Фармацевтический состав для профилактики и лечения раковых заболеваний

Реферат

 

Предметом изобретения являются фармацевтические составы для профилактики и лечения раковых заболеваний и способ их получения. Составы включают по меньшей мере три соединения, присутствующие в кровесной системе: по меньшей мере одну аминокислоту, по меньшей мере один витамин и по меньшей мере один компонент, выбранный из группы, состоящей из аденина, 2-деокси-D-рибозы, D-маннозы, D-глюкозамина, яблочной кислоты, щавелевоуксусной кислоты и аденозинтрифосфата. Составы обладают пониженной токсичностью и более высокой эффективностью при профилактике раковых заболеваний, подавлении образования опухолей в случае СПИДа и трансплантациях, препятствуют образованию метастазов. 8 з.п. ф-лы, 9 ил, 2 табл.

Предметом данного изобретения являются фармацевтические составы для профилактики и лечения раковых заболеваний и способ их получения.

Наиболее часто применяемыми в раковой терапии методами являются хирургическое, химиотерапевтическое лечение и лечение облучением [1-3]. При лечении облучением, помимо широко применяемых ионизаций, в особых случаях, например при карциноме кожи, применяют фототерапию и локальную гипертермию в сочетании с облучением и химиотерапией. Распределенные по категориям по их действию, происхождению и структуре, среди средств химиотерапии могут встречаться также алкилирующие реагенты, растительные алкалоиды, антибиотики, антиметаболиты, другие лекарственные средства (например, аспарагиназа) и часто применяемые различные гормоны. Новыми применяемыми в химиотерапии направлениями являются следующие: комбинированная химиотерапия; длительное венозное и артериальное вливание малыми дозами химиотерапевтических препаратов для понижения токсичности; химиотерапия высокими дозами для преодоления устойчивости к лекарственным препаратам и терапия того же типа в сочетании с аутогенной пересадкой костного мозга: химиотерапевтические препараты в сочетании с модификаторами биологического ответа; применение в большей степени адъювантной и неоадъювантной химиотерапии. Наиболее часто применяемыми модификаторами биологического ответа являются: интерфероны, фактор некроза опухоли, лимфокины, например интерлейкин-2, и моноклональные антитела. Различные диетические методы, малоизученные сывороточные препараты и метод Simonton'a с применением психогенных эффектов принадлежат к применяемым в настоящее время методам в лечении опухолевых заболеваний, эффективность которых еще не установлена.

Наиболее характерными недостатками применяемых в настоящее время методов, указанных в вышеприведенном перечне, являются: токсичность, значительные побочные действия, низкая опухолевая специфичность, развитие устойчивости и ограниченные пределы эффективности. Наиболее цитотоксичные препараты, применяемые в раковой терапии, не отличают относящиеся к опухоли клетки от нормальных пролиферирующих клеток; поэтому для того, чтобы избежать любой необратимой угрозы для живых клеток хозяина (например костного мозга, кишечника) препараты должны вводиться в дозах, которые обычно оказываются недостаточными для того, чтобы уничтожить все из имеющихся опухолевых клеток [4] . Лечение облучением может вызывать радиационное поражение, и в то же время оно не эффективно в отношении клеток, испытывающих кислородное голодание, и определенных типов опухолей. Препараты, применяемые в химиотерапии, обладают также различными токсичными побочными действиями. Они могут поражать центральную нервную систему, кроветворные органы, слизистые мембраны желудка и кишечника и все пролиферирующие клетки. Кроме того, они могут наносить ущерб печени, почкам, легким и сердечной мышце. Почти все эффективные противоопухолевые средства являются иммунодепрессивными [5]. Многие из них обладают тератогенным или онкогенным действием, иногда они могут вызывать бесплодие или увеличивать частоту вторичного образования опухолей. Посредством химиотерапии трудно или невозможно воздействовать на 60-70% опухолей, при этом в ходе лечения может также развиться устойчивость или перекрестная устойчивость.

К сожалению, лечение с применением модификаторов биологического ответа с задействованием собственного защитного механизма организма имеет сходные недостатки, поскольку было обнаружено, что оно эффективно только против нескольких типов опухолей и, кроме того, оно также обладает токсичными побочными действиями [2]. Интерфероны также обладает многочисленными и тяжелыми побочными действиями и, среди прочего, кардиотоксичностыо [6]. Аналогичным образом, не оправдались надежды, связанные с моноклональными антителами [7]. Несмотря на то, что с 1980 года было проведено более 400 зарегистрированных клинических испытаний иммунотерапии, ни одно из них до сих пор не было принято как лечение для рака любого типа [8].

Известен [9] препарат, применяемый при лечении раковых заболеваний и содержащий L-цистеин, L-метионин, L-гистидин, L-фенилаланин, L-лизин, L-триптофан, L-валин, L-лейцин, L-треонин, L-яблочную кислоту и L-аскорбиновую кислоту. L-яблочная и L-аскорбиновая кислоты в качестве активаторов забуферивают и стабилизируют аминокислоты в их кислотной форме и таким образом вызывают изменение значения pH в крови в кислотную область ниже 6.8. В этой публикации отсутствуют данные, подтверждающие остановку роста или даже обратное развитие злокачественных опухолей.

Известен [10] раствор аминокислот для внутривенного вливания, содержащий специфические аминокислоты, за исключением L-изолейцина, способный оказывать ингибирующее действие на увеличение опухолей. Возможное, но не доказанное действие этого препарата может базироваться на ограничении аминокислотой, например, изолейцином.

Задачей настоящего изобретения является создание фармацевтических составов, включающих в себя природные вещества, для элиминации недостатков, например, токсичности, низкой специфичности и ограниченных пределов эффективности, известных составов и способов опухолевой терапии.

Изобретение базируется на распознании пассивной защитной системы [здесь и далее называемой пассивной противоопухолевой защитной системой (ППЗС)] против опухолевых клеток в различных организмах. Эта система способна разрушить возникающие и уже существующие опухолевые клетки. Вещества, участвующие в ППЗС, являются эндогенными и экзогенными природными веществами, присутствующими в кровеносной системе, а именно аминокислотами, витаминами, нуклеиновыми основаниями, углеводами и продуктами клеточного метаболизма. Было установлено, что при совместном применении по меньшей мере трех из этих веществ (которые являются компонентами кровеносной системы и поэтому могут достигать всех клеток и проникать в них), они синергически усиливают действие друг друга и поэтому способны разрушать опухолевые клетки.

Далее изобретение базируется на том, что выяснено, что благодаря синергизму будут существовать значительные качественные различия между нормальными и опухолевыми клетками в их поведении по отношению к участникам ППЗС, в силу чего два типа клеток становятся различимыми. В то время как классическая иммунная система может узнавать и селективно разрушать опухолевые клетки в силу их внешних отличий от нормальных клеток, то недавно открытый механизм пассивной противоопухолевой защиты может делать то же самое вследствие внутренних отличий.

Далее изобретение базируется на том, что выяснено, что в зависимости от применяемой дозы и способа применения может быть достигнуто профилактическое или противоопухолевое действие для различных опухолевых клеток. В случае различных типов опухолей, которые отличаются от нормальных клеток в разной степени, на основании синергизма в качестве критерия может быть определен качественный и количественный состав наиболее эффективной смеси.

Основываясь на вышеизложенном, изобретение предлагает фармацевтические составы для профилактики и лечения раковых заболеваний, которые содержат по меньшей мере три активных соединения, присутствующие в кровеносной системе: по меньшей мере одну аминокислоту, по меньшей мере один витамин и по меньшей мере один компонент, выбранный из группы, состоящей из аденина, 2-деокси-D-рибозы, D-маннозы, D-глюкозамина, яблочной кислоты, щавелевоуксусной кислоты, аденозинтрифосфата и/или их фармацевтически приемлемых солей, при условии, что если состав содержит кроме аминокислоты(т) только яблочную кислоту и витамин, то витамин может быть любым, за исключением аскорбиновой кислоты. Составы могут содержать также носители, растворители и/или другие вспомогательные реагенты, обычно применяемые в фармакологии.

Состав согласно изобретению может включать L-метионин, L-триптофан, L-тирозин, L-фенилаланин, L-аргинин, L-гистидин, L-бензоилглицин и/или их соль в качестве аминокислоты и d-биотин, пиридоксин, рибофлавин, рибофлавин-5'-фосфат, L-аскорбиновую кислоту, липоевую кислоту, оротовую кислоту и/или их соль в качестве витамина.

Предпочтительный состав согласно изобретению включает L-триптофан, L-аскорбиновую кислоту, по меньшей мере один компонент, выбранный из группы, состоящей из аденина, 2-деокси-D-рибозы, D-глюкозамина и/или их фармацевтически приемлемых солей.

Другой предпочтительный состав согласно изобретению включает L-аргинин, рибофлавин-5'-фосфат, по меньшей мере один компонент, выбранный из группы, состоящей из D-маннозы, яблочной кислоты, аденозинтрифосфата и/или их фармацевтически приемлемых солей.

Другой предпочтительный состав согласно изобретению включает 30-44% по массе L-аргинина, 27-35% по массе рибофлавин-5'-фосфата, 38-62% по массе яблочной кислоты и/или их фармацевтически приемлемых солей.

Следующий предпочтительный состав согласно изобретению содержит 0,002-70% по массе по меньшей мере одного компонента, выбранного из группы, состоящей из L-метионина, L-триптофана, L-тирозина, L-фенилаланина, L-аргинина, L-гистидина, N-бензоилглицина и/или их солей в качестве аминокислоты, 0,0004-80% по массе по меньшей мере одного компонента, выбранного из группы, состоящей из d-биотина, пиридоксина, рибофлавина, рибофлавин-5'-фосфата, L-аскорбиновой кислоты, липоевой кислоты, оротовой кислоты и/или их солей в качестве витамина и 0,003-80% по массе по меньшей мере одного компонента, выбранного из группы, состоящей из аденина, 2-деокси-D-рибозы, D-маннозы, D-глюкозамина, яблочной кислоты, щавелевоуксусной кислоты, аденозинтрифосфата и/или их фармацевтически приемлемых солей.

Другой предпочтительный состав согласно изобретению включает 0,9-25% по массе L-метионина, 0,8-19% по массе L-триптофана, 1,1-48% по массе L-аргинина, 0,9-46% по массе d-биотина, 1,2-16% по массе пиридоксина, 0,03-42% по массе рибофлавин-5'-фосфата, 0,05-18% по массе D-глюкозамина, 0,5-60% по массе 2-деокси-D-рибозы, 0,7-68% по массе яблочной кислоты, 0,6-40% по массе D-маннозы и/или их фармацевтически приемлемых солей.

Очень эффективный состав по изобретению включает 0,005-34% по массе L-метионина, 0,002-25% по массе L-триптофана, 0,02-23% по массе L-тирозина, 0,04-30% по массе L-фенилаланина, 0,04-50% по массе L-аргинина, 0,03-34% по массе L-гистидина, 0,05-22% по массе N-бензоилглицина, 0,01-60% по массе d-биотина, 0,01-20% по массе пиридоксина, 0,0004-45% по массе рибофлавина, 0,0005-45% по массе рибофлавин-5'-фосфата, 0,003-70% по массе L-аскорбиновой кислоты, 00004-15% по массе липоевой кислоты, 0,01-17% по массе оротовой кислоты, 0,001-10% по массе аденина, 0,01-63% по массе 2-деокси-D-рибозы, 0,08-42% по массе D-маннозы, 0,05-20% по массе D-глюкозамина, 0,01-80% по массе яблочной кислоты, 0,02-60% по массе щавелевоуксусной кислоты, 0,001-10% по массе аденозинтрифосфата и/или их фармацевтически приемлемых солей.

Следующим предметом изобретения является способ получения вышеуказанного состава, который включает смешивание активных соединений, присутствующих в кровеносной системе, среди которых по меньшей мере одна аминокислота, по меньшей мере один витамин и по меньшей мере один компонент, выбранный из группы, состоящей из аденина, 2-деокси-D-рибозы, D-маннозы, D-глюкозамина, яблочной кислоты, щавелевоуксусной кислоты, аденозинтрифосфата и/или их фармацевтически приемлемых солей в фармацевтический состав. К активному составу могут также быть добавлены носители, растворители и другие вспомогательные реагенты, широко применяемые в фармакологии, в количестве, необходимом для того, чтобы дополнить массу состава до 100%.

Предпочтительная реализация способа по изобретению для получения фармацевтического состава включает смешивание L-триптофана, L-аскорбиновой кислоты, по меньшей мере одного компонента, выбранного из группы, состоящей из аденина, 2-деокси-D-рибозы, D-глюкозамина и/или их фармацевтически приемлемых солей.

Другая предпочтительная реализация способа по изобретению для получения фармацевтического состава включает смешивание L-аргинина, рибофлавин-5'-фосфата, по меньшей мере одного компонента, выбранного из группы, состоящей из D-маннозы, яблочной кислоты, аденозинтрифосфата и/или их фармацевтически приемлемых солей.

Следующий предпочтительный вариант реализации способа по изобретению для получения фармацевтического состава включает смешивание 30-44% по массе L-аргинина, 27-35% по массе рибофлавин-5'-фосфата, 38-62% по массе яблочной кислоты и/или их фармацевтически приемлемых солей.

Предпочтительный вариант реализации способа по изобретению для получения фармацевтического состава включает смешивание 0,002-70% по массе по меньшей мере одного компонента, выбранного из группы, состоящей из L-метионина, L-триптофана, L-тирозина, L-фенилаланина, L-аргинина, L-гистидина, L-бензоилглицина и/или их солей в качестве аминокислоты, 0,0004-80% по массе по меньшей мере одного компонента, выбранного из группы, состоящей из d-биотина, пиридоксина, рибофлавина, рибофлавин-5'-фосфата, L-аскорбиновой кислоты, липоевой кислоты, оротовой кислоты и/или их солей в качестве витамина и 0,003-80% по массе по меньшей мере одного компонента, выбранного из группы, состоящей из аденина, 2-деокси-D-рибозы, D-маннозы, D-глюкозамина, яблочной кислоты, щавелевоуксусной кислоты, аденозинтрифосфата и/или их фармацевтически приемлемых солей.

Другой предпочтительный вариант реализации способа по изобретению для получения фармацевтического состава включает смешивание 0,9-25% по массе L-метионина, 0,8-19% по массе L-триптофана, 1,1-48% по массе L-аргинина, 0,9-46% по массе d-биотина, 1,2-16% по массе пиридоксина, 0,03-42% по массе рибофлавин-5'-фосфата, 0,05-18% по массе D-глюкозамина, 0,5-60% по массе 2-деокси-D-рибоы, 0,7-68% по массе яблочной кислоты, 0,6-40% по массе D-маннозы и/или их фармацевтически приемлемых солей.

Наиболее предпочтительная реализация способа по изобретению для получения фармацевтического состава включает смешивание 0,005-34% по массе L-метионина, 0,002-25% по массе L-триптофана, 0,02-23% по массе L-тирозина, 0,04-30% по массе L-фенилаланина, 0,04-50% по массе L-аргинина, 0,03-34% по массе L-гистидина, 0,05-22% по массе N-бензоилглицина, 0,01-60% по массе d-биотина, 0,01-20% по массе пиридоксина, 0,0004-45% по массе рибофлавина, 0,0005-45% по массе рибофлавин-5'-фосфата, 0,003-70% по массе L-аскорбиновой кислоты, 0,004-15% по массе липоевой кислоты, 0,01-17% по массе оротовой кислоты, 0,001-10% по массе аденина, 0,01- 63% по массе 2-деокси-D-рибозы, 0,08-42% по массе D-маннозы, 0,05-20% по массе D-глюкозамина, 0,01-80% по массе яблочной кислоты, 0,02-60% по массе щавелевоуксусной кислоты, 0,001-10% по массе аденозинтрифосфата и/или их фармацевтически приемлемых солей.

Для терапевтического применения составы по изобретению формируют подходящим образом в фармацевтические составы так, чтобы после смешивания их с нетоксичными инертными твердыми или жидкими носителями, растворителями, связывающими реагентами и/или другими добавками, широко применяемыми в фармацевтической промышленности для энтерального или парентерального введения, они становились одной из обычных лекарственных форм. Носителями, растворителями и связывающими реагентами, удовлетворяющими вышеуказанным требованиям, являются, например, вода, желатин, лактоза, сахароза, крахмал, пектин, стеариновая кислота, стеарат магния, тальк, различные растительные масла, а также гликоли, такие как пропиленгликоль или полиэтиленгликоль. Фармацевтическими добавками и вспомогательными компонентами являются, например, консервирующие реагенты, такие как метил-4-гидроксибензоат, различные природные или синтетические эмульгаторы, диспергирующие и смачивающие реагенты, окрашивающие и ароматические реагенты, буферные вещества, а также реагенты, стимулирующие распад или растворение, и другие вещества, усиливающие желаемое действие.

Обычные лекарственные формы является составами для перорального введения, получаемыми путем применения вышеуказанных фармацевтических добавок; эти составы могут представлять собой твердые формы, например, таблетки, капсулы, порошки, драже, пилюли или гранулы, или жидкие формы, например, сиропы, растворы, эмульсии или суспензии; кроме того, составы для ректального введения, такие как суппозитории; а также и составы для парентерального введения, например, растворы или настои для инъекций.

Предпочтительная суточная доза состава согласно изобретению зависит от ряда факторов, таких как природа излечиваемого заболевания, состояния пациента, способа лечения и т.д. Предпочтительная суточная доза составляет 30-3000 мг/кг веса тела. Соответственно этому, приемлемо вводить ежедневно 1-4 таблетки, капсулы или драже, каждая из которых содержит 0,2-3 г активного состава или 0,5-3 л растворов для вливания, содержащих 10-200 г/л активного состава.

Далее предметом изобретения является способ профилактики и лечения раковых заболеваний. Этот способ включает введение терапевтически эффективного количества состава согласно изобретению пациенту, проходящему курс лечения.

Изобретение будет представлено более детально в следующих таблицах, чертежах и примерах. Клетки, использовавшиеся в следующих экспериментах, были получены из "Американской коллекции Типовых культур" (Rockville, MD, USA).

В таблице 1 представлено убивающее опухолевые клетки действие и синергическое совместное действие компонентов составов из примеров 1-20, включающих четыре и пять активных компонентов соответственно, на Sp2/0-Ag14 клетки миеломы (АТСС CRL 1581).

В таблице 2 показано, на основании примеров 21-37, усиление действия состава, включающего пять активных компонентов, на Sp2/0-Ag14 клетки при добавлении дополнительных компонентов.

На фиг. 1 представлено действие и синергическое совместное действие компонентов составов, включающих четыре и пять активных компонентов соответственно, согласно примерам 1-20.

На фиг. 2 представлено сравнение действия in vitro составов, включающих пять активных компонентов согласно примерам 102-106, и составов, включающих двадцать один активный компонент согласно примерам 107-111, на Sp2/0-Ag14 клетки мышиной миеломы в сравнении с соответствующей контрольной смесью.

На фиг. 3 представлено действие составов, включающих двадцать один активный компонент согласно примеру 107, на Sp2/0-Ag14 клетки мышиной миеломы как функция времени в сравнении с необработанными клетками и соответствующей контрольной смесью.

На фиг. 4 представлено действие in vitro составов, включающих двадцать один активный компонент согласно примерам 107-111, на K-562 клетки человеческого эритромиелоза (АТСС CCL 243) в сравнении с соответствующими контрольными смесями.

На фиг. 5 представлено действие in vitro составов, включающих двадцать один активный компонент согласно примерам 107-111, на HeLa клетки человеческой эпителоидной карциномы шейки (АТСС CCL 2) в сравнении с соответствующими контрольными смесями.

На фиг. 6 представлено действие составов, включающих двадцать один активный компонент согласно примерам 107-111, на НЕр-2 клетки человеческой эпидермоидной карциномы гортани (АТСС CCL 23) в сравнении с соответствующими контрольными смесями.

На фиг. 7 представлено действие in vitro составов, включающих двадцать один активный компонент согласно примерам 107-111, на нормальные Vero клетки почки африканской зеленой обезьяны в сравнении с соответствующими контрольными смесями.

На фиг. 8 представлено действие in vivo составов, включающих двадцать один активный компонент согласно примеру 112, на опухоль, развившуюся из Sp2/0-Ag14 клеток мышиной миеломы, введенных внутрибрюшинно BALB/c мышам, в сравнении с соответствующей контрольной группой.

На фиг. 9 представлено in vivo действие составов, включающих двадцать один активный компонент согласно примеру 112, на твердую опухоль, развившуюся под кожей из HeLa клеток человеческой эпителоидной карциномы шейки, введенных подкожно BALB/c (nu/nu) мышам, в сравнении с соответствующей контрольной группой.

Для экспериментов применяли следующие среды: в случае Sp2/0-Ag14 и K-562 клеток RPMI 1640 среду (Sigma Chemie GmbH, D-8024 Deisenhofen, Germany, номер продукта: R 6504), в случае НЕр-2, HeLa и Vero клеток минимальную поддерживающую среду MEM (Sigma Chemie GmbH, номер продукта: М 4655).

Примеры 1-37 В аппарат, снабженный мешалкой, вносят активные реагенты в количествах, указанных в таблицах 1 и 2, затем к полученной порошкообразной смеси добавляют количества гидрокарбоната натрия, также указанные в таблицах 1 и 2, необходимые для нейтрализации компонентов кислотного типа. В ходе непрерывного перемешивания к смеси добавляют соответствующую среду для того, чтобы дополнить массу состава до 100%. Действие полученных таким способом растворов представлено в таблицах 1 и 2 и на фиг. 1.

Примеры 38-67 Осуществляют также как примеры 1-37, с тем отличием, что для нейтрализации компонентов кислотного типа применяют соответствующие количества гидрокарбоната калия вместо гидрокарбоната натрия. Действие полученных этим способом растворов в любом случае не отличается существенно от действия растворов из примеров 1-37, представленного в таблицах 1 и 2 и на фиг. 1, соответственно.

Примеры 68-97 Осуществляют также как примеры 1-37, с тем отличием, что для нейтрализации компонентов кислотного типа применяют соответствующие количества карбоната кальция вместо гидрокарбоната натрия. Действие полученных этим способом растворов в любом случае не отличается существенно от действия растворов из примеров 1-37, представленного в таблицах 1 и 2 и на фиг. 1, соответственно.

Примеры 98-101 Осуществляют также как примеры 23, 24, 27 и 28, с тем отличием, что вместо L-аргинина, L-гистидина, L-метионина и L-тирозина, соответственно, применяемых в примерах 23, 24, 27 и 28, соответственно, применяют 0,053% по массе L-аргинина гидрохлорида, 0,052% по массе L-гистидина гидрохлорида, 0,009% по массе L-метионина гидрохлорида и 0,025% по массе тирозина гидрохлорида, соответственно. Во всех случаях соответствующее количество гидрокарбоната натрия составляло 0,054% по массе. Действие полученных этим способом растворов не отличается существенно от действия растворов из примеров 23, 24, 27 и 28, представленного в таблице 2.

Пример 102 В аппарат, снабженный мешалкой, вносят 0,01% по массе L-триптофана, 0,034% по массе 2-деокси-D-рибозы, 0,003% по массе аденина, 0,065% по массе яблочной кислоты, 0,007% по массе L-аскорбиновой кислоты и 0,091% по массе гидрокарбоната натрия. Затем для того, чтобы дополнить массу состава до 100%, в ходе непрерывного перемешивания к этой смеси добавляют соответствующую среду. Действие полученного таким способом раствора представлено на фиг. 2 для 100%-ного состава.

Пример 103 Осуществляют также как пример 102, с тем отличием, что вносят только 80% количества каждого компонента. Затем для того, чтобы дополнить массу состава до 100%, к этой смеси добавляют соответствующую среду. Действие полученного таким способом раствора представлено на фиг. 2 для 80%-ного состава.

Пример 104 Осуществляют также как пример 102, с тем отличием, что вносят только 60% количества каждого компонента. Затем для того, чтобы дополнить массу состава до 100%, к этой смеси добавляют соответствующую среду. Действие полученного таким способом раствора представлено на фиг. 2 для 60%-ного состава.

Пример 105 Осуществляют также как пример 102, с тем отличием, что вносят только 40% количества каждого компонента. Затем для того, чтобы дополнить массу состава до 100%, к этой смеси добавляют соответствующую среду. Действие полученного таким способом раствора представлено на фиг. 2 для 40%-ного состава.

Пример 106 Способ согласно примеру 102, с тем отличием, что вносят только 20% количества каждого компонента. Затем для того, чтобы дополнить массу состава до 100%, к этой смеси добавляет соответствующую среду. Действие полученного таким способом раствора представлено на фиг. 2 для 20%-ного состава.

Пример 107 В аппарат, снабженный мешалкой, вносят 0,011% по массе L-метионина, 0,01% по массе L-триптофана, 0,036% по массе L-тирозина, 0,041% по массе L-фенилаланина, 0,044% по массе L-аргинина, 0,039% по массе L-гистидина, 0,089% по массе N-бензоилглицина, 0,007% по массе L-аскорбиновой кислоты, 0,012% по массе d-биотина, 0,010% по массе пиридоксина, 0,0004% по массе рибофлавина, 0,0006% по массе рибофлавин-5'-фосфата, 0,0006% по массе липоевой кислоты, 0,017% по массе оротовой кислоты, 0,003% по массе аденина, 0,034% по массе 2-деокси-D-рибозы, 0,090% по массе D-маннозы, 0,053% по массе D-глюкозамина, 0,065% по массе яблочной кислоты, 0,040% по массе щавелевоуксусной кислоты, 0,0015% по массе аденозинтрифосфата и 0,087% по массе гидрокарбоната натрия. Затем для того, чтобы дополнить массу состава до 100%, в ходе непрерывного перемешивания к этой смеси добавляют соответствующую среду. Действие полученного таким способом раствора представлено на фиг. 2-7 для 100%-ного состава.

Пример 108 Осуществляют также как пример 107, с тем отличием, что вносят только 80% количества каждого компонента. Затем для того, чтобы дополнить массу состава до 100%, к этой смеси добавляют соответствующую среду. Действие полученного таким способом раствора представлено на фиг. 2-7 для 80%-ного состава.

Пример 109 Осуществляют также как пример 107, с тем отличием, что вносят только 60% количества каждого компонента. Затем для того, чтобы дополнить массу состава до 100%, к этой смеси добавляет соответствующую среду. Действие полученного таким способом раствора представлено на фиг. 2-7 для 60%-ного состава.

Пример 110 Осуществляют также как пример 107, с тем отличием, что вносят только 40% количества каждого компонента. Затем для того, чтобы дополнить массу состава до 100%, к этой смеси добавляют соответствующую среду. Действие полученного таким способом раствора представлено на фиг. 2-7 для 40%-ного состава.

Пример 111 Осуществляют также как пример 107, с тем отличием, что вносят только 20% количества каждого компонента. Затем для того, чтобы дополнить массу состава до 100%, к этой смеси добавляют соответствующую среду. Действие полученного таким способом раствора представлено на фиг. 2-7 для 20%-ного состава.

Пример 112 В аппарат, снабженный мешалкой, вносят 1,47% по массе L-метионина, 1,01% по массе L-триптофана, 0,036% по массе L-тирозина, 1,63% по массе L-фенилаланина, 1,71% по массе L-аргинина, 1,53% по массе L-гистидина, 0,18% по массе N-бензоилглицина, 1,94% по массе L-аскорбиновой кислоты, 1,21% по массе d-биотина, 2,02% по массе пиридоксина, 0,038% по массе рибофлавина, 0,05% по массе рибофлавин-5'-фосфата, 0,02% по массе липоевой кислоты, 0,09% по массе оротовой кислоты, 0,068% по массе аденина, 1,32% по массе 2-деокси-D-рибозы, 1,8% по массе D-маннозы, 1,1% по массе D-глюкозамина, 1,32% по массе яблочной кислоты, 0,040% по массе щавелевоуксусной кислоты, 0,11% по массе аденозинтрифосфата, 1,34% по массе гидрокарбоната натрия и 0,04% по массе гидрокарбоната калия. Затем при непрерывном перемешивании к этой смеси добавляют 83,168% по массе буфера, содержащего 0,02% по массе KH2PO4 и 0,3% по массе Na2HPO4. Действие полученного таким способом раствора, применяемого для обработки животных, представлено на фиг. 8 и 9.

Пример 113 В смеситель вносят 20% по массе L-триптофана, 62% по массе L-аскорбиновой кислоты и 18% по массе D-глюкозамина. Полученную в результате полного перемешивания порошкообразную смесь используют для превентивных экспериментов.

Пример 114 Способ согласно примеру 113, с тем отличием, что применяют 32% по массе L-аргинина, 28% по массе рибофлавин-5'-фосфата и 40% по массе яблочной кислоты.

Пример 115 Способ согласно примеру 113, с тем отличием, что применяет 23% по массе L-триптофана, 0,2% по массе пиридоксина, 17,8% по массе N-бензоилглицина и 59% по массе щавелевоуксусной кислоты.

Пример 116 Способ согласно примеру 113, с тем отличием, что применяют 19% по массе L-тирозина, 61% по массе L-аскорбиновой кислоты, 0,2% по массе аденина и 19,8% по массе L-гистидина.

Пример 117 Способ согласно примеру 113, с тем отличием, что применяет 31% по массе L-метионина, 53% по массе d-биотина, 0,2% по массе аденина и 15,8% по массе оротовой кислоты.

Пример 118 Способ согласно примеру 113, с тем отличием, что применяет 27% по массе L-фенилаланина, 33% по массе рибофлавина, 0,2% по массе аденозинтрифосфата и 39,8% по массе D-маннозы.

Пример 119 Способ согласно примеру 113, с тем отличием, что применяют 32% по массе L-гистидина, 9% по массе липоевой кислоты и 59% по массе 2-деокси-D-рибозы.

Пример 120 Способ согласно примеру 113, с тем отличием, что применяют 12% по массе L-аргинина, 11% по массе пиридоксина и 77% по массе яблочной кислоты.

Пример 121 В смеситель вносят 10% по массе L-метионина, 3% по массе L-триптофана, 0,02% по массе L-тирозина, 10,9% L-фенилаланина, 22,7% по массе L-аргинина, 10% по массе L-гистидина, 1,1% по массе N-бензоилглицина, 11,9% по массе L-аскорбиновой кислоты, 0,1% по массе d-биотина, 0,2% по массе пиридоксина, 0,05% по массе рибофлавина, 0,35% по массе рибофлавин-5'-фосфата, 0,1% по массе липоевой кислоты, 0,6% по массе оротовой кислоты, 0,3% по массе аденина, 0,9% по массе 2-деокси-D-рибозы, 11,5% по массе D-маннозы, 7% по массе D-глюкозамина, 8% по массе яблочной кислоты, 0,4% по массе щавелевоуксусной кислоты и 0,7% по массе аденозинтрифосфата. Полученную в результате полного перемешивания порошкообразную смесь применяет для превентивных экспериментов.

Действие составов из примеров 1-37 и синергическое совместное действие активных ингредиентов (по сравнение с действием отдельных компонентов) изучали на Sp2/0-Ag14 клетках мышиной миеломы.

В экспериментах применяли новейшие методы, описанные в научной литературе. В случае Sp2/0-Ag14 и K-562 линий из среды собирали клетки в логарифмической фазе роста и ресуспендировали их в 96-луночном планшете, используемом для клеточной культуры, до конечной концентрации 4 104 Sp2/0-Ag14 клеток и 2 104 K-562 клеток, соответственно, в 250 мкл соответствующей среды на лунку, содержавшую исследуемые вещества в определенных концентрациях. В случае HeLa, НЕр-2 и Vero клеток, культивировавшиеся клетки собирали из 75%-ных сливных колб для тканевых культур с 0,2% трипсина и ресуспендировали в соответствующей среде до плотности 105 клеток/мл. Аликвоты (100 мкл) переносили в 96-луночные микропланшеты и инкубировали в течение 24 часов. Затем среду удаляли и заменяли ее 250 мкл свежей среды, содержавшей исследуемые соединения в определенных концентрациях. Все типы клеток оставляли для пролиферации в течение 48 часов. Затем микроскопически подсчитывали количество жизнеспособных Sp2/0-Ag14 и K-562 клеток с помощью метода исключения красителя трипана голубого. Выживание HeLa, НЕр-2 и Vero клеток определяли путем измерения активности эндогенной щелочной фосфатазы клеток. Результаты были обработаны с помощью t-теста Стьюдента Данные после средних значений в таблицах и символы на чертежах обозначают "стандартная ошибка среднего" (СОС).

В первой колонке таблицы 1 представлены номера примеров, во второй колонке представлены номера контрольных экспериментов, а в следующих шести колонках представлены количества компонентов, использовавшихся в экспериментах и выраженные в % по массе. Контрольные смеси составляли из тех же количеств химически сходных, но фармакологически неэффективных веществ (0,026% по массе L-серина, 0,033% по массе L-аспарагина, 0,029% по массе L-валина, 0,018% по массе L-аланина, 0,006% по массе глицина, 0,059% по массе триметилглицина и 0,006% по массе L-пролина в качестве аминокислот; 0,017% по массе тиамина гидрохлорида, 0,006% по массе ниацина, 0,019% по массе натриевой соли фолиевой кислоты, 0,001% по массе гемикальциевой соли D-пантотеновой кислоты, 0,012% по массе урацила и 0,0008% по массе октановой кислоты в качестве витаминов; 0,003% по массе гипоксантина, 0,038% по массе D(-)рибозы, 0,090% по массе глюкозы, 0,055% по массе N-ацетилглюкозамина, 0,081% по массе динатриевой соли янтарной кислоты, 0,080% по массе динатриевой соли фумаровой кислоты и 0,0015% по массе тринатриевой соли гуанозинтрифосфата) в качестве активного состава. В двух последних колонках представлено действие составов, включающих четыре и пять активных ингредиентов соответственно, и действие отдельных компонентов (контрольные эксперименты), а именно количество клеток после 48 часов инкубирования и количество клеток, выраженное в процентах от количества необработанных клеток соответственно (количество необработанных клеток составляет 100%). В случае, например, L-триптофана 2-4-ый контрольные эксперименты показывают действие 0,002; 0,006; и 0,01% по массе чистого L-триптофана, соответственно, на количество клеток. В случае примеров 2-4 представлено влияние L-триптофана, применявшегося в тех же количествах, но вносившегося совместно с другими четырьмя активными ингредиентами.

Из данных, представленных в двух последних колонках таблицы 1, видно, что при применении отдельных вышеупомянутых веществ ни одно из них не проявило уничтожающего опухолевые клетки действия: в самом деле, при применении указанных количеств L-триптофана пролиферация клеток даже несколько усиливалась. В то же самое время из данных, представленных в обсуждаемых колонках, видно, что каждое вещество усиливало действие других четырех активных ингредиентов пропорционально его количеству синергическим образом. Например, 0,01% по массе L-триптофана увеличивал 73,1%-ное действие четырех других активных ингредиентов до 92,3%. То же самое количество (0,01% по массе) самого L-триптофана без других четырех компонентов даже несколько усиливало пролиферацию клеток. Это недвусмысленно доказывает синергическое действие.

Разница между действиями составов, включавших четыре активных ингредиента (примеры 1, 5, 9, 13 и 17) и составов, включавших пятый активный ингредиент (примеры 4, 8, 12, 16 и 20) в максимальных применявшихся здесь количествах (например, в случае L-триптофана 0,01% по массе) была существенной во всех случаях (p < 0,01), таким образом, все вещества значительно усиливали действие других четырех компонентов.

Синергическое действие составов из примеров 1-20, включавших пять активных ингредиентов, представлено на фиг. 1, где на вертикальной оси показаны количества Sp2/0-Ag14 клеток, выраженных в процентах от количеств необработанных клеток (количество необработанных клеток составляет 100%). На горизонтальной оси показаны выраженные в % по массе количества L-триптофана, 2-деокси-D-рибозы, аденина, яблочной кислоты и L-аскорбиновой кислоты. Белые колонки показывают количества клеток, выраженные в процентах от количеств необработанных клеток после 48 часов инкубирования с применением вышеуказанных веществ по отдельности, а черные колонки показывают результаты, полученные при их совместном применении с другими четырьмя активными компонентами. Разные степени различий (в случаях L-триптофана даже прямая противоположность) между белыми и черными колонками с увеличением количеств отдельных веществ доказывают синергическое действие, а черные колонки демонстрируют мощное уничтожающее опухолевые клетки действие составов.

На основании примеров 21-37 таблица 2 показывает, как будет усиливаться действие состава, включающего пять активных компонентов, в случае клеток Sp2/0-Ag14 при добавлении других компонентов. В таблице 2 представлены количества веществ, выраженные в % по массе и умноженные на 1000, поэтому числа в таблице следует читать, умножая их на 10-3; например, в примере 21 в случае L-триптофана число 6 обозначает 6 10-3, что составляет 0,006% по массе. Условия экспериментов были такими же, что и ранее.

Аналогично таблице 1, из данных двух последних колонок таблицы 2 (по количеству клеток и в %) также видно, что ни одно из вышеупомянутых веществ в чистом виде не обладает уменьшающим клеточную пролиферацию действием, более того, под действием L-фенилаланина (Контроль 22), L-аргинина (Контроль 23), L-гистидина (Контроль 24) и рибофлавина (Контроль 29) количество клеток по сравнению с количеством необработанных клеток (Контроль 21) даже несколько возрастало. Видно также, что при применении этих же веществ