Бициклические карбоновые кислоты, ингибирующие биологическую активность лейкотриена b4, и фармацевтическая композиция

Реферат

 

Бициклические карбоновые кислоты формул А, В и С, где R2 - гидроксил или низший алкоксил, являются сильнодействующими антагонистами лейкотриена В4 и поэтому пригодны для лечения воспалительных болезней. 4 c. и 5 з.п. ф-лы, 2 табл.

Объектом изобретения являются бициклические карбоновые кислоты формул A, B и C: где R2 в каждом случае независимо друг от друга означает гидроксильную группу, низшую алкоксильную группу, и Ph означает фенил, и для соединения формулы C - к его геометрическому изомеру, и в случае, когда R2 означает гидроксильную группу, к фармацевтически применимым солям этих соединений с основанием.

Дополнительно R2 может означать NR3R4, где R3 и R4 независимо друг от друга означают водород или низший алкил.

Cоединения формул A, B и C являются сильнодействующими антагонистами лейкотриена B4 и поэтому пригодны для лечения воспалительных болезней, например, псориаза, ринита, хронических обструктивных легочных заболеваний, воспаления пищеварительного тракта, астмы, острого респираторного дистресс-синдрома, муковисциоза, аллергии, артрита, например, ревматоидного артрита, дерматита, например, контактного дерматита, гастропатии, вызванной нейросекреторным приобретенным иммунодефицитом, подагры, ишемии/нарушения кровеснабжения и травматических повреждений, таких, как повреждение спинного мозга.

Объектом данного изобретения являются соединения формул A, B и C и их фармацевтически применимые соли как таковые и используемые в качестве терапевтически активных веществ, получение таких соединений, лекарства, содержащие эти соединения, и изготовление таких лекарств, а также применение соединений формул A, B и C и их фармацевтически применимых солей для лечения или профилактики болезней или для улучшения здоровья, особенно для лечения или предотвращения воспалительных заболеваний, таких, как псориаз, ринит, хронические обструктивные легочные заболевания, воспаление пищеварительного тракта, астма, острый респираторный дистресс-синдром, муковисциоз, аллергия, артрит, например, ревматоидный артрит, дерматит, например контактный, гастропатия, вызванная нейросекреторным приобретенным иммунодефицитом (НСПИД), подагра, ишемия/нарушение кровeснабжения и травматические повреждения, например повреждение спинного мозга.

Другим объектом изобретения является фармацевтическая композиция, ингибирующая биологическую активность лейкотриена B4, а также способы применения соединений формул A, B и C.

Еще одним объектом изобретения является промежуточное соединение 2-(3-фенилпропенилиден)-1,3-циклогександион, имеющее формулу где Ph означает фенил, и промежуточное соединение 3-(2-цианэтокси)-2-(3-фенилпропил)-2-циклогексен-1-он формулы где Ph обозначает фенил.

Настоящее изобретение относится также к способу ингибирования биологической активности лейкотриена B4, который заключается во введении в организм пациента, который требует такое ингибирование, эффективного количества соединения формул A, B и C.

В данном описании используются следующие определения общих терминов, независимо от того, используются они в отдельности или в сочетании.

Используемый термин "низший алкил" означает линейный или разветвленный углеводородный насыщенный радикал, содержащий 1-7 атомов углерода, предпочтительно 1-4 атома углерода, например, метил, этил, пропил, изопропил, бутил, трет. -бутил, неопентил, пентил, гептил и т.п. Термин "низший алкоксильный" радикал означает алкилэфирную группу, в которой алкил обозначен выше, например, метокси, этокси, пропокси, пентокси и т.п.

Используемый термин "отщепляющаяся" группа означает галоид, предпочтительно бром и йод; низший алкилсульфонилоксигруппу, например, метилсульфонилоксигруппу, трифторметилсульфонилоксигруппу или т.п.; арилсульфонилоксигруппу, например, п-толуолсульфонилоксигруппу или т.п.

Кислоточувствительная гидроксизащитная группа означает предпочтительно тетрагидропиранил, 1-этоксиэтил, 1-метил-1-метоксиэтил и т.п.

Щелочной металл означает предпочтительно литий, натрий, калий и цезий.

Используемый термин "гидроксизащитная группа", удаляемая путем гидрирования, означает предпочтительно бензил, п-метоксибензил, трифенилметил и т.п.

Предпочтительные группы соединений представлены формулами A, B и C.

Наиболее предпочтительными соединениями согласно изобретению являются: 2-(3-карбоксипропокси)-6-[6-[[3,4-дигидро-4-оксо-8-(3-фенилпропил) - 2H-1-бензопиран-7-ил] окси] гексил] бензолпропановая кислота (соединение формулы A); 2-(3-карбоксипропокси)-6-[6-[[5,6,7,8-тетрагидро-5-оксо-1-(3- фенилпропил)-2-нафталинил] -окси]гексил]бензолпропановая кислота (соединение формулы B); и (Е)-2-(3-карбоксипропокси)-6-[6-[[5,6,7,8-тетрагидро-5-оксо-1-(3- фенил-2-пропенил)-2-нафталинил]окси]гексил]бензолпропановая кислота (соединение формулы C).

Соединения настоящего изобретения формул A, B и C могут быть получены способом, который включает а) для получения соединений формул A или B, где R2=R2' и означает низший алкокси или водород, взаимодействие соединения формулы или с соединением формулы где R2' обозначает низший алкокси или водород и L обозначает отщепляющуюся группу, или б) для получения соединений формулы A, где R2 имеет указанные выше значения, каталитическое гидрирование соединения формулы где R2 имеет указанные выше значения, или в) для получения соединений формулы B, где R2 имеет указанные выше значения, каталитическое гидрирование соединения формулы C, где R2 имеет указанные выше значения, или г) для получения соединений формулы C, где R2 имеет указанные выше значения, взаимодействие соединения формулы где R имеет указанные выше значения, с соединением PhL II-4 где Ph означает фенил и L обозначает отщепляющуюся группу, или д) для получения соединений формул A, B и C, где R2 обозначает гидроксильную группу, омыление соединения A, B или C, где R2 означает низший алкокси, и е) для получения соединений формул A, B и C, где R2 означает -NR3R4 и R3 и R4 имеют указанные выше значения, превращение соединения формул A, B или C, где R2 означает гидроксильную группу, в соответствующее соединение, где R2 означает -NR3R4, ж) если желательно, превращение соединения формул A, B и C в его фармацевтически применимую соль.

Условия реакции для вышеуказанных способов а)-е) и для получения промежуточных соединений указаны подробнее ниже на реакционных схемах I-VI.

Реакционная схема 1 где R2' обозначает низший алкокси, R5 обозначает кислоточувствительную гидроксизащитную группу, L обозначает отщепляющуюся группу и М обозначает щелочной металл.

В реакционной схеме I, 5-гидроксикумарин, известное соединение формулы I-1, превращается в соответствующий эфир трифторметансульфокислоты I-2 обработкой ангидридом трифторметансульфокислоты в присутствии амина в качестве основания. Можно использовать любой амин в качестве основания. Предпочтительны пиридин или триэтиламин. Превращение предпочтительно проводят в среде растворителя - дихлорметана при 0-25oC. Соединение формулы I-2 можно выделить обычными методами, например, хроматографией или перекристаллизацией.

Соединение формулы I-2 подвергают взаимодействию с ацетиленовым соединением формулы I-3, которое является известным, в присутствии палладиевого катализатора и амина в качестве основания с получением соединения формулы I-4. Предпочтительно, чтобы это превращение проводилось с применением в качестве катализатора дихлорбис-(трифенилфосфин)палладия (II) и в качестве основания - триэтиламина в среде диметилформамида при 80-100oC. Соединение формулы I-4 выделяют с использованием обычных хроматографических методов.

Соединение формулы I-4 превращают в соответствующий гидроксилсодержащий эфир коричной кислоты формулы I-5 путем алкоголиза лактонного цикла с использованием низшего алкоксида щелочного металла в среде низшего алканола. Это превращение проводят, применяя низший алкоксид лития, натрия или калия. Предпочтительно это превращение осуществлять в среде метанола или этанола в присутствии метоксида натрия или этоксида натрия при 60-80oC. Соединение формулы I-5 выделяют обычными хроматографическими методами или перекристаллизацией.

Алкилирование соединения формулы I-5 осуществляют бромсодержащим эфиром формулы I-6, являющимся известным соединением. Процесс проводят в присутствии основания, например, карбоната щелочного металла, например, карбоната натрия или калия, при температуре от примерно 25 до примерно 110oC в среде полярного апротонного растворителя, такого, как ацетонитрил, N,N-диметилформамид, 2-бутанон, диметилсульфоксид и т.п. Получаемое соединение формулы I-7 выделяют методом хроматографии.

Каталитическое гидрирование соединения формулы I-7 приводит к получению соответствующего насыщенного соединения формулы I-8. Это гидрирование проводят при обычных условиях. Более конкретно, предпочтительно применять катализатор на основе переходного металла на носителе, например, 5% или 10% палладия, нанесенного на уголь. Также предпочтительно проводить гидрирование при комнатной температуре и при давлении водорода в 1 атм. Предпочтительными растворителями при гидрировании служат низшие алканолы, например, метанол или этанол, или сложные эфиры, например, этилацетат или т.п. Можно также использовать смеси этих растворителей.

Удаление защитной группы R5 в соединении формулы I-8 для получения соответствующего спирта формулы I-9 проводят с использованием кислого катализатора. Предпочтительно этот процесс удаления защитной группы проводить в среде низшего алканола, например, метанола или этанола. Подходящими кислыми катализаторами являются органические сульфокислоты или их соли с аминами при 20-80oC. Особенно предпочтительно осуществлять это превращение с использованием п-толуолсульфокислоты в метаноле. Соединение формулы I-9 выделяют обычными хроматографическими методами.

Соединение формулы I-9 превращают в соответствующее производное I-10, используя стандартные методы, известные в области превращения гидроксильных групп в отщепляющиеся. Эти методы включают обработку галоидирующими реагентами, например, N-бромсукцинимид/трифенилфосфином или N-хлорсукцинимид/трифенилфосфином, в среде дихлорметана. Иначе соединение формулы I-9 можно превратить в соответствующий эфир сульфокислоты формулы I-10 обычными методами, например, обработкой алкил- или арилсульфонилхлоридом и органическим амином. Предпочтительно обрабатывать соединение формулы I-9 метансульфонилхлоридом и триэтиламином в среде дихлорметана, простого эфира или этилацетата при 0-25oC. Эти эфиры метансульфокислоты в свою очередь можно превратить в соответствующие йодиды формулы I-10 обработкой йодидом щелочного металла в среде полярного апротонного растворителя. Предпочтительно осуществлять это превращение, используя йодид натрия, в ацетонитриле при 20-80oC. Соединения формулы I-10 выделяют обычными методами экстракции.

Реакционная схема II где R6 означает гидроксизащитную группу, удаляемую гидрированием, и R2', L и М имеют указанные выше значения.

На схеме II орто-гидроксиацетофенон формулы II-1, являющийся известным соединением, обрабатывают известным формамидацеталем формулы II-2 при 120-160oC в среде ароматического углеводородного растворителя, предпочтительно ксилола, с образованием промежуточного соединения, которое не очищают, а немедленно подвергают циклизации путем обработки кислотой с образованием хромона II-3. Предпочтительными кислотами для проведения этой циклизации служат органические сульфокислоты, например, п-толуолсульфокислота. Предпочтительными растворителями для осуществления этой циклизации являются низшие алканолы, например, метанол и этанол, при 60-80oC. Хромон формулы II-3 выделяют обычными хроматографическими методами или перекристаллизацией.

Хромон формулы II-3 конденсируют с производным бензола формулы II-4, являющимся известным соединением, в присутствии основания, палладиевого катализатора и четвертичной аммониевой соли с образованием соединения формулы II-5. Примерами производных бензола являются известные соединения типа иодбензола, фенилтрифторметансульфоната и т.п. Предпочтительно эту конденсацию осуществлять с использованием в качестве основания ацетата щелочного металла и тетраалкиламмонийгалогенида в качестве четвертичной аммониевой соли. Особенно предпочтительно, чтобы основанием служил ацетат натрия и четвертичной аммониевой солью - тетраэтиламмонийхлорид. Для проведения конденсации предпочтительным катализатором служит ацетат палладия (II). Эту конденсацию предпочтительно осуществлять при 25-100oC в полярном апротонном растворителе, например, N, N-диметилформамиде. Соединение формулы II-5 выделяют обычными хроматографическими методами или перекристаллизацией.

Каталитическое гидрирование хромона формулы II-5 с сопутствующим восстановительным отщеплением защитной группы R6 приводит к получению гидроксихроманона формулы II-6. Гидрирование проводят при обычных условиях. Катализатор на основе переходного металла на носителе является предпочтительным, например, 5% или 10% палладия на угле или древесном угле. Предпочтительно, чтобы это гидрирование проводилось при комнатной температуре и давлении водорода, равном 1 атм. Предпочтительными растворителями для проведения гидрирования являются низшие алканолы, например, метанол или этанол, или сложные эфиры, например, этилацетат. Можно также применять смеси этих растворителей. Это гидрирование можно проводить в две стадии, на первой удаляют защитную группу в присутствии палладия на угле и затем восстанавливают двойные связи, применяя обычный катализатор - никель Ренея. Соединение формулы II-6 можно выделить обычными методами хроматографии или перекристаллизацией.

Гидроксихроманон формулы II-6 подвергают взаимодействию с соединением формулы I-10 (схема I) в присутствии основания, например, карбоната щелочного металла, такого как карбонат натрия или калия, при температуре от примерно 25 до примерно 110oC в полярном апротонном растворителе, например, ацетонитриле, N, N-диметилформамиде, 2-бутаноне, диметилсульфоксиде и т.п. В качестве основания можно также использовать гидрид щелочного металла, например, гидрид натрия, в этом случае предпочтительны такие инертные растворители, как тетрагидрофуран, простой эфир, толуол или N,N-диметилформамид. Кроме того, можно использовать способ по патенту США 4931574. В этом случае соединения формул II-6 и I-10 подвергают взаимодействию в присутствии карбоната щелочного металла, предпочтительно карбоната калия, и катализатора переноса фаз, предпочтительно трис[2-(2-метоксиэтокси)этил]амина (TDA-1), в ароматическом углеводородном растворителе, предпочтительно толуоле, при 80-110oC. Полученный диэфир формулы II-7 можно выделить обычными методами, например, хроматографией, и его можно превратить в соответствующую дикислоту формулы A2 путем омыления, используя гидроксид щелочного металла, например, гидроокись лития, натрия или калия, в смеси воды и смешивающегося с водой растворителя, например, метанола, этанола или тетрагидрофурана, при температуре от примерно 25 до примерно 60oC. Предпочтительно осуществлять это омыление при комнатной температуре в среде водного тетрагидрофурана, используя гидроксид лития. Соединения формулы A2 можно выделить обычными методами, например, перекристаллизацией или хроматографией.

Реакционная схема III где L, М и R2' имеют указанные выше значения.

На схеме III известный гидроксихроманон формулы III-1 алкилируют соединением формулы II-6, как показано на реакционной схеме II для превращения соединения формулы II-6 в соединение формулы II-7. Соединение формулы III-2 выделяют обычной хроматографией и фенилируют с образованием соединения формулы III-3, как показано на схеме II для превращения соединения формулы II-3 в соединение формулы II-5. Соединение формулы III-3 выделяют обычной хроматографией. Каталитическое гидрирование соединения формулы III-3 приводит к образованию соответствующего соединения формулы II-7, выделяемого хроматографией. Это гидрирование проводят при условиях, показанных на схеме II для превращения соединения формулы II-5 в соединение формулы II-6. Омыление соединения формулы II-7 приводит к получению соответствующей дикислоты формулы А2 как показано на схеме II.

Реакционная схема IV где R2', R6 и L имеют указанные выше значения.

На реакционной схеме IV 1,3-диметоксибензол, известное соединение формулы IV-1, превращают в соединение формулы IV-3 сначала обработкой сильным основанием и затем алкилирующим агентом формулы IV-2, который представляет известные соединения, такие как 3-бром-1-фенилпропан, 3-йод-1-фенилпропан, 3-[(метилсульфонил)окси] -1-фенилпропан и т.п. Предпочтительно, чтобы основание, применяемое при алкилировании, было из ряда литийорганических соединений, например, метиллитий, фениллитий, н-бутиллитий и т.п., и чтобы алкилирование проводилось в среде инертного простого эфира. Особенно предпочтительно проводить алкилирование, используя н-бутиллитий в среде тетрагидрофурана при температуре от -20oC до комнатной. Соединение формулы IV-3 выделяют обычным методом хроматографии.

Ацетилирование соединения формулы IV-3 проводят при обычных условиях реакции Фриделя-Крафтса. Конкретно обработку ацетилхлоридом и алюминийхлоридом проводят в дихлорметане с получением соответствующего ацетофенона формулы IV-4, выделяемого хроматографией. Обработка соединения формулы IV-4 при стандартных условиях деметилирования, например, с использованием трехбромистого бора в растворе дихлорметана при температуре от -50oC до комнатной, приводит к образованию соответствующего дигидроксиацетофенона формулы IV-5, выделяемого обычной хроматографией или перекристаллизацией.

Дигидроксиацетофенон формулы IV-5 подвергают взаимодействию с соединением формулы IV-6, являющимся известным, в присутствии основания с образованием соединения формулы IV-7. Среди различных соединений формулы IV-6, которые можно применять, предпочтительны бензилхлорид или бензилбромид. Предпочтительно проводить это алкилирование, применяя в качестве основания карбонат калия, в среде ацетона или ацетонитрила при 20-80oC. Обработка соединения формулы IV-7 известным формамидацеталем формулы II-2, с последующей циклизацией в присутствии кислоты, как показано на реакционной схеме II для превращения соединения формулы II-1 в соединение формулы II-3, приводит к образованию хромона IV-8. Этот хромон IV-8 обычно выделяют обычным методом хроматографии или перекристаллизацией. Каталитическое гидрирование хромона IV-8 с сопутствующим восстановительным удалением арилметилэфирных фрагментов R6 приводит к получению хроманона формулы II-6. Это гидрирование-восстановление осуществляют как показано на реакционной схеме II для превращения соединения формулы II-5 в хроманон II-6.

Реакционная схема V На реакционной схеме V 1,3-циклогександион, известное соединение формулы V-1, конденсируют с известным соединением - коричным альдегидом формулы V-2 в присутствии катализатора - вторичного амина с образованием диендиона формулы V-3, выделяемого кристаллизацией. Предпочтительно эту альдольную конденсацию осуществлять, используя в качестве катализатора циклический вторичный амин, например, пиперидин, в среде этанола при температуре от 0 до 30oC.

Каталитическое гидрирование диендиона формулы V-3 проводят, используя в качестве катализатора палладий на угле, в среде этилацетата с образованием соответствующего циклогександиона формулы V-4. Предпочитают проводить это гидрирование при комнатной температуре и при давлении водорода в 1 атм.

Соединение формулы V-4 обрабатывают известным соединением - 3-гидроксипропионитрилом формулы V-5 в присутствии кислого катализатора с получением енольной формулы простого эфира формулы V-6, выделяемой обычной хроматографией. Предпочтительно проводить эту реакцию, используя в качестве катализатора органическую сульфокислоту, например, п-толуолсульфокислоту, в среде инертного углеводородного растворителя, например, бензола или толуола, при 80-120oC.

Ароматизация енолэфира формулы V-6 c образованием соответствующего фенола формулы V-7 достигается бромированием с последующим дегидробромированием основанием. Бромирование можно осуществить любым обычным бромирующим реагентом, например, бромом, N-бромсукцинимидом и т.п., в среде инертного растворителя. Предпочтительно это бромирование проводить в растворе дихлорметана при температуре от -10 до 5oC с использованием 1,3-дибром-5,5-диметилгидантоина. Дегидробромирование можно провести в инертном растворителе, применяя стерически затрудненный третичный амин. Предпочтительно проводят дегидробромирование, используя в качестве основания 1,4-диазабицикло[2.2.2] октан, в растворе толуола при 25-110oC. Фенол формулы V-7 выделяют хроматографией.

Циклизацию фенола формулы V-7 проводят обработкой сильной кислотой с образованием гидроксихроманона формулы II-6, выделяемого хроматографией или кристаллизацией. Эту циклизацию можно осуществить с применением известных сильных кислот, например, серной, соляной, фосфорной и т.п. Предпочтительно осуществлять эту циклизацию, используя 85%-ную фосфорную кислоту, в растворе уксусной кислоты при 100-150oC.

Реакционная схема VI где R2', L и М имеют указанные выше значения.

На схеме VI аллиловый простой эфир формулы VI-1, известное соединение, подвергают термолизу для осуществления перегруппировки Клайзена. Предпочтительно проводить этот термолиз при 180-230oC без растворителя или в растворителе с достаточно высокой точкой кипения, например, в N,N-диэтиланилине. Желаемый изомерный нафталинон формулы VI-2 можно выделить перекристаллизацией. Нафталинон формулы VI-2 алкилируют соединением формулы I-10 с образованием соединения формулы VI-3, как показано на реакционной схеме II для превращения соединения формулы II-6 в соединение формулы II-7. Соединение формулы VI-3 выделяют обычной хроматографией и фенилируют с образованием продукта формулы VI-4, как показано на схеме II в случае превращения соединения формулы II-3 в соединение формулы II-5. Соединение формулы VI-4 выделяют обычной хроматографией. Каталитическое гидрирование соединения формулы VI-4 приводит к получению соединения формулы VI-5, которое выделяют хроматографией. Гидрирование проводят при условиях, показанных на схеме III, в случае превращения соединения формулы III-3 в соединение формулы II-7. Омыление соединения формулы VI-5 приводит к образованию дикислоты формулы B2, выделяемой перекристаллизацией, и это омыление осуществляют, как показано на схеме II для превращения соединения формулы II-7 в соединение формулы A2. Альтернативно омыление соединения формулы IV-4 в тех же условиях приводит к получению соответствующей дикислоты формулы C2, выделяемой хроматографией или перекристаллизацией.

Соединения формул A, B и C, где R2 означает -NR3R4 и R3 и R4 означают водород или низший алкил, могут быть получены из дикислот обычными методами, известными специалистам в данной области.

Изобретение также относится к солям соединений формул A, B и C, когда они содержат функциональные кислотные группы, что приводит к образованию солей с основанием. Соли соединений формул A, B и C, которые содержат карбоксильные группы, получают взаимодействием с нетоксичным, фармакологически применимым основанием. В общем использование любого основания, которое образует соль с карбоновой кислотой и фармакологические свойства которого не оказывают вредного физиологического воздействия, находится в рамках данного изобретения.

Подходящие основания включают, например, гидроокиси и карбонаты щелочных и щелочноземельных металлов и т.п., например, гидроокись кальция, гидроокись натрия, карбонат натрия, карбонат калия или т.п., аммиак, первичные, вторичные и третичные амины, такие как моноалкиламины, диалкиламины, триалкиламины, например, метиламин, диэтиламин, триэтиламин или т.п., азотсодержащие гетероциклические амины, например, пиперидин или т.п. Полученная таким образом соль является функциональным эквивалентом соответствующего соединения формул A, B и C, где R2 означает гидроксил, и специалисту очевидно, что разнообразные соли, охватываемые данным изобретением, должны только отвечать требованию, заключающемуся в том, что основание, используемое при получении соответствующих солей, должно быть нетоксичным и физиологически приемлемым.

Ниже показана полезная активность соединений формулы I в качестве антагонистов лейкотриена B4 (LTB4).

Методика.

Реакция связывания LTB4 рецептором.

Исследование реакции связывания можно проводить в лунках на микротитровальном планшете. Выделенные нейтрофилы человека в растворе соли Гея инкубируют на льду в течение 45 мин, используя 0,5 нМ 3H-LTB4 в присутствии или в отсутствие испытуемых соединений. Испытания заканчивают добавлением 12 мл ледяного 50 мМ трисбуфера (pH 7,4) с последующей быстрой фильтрацией под вакуумом через GF/C фильтры. Радиоактивность определяют сцинтилляционным счетчиком. Неспецифическое связывание определяют как связывание, не проявляющееся при 100-кратном избытке немеченого LTB4. Специфическое связывание определяется как разница между общим и неспецифическим связыванием. Нелинейный анализ данных осуществляют с использованием LIGAND (Munson and Rodbard, 1980). Кi (константы ингибирования) определяют по уравнению Cheng-Prusoff (Cheng and Prusoff, 1973).

При использовании представителей соединений формул A, B или C по изобретению получают результаты ингибирования связывания 3H-LTB4, приведенные в табл. 1.

Бронхостеноз у морских свинок, in vivo.

Проводят анестезирование самцов морских свинок (Hartley) весом 300-500 г внутрибрюшинно уретаном (2 г/кг) и вставляют в яремную вену полиэтиленовый катетер для введения лекарства. Давление в трахее записывают при помощи канюли, помещенной в трахее и соединенной с датчиком давления Gould P231D. После хирургической подготовки животных некоторое время ожидают стабилизации легочных функций. Затем животных парализуют сукцинилхолином (1,2 мг/кг, внутривенно) и осуществляют механическую искусственную вентиляцию легких (респиратор Harvard) с частотой 40 вдохов/мин и приливно-отливным объемом 2,5 см3. Испытуемое соединение вводят перорально за 2 ч до введения лейкотриена B4. Внутривенно вводят пропанолол (0,1 мг/кг) за 5 мин до введения лейкотриена B4. Затем внутривенно вводят животным промежуточную вызывающую сужение бронхов дозу лейкотриена B4 (200 мкг/кг).

Усредняют для 6 контрольных животных и 6 животных, которым ввели лекарство, разницу в давлении (см H2О) искусственного дыхания, измеренного начале опыта и в пиковый момент. Процент ингибрирования рассчитывают по формуле: ((Контрольные - Получившие лекарство)/Контрольные)100.

При использовании представителей соединений формул A, B и C по изобретению получены результаты, приведенные в табл. 2.

В практике использования изобретения доза соединения формул A, B, C или его соли, и частота приема зависит от эффективности и длительности действия конкретного соединения формул A, B, C или его соли и способа его введения, а также от степени и природы болезни и возраста млекопитающего, подвергающегося лечению и т.д. Оральные дозы соединения формул A, B или C или его соли колеблются от 2 мг до 2 г в день, предпочтительно от примерно 2 мг до 1 г в день в виде одноразовой дозы или нескольких доз.

Нижеследующие примеры иллюстрируют данное изобретение.

Соединение формул A, B или C или соль, или фармацевтическая композиция, содержащая терапевтически эффективное количество соединения формул A, B или C или его соль вводится методами, хорошо известными в данной области техники. Таким образом, соединения формул A, B или C или их соли могут вводиться либо сами по себе, либо с другими фармацевтическими агентами, например, антигистаминами, ингибиторами выделения медиатора, метилксантинами, бета-агонистами или антиастматическими гормонами, например, преднизоном и преднизолоном, перорально, парентерально, ректально или путем ингаляций, например, в виде аэрозоля, мелкоизмельченного порошка или распыляемого раствора. Для орального введения их можно применять в виде таблеток, капсул, например, в смеси с тальком, крахмалом, молочным сахаром или другими инертными ингредиентами, т. е. фармацевтически применимыми носителями, или в виде водных растворов, суспензий, эликсиров или водно-спиртовых растворов, например, в смеси с сахаром или другими подсластителями, ароматизирующими веществами, красителями, загустителями и другими обычными фармацевтическими наполнителями. Для парентерального применения их можно применять в виде растворов или суспензии, например, в виде водного раствора или суспензии, или раствора в арахисовом масле, с использованием наполнителей и носителей, обычно применяемых при этом способе введения. При использовании в виде аэрозолей их можно растворить в подходящем фармацевтически приемлемом растворителе, например, этиловом спирте или смеси растворителей, и смешать с фармацевтически приемлемым пропеллентом. Такие аэрозольные композиции упаковывают в контейнер под давлением, снабженный аэрозольным клапаном для выделения композиции, находящейся под давлением. Предпочтительно, чтобы аэрозольный клапан был дозирующим, т. е. таким, который при работе выпускает заданную эффективную дозу аэрозольного состава. Для местного применения соединения назначаются в виде мази, крема, лосьона, порошка, геля или т.п. Подходящими носителями для местного применения являются глицериды, полусинтетические и синтетические глицериды, гидрированные масла, жидкие воски, жидкие парафины, жидкие жирные спирты, стеролы, полиэтиленгликоли, производные целлюлозы и т.п.

Следует иметь в виду, что используемая в настоящем описании формула C обозначает также геометрические изомеры. Геометрические изомеры можно разделить на соответствующие E- и Z-изомеры, используя известные методы, как описано ниже в примерах.

В следующих примерах "обычное выделение" включает в себя три экстракции конкретным растворителем. Органические экстракты соединяют, промывают водой и насыщенным соляным раствором; сушат над безводным сульфатом магния, фильтруют и концентрируют под давлением водяного аспиратора. Остаток высушивают до постоянного веса под высоким вакуумом при 45oC. Все реакции, кроме гидрирования, проводят в инертной атмосфере азота или аргона.

Пример 1.

Получение 7-(фенилметокси)-8-(2-пропенил)-4H-1-бензопиран-4-она.

Смесь 5,0 г (17,73 ммоля) 1-[2-гидрокси-4-(фенилметокси)-3-(2- пропенил)фенил] этанона, 2,3 г (19,48 ммоля) диметилформамиддиметилацеталя и 5,0 мл ксилола перемешивают и нагревают на масляной бане при 120-130oC при отгонке метанола в течение 2,5 ч с помощью колонки Vigreux (3 дюйма = 7,62 см). Затем температуру бани повышают до 150-160oC и реакционную смесь перемешивают при этой температуре еще 30 мин. Смесь охлаждают и концентрируют при 60oC/высокий вакуум. К вязкому красно-коричневому маслянистому остатку добавляют 3,7 г (19,48 ммоля) моногидрата п-толуолсульфокислоты и 50 мл этанола. Полученный раствор перемешивают и нагревают с обратным холодильником 24 ч, затем охлаждают и разбавляют водой. Обычное выделение простым эфиром приводит к получению технического продукта, который перекристаллизовывают из смеси гексан-этилацетат. Получают 3,5 г (67,6%) 7-(фенилметокси)-8-(2-пропенил)-4H-1-бензопиран-4-она в виде желтого твердого вещества с температурой плавления 90-92oC.

Элементный анализ. Вычислено для C19H16O3, %: C 78,06; H 5,52. Найдено, %: C 77,97; H 5,56.

Пример 2.

Получение (Е)-7-(фенилметокси)-8-(З-фенил-2-пропенил)-4H-1- бензопиран-4-она.

Смесь 8,76 г (30 мМ) 7-(фенилметокси)-8-(2-пропенил)-4H-1- бензопиран-4-она (предыдущий пример), 6,7 г (32,84 ммоля) иодбензола, 5,11 г (30,84 ммоля) тетраэтиламмонийхлорида, 8,94 г (91,22 ммоля) безводного ацетата натрия и 64 мл сухого N.N-диметилформамида перемешивают при комнатной температуре и очищают в атмосфере аргона. Ацетат палладия (II) (0,38 г; 1,7 ммоля) добавляют при перемешивании при комнатной температуре в течение 24 ч. Смесь темного цвета разбавляют водой и выделяют простым эфиром по обычной методике (эфирные экстракты дополнительно промывают 12%-ным водным раствором бисульфита натрия). Перекристаллизация технического продукта из ацетонитрила приводит к получению 6,13 г (55,5%) конечного продукта в виде коричневого твердого вещества. Образцы для анализа получают отдельно в виде желтых кристаллов, температура плавления 131-133oC.

Элементный анализ. Вычислено для C25H20O3, %: C 81,50; H 5,47. Найдено, %: C 81,34; H 5,10.

Пример 3.

Получение 2,3-дигидро-7-гидрокси-8-(3-фенилпропил)-4H-1- бензопиран-4-она.

Смесь 6,1 г (16,6 ммоля) (Е)-7-(фенилметокси)-8-(3-фенил-2-пропенил)-4H-1-бензопиран-4-она из предыдущего примера, 1 г 10%-ного палладия на угле, 100 мл метанола и 300 мл этилацетата перемешивают при комнатной температуре в атмосфере водорода, пока не израсходуется приблизительно одна треть от теоретического объема газообразного водорода. Катализатор отфильтровывают под вакуумом и концентрируют фильтрат в вакууме. Остаток растворяют в 150 мл метанола и добавляют 0,5 г никеля Ренея. Продолжают гидрирование при тщательном контроле с помощью тонкослойной хроматографии. Когда восстановление практически завершится, катализатор отфильтровывают под вакуумом, и фильтрат концентрируют в вакууме. Твердый остаток (4,75 г) соединяют с 6,4 г, полученными в другом опыте (23,9 ммоля), и хроматографируют на силикагеле. Элюирование смесью гексан-этилацетат приводит к получению 10,73 г (93,9%) конечного продукта в виде бесцветного твердого вещества, температура плавления 110-112oC.

Пример 4.

Получение 1,3-диметокси-2-(3-фенилпропил)-бензола.

Раствор 8,70 г (63 ммоля) 1,3-диметоксибензола в 164 мл безводного тетрагидрофурана перемешивают при -20oC, одновременно по каплям в течение 20 мин добавляют 1,6М н-бутиллития в гексане (42,1 мл; 67,2 ммоля). Раствор перемешивают при -20oC в течение 3 ч и затем оставляют нагреваться до -5oC, после чего в течение 15 мин добавляют 15,66 г (63,6 ммоля) 1-йод-3-фенилпропана. Реакционную смесь перемешивают при -5oC в течение 1 ч и затем при комнатной температуре в течение 3 дней. После повторного охлаждения до -5oC реакционную смесь разлагают путем добавления 1,5 H водного раствора серной кислоты. Добавляют воду, и смесь обрабатывают простым эфиром по обычной методике. Остаток обрабатывают 100 мл гексана и смесь отфильтровывают. Удаление растворителя в вакууме приводит к получению 15,28 г (94,7%) конечного соединения в виде желтого масла.

Пример 5.

Получение 1-[2,4-диметокси-3-(3-фенилпропил)фенил]этанона.

Раствор 15,28 г (59,6 ммоля) 1,3-диметокси-2-(3-фенилпропил)-бензола из предыдущего примера и 4,68 г (59,6 ммоля) ацетилхлорида в 306 мл дихлорметана перемешивают при -5-0oC и добавляют 7,95 г (59,6 ммоля) хлористого алюминия. Полученную смесь перемешивают при -5- 0oC в течение 2 ч и затем оставляют наг