 15 минут при этой температуре к ней добавляют 0,7 г изобутилхлорформиата и смесь перемешивают в течение 1 часа при -20oC. В этой смеси при -60oC добавляют 1 г 1-метил-2-(4-нитрофенокси)пропиламина и затем реакционную смесь при перемешивании оставляют нагреваться естественным путем до комнатной температуры и перемешивают в течение 20 часов при комнатной температуре. Затем к реакционной смеси добавляют воду. После последовательного промывания метиленхлоридного слоя 5% водным раствором бикарбоната натрия и водой этот слой сушат над безводным сульфатом магния и метиленхлорид удаляют при пониженном давлении. Остаток, который представляет собой маслянистое вещество, очищают колоночной хроматографией на силикагеле, получая таким образом 1,1 г нужного продукта в виде вязкой желтой жидкости (выход 56%).

Пример синтеза 7 Синтез N2-трет-бутоксикарбонил-N1[-2-(3,5- диметоксифенокси)-1-метилэтил]-L-валинамида (соединение N 22) К раствору, содержащему 1,0 г N-трет-бутоксикарбонил-L-валина, растворенного в 100 мл метиленхлорида, при -20oC добавляют 0,5 г N-метилпиперидина. После перемешивания смеси в течение 10 минут при этой температуре к ней добавляют при -40oC 0,7 г изобутилхлорформиата и перемешивают смесь при -20oC в течение 1 часа. К этой смеси при -60oC добавляют 1 г 2-(3,5-цианофенокси)-1-метиламина и реакционную смесь затем оставляют нагреваться естественным путем до комнатной температуры, продолжая перемешивание, и смесь перемешивают при комнатной температуре в течение 15 часов. Затем к реакционной смеси добавляют воду. После последовательного промывания метиленхлоридного слоя 5% водным раствором бикарбоната натрия и водой этот органический слой сушат над безводным сульфатом магния и метилехнлорид удаляют при пониженном давлении. Остаток, который представляет собой сырое кристаллическое вещество, очищают колоночной хроматографией на силикагеле, получая таким образом 1,3 г нужного продукта в виде белого порошка (выход 64%).

Пример синтеза 8 Синтез N2-трет-бутоксикарбонил-N1-[1-метил-2-(2,4,6- трихлорфенокси)этил]-L-валинамида (соединение N 25) К раствору, содержащему 3,8 г N-трет-бутоксикарбонил-L-валина, растворенного в 80 мл метилехнлорида, при -20oC добавляют 1,5 г N-метилпиперидина. После перемешивания смеси в течение 15 минут при этой температуре к ней добавляют 2,4 г изобутилхлорформиата и смесь перемешивают при -20oC в течение 1 часа. К этой смеси при -60oC добавляют 4,5 г 1-метил-2-(2,4,6-трихлорфенокси)этиламина и реакционную смесь затем оставляют нагреваться естественным путем до комнатной температуры, продолжая перемешивание, и перемешивают при комнатной температуре в течение 20 часов. Затем к реакционной смеси добавляют воду. После последовательного промывания метиле