Циклопептолид, штамм гриба, способ получения циклопептолида, терапевтический состав

Реферат

 

Изобретение охватывает новый класс циклогептапептолидов формулы I, где A, B, R1 Ieu, С, Х и Y охарактеризованы в описании, и их терапевтическое применение в качестве ингибиторов экспрессии молекул адгезии для лечения многих болезненных состояний. Получение данного соединения возможно путем культивирования штамма гриба Bartalinia sp. NRRL21123 в питательной среде с последующим выделением из среды указанного соединения. В изобретении описывается также получение терапевтического состава, обладающего способностью ингибировать экспрессию молекул адгезии, включающего в качестве активного ингредиента соединение формулы I в эффективном количестве, а также целевые добавки. 4 с. и 2 з.п. ф-лы, 6 табл., 7 ил.

Изобретение касается циклопептолидов и их терапевтического применения в качестве ингибиторов экспрессии молекул адгезии. Клеточные молекулы адгезии, такие как ICAM-1, VCAM-1 и E-селектин, экспрессируются на поверхности эндотелиальных клеток, а также кератиноцитов в случае ICAM-1, в ответ на действие провоспалительных медиаторов, включающих TNF, IFN, IL1 и LPS. Соответствующие контрлиганды, например LFA-1, VLA-4 и SLEx, экспрессируются на поверхности циркулирующих кровяных клеток. Трансэндотелиальная миграция лейкоцитов во время воспалительных процессов, а также межклеточное взаимодействие вне сосудов регулируются путем взаимодействия между этими молекулами адгезии и их контрлигандами. Следовательно, представляется возможным использовать ингибиторы экспрессии молекул адгезии для лечения многих болезненных состояний. Однако к настоящему времени нет подходящих низкомолекулярных ингибиторов экспрессии молекул адгезии.

Циклопептолиды представляют собой вещества с замкнутыми в цикл молекулами, содержащими аминокислотные остатки, соединенные пептидными связями, и по меньшей мере один гидроксизамещенный остаток карбоновой кислоты, который соединен через заместитель его гидроксильной группы с соседним кислотным остатком посредством эфирной связи.

Мы открыли новый класс циклопептолидов, являющихся ингибиторами экспрессии ICAM-1, VCAM-1 и E-селектина.

Настоящее изобретение относится к циклогептапептолиду формулы I где А обозначает остаток масляной кислоты, замещенной по -гидроксильной группе, который может быть дополнительно замещен по -положению радикалом R6, обозначающим CN, COOR2, CONR3R4, COR5, CSNH2 или алкил, который может быть замещен азидогруппой, атомом галогена, алкоксигруппой, возможно защищенной гидроксильной или аминогруппой, винил, который может быть замещен алкилом, атомом галогена или CN-группой, циклоалкил, тетразолил или группу -CCH; где R2 обозначает водород или алкил, который может быть дополнительно замещен арилом, R3 и R4 - одинаковые или различные и обозначают водород или алкил либо образуют совместно с атомом азота кольцо, состоящее из 3-6 атомов, 20 которое может содержать второй гетероатом, а R5 обозначают водород или низший алкил; B обозначает остаток -амино--метилзамещенной октановой кислоты; R1 обозначает водород или метил; C обозначает триптофан или N-метилтриптофан формулы VI где R8 обозначает водород, алкоксигруппу, алкил или бензил, R9 обозначает водород или галоген, R10 обозначает водород или метил и обозначает одинарную или двойную связь, X обозначает остаток -аминозамещенной (C2-C14)карбоновой кислоты, и Y обозначает остаток -амино- или N-метил--аминозамещенной (C2-C10)карбоновой кислоты.

Расположение аминокислотных остатков в формуле I таково, что направление от C-конца к N-концу ориентировано по часовой стрелке, а пептолидная эфирная связь располагается между остатками A и Y. Если R1 является метилом, то остатки R1-Leu и Leu представляют собой остатки N-метиллейцина и лейцина соответственно.

Предпочтительно, когда A представляет собой остаток -гидроксимасляной кислоты, замещенный в -положении цианогрупой; группой COOR2, где R2 представляет собой водород, низший алкил с числом атомов углерода от 1 до 4 или дифенилметил; CONR3R4, где R3 представляет собой атом водорода или метил, а R4 - атом водорода или алкил, либо R3 и R4 образуют совместно с атомом азота кольцо, содержащее от 3 до 6 атомов, или морфолиновое кольцо; COR5, где R5 представляет собой атом водорода или низший алкил, содержащий от 1 до 4 атомов углерода; винилом, который может быть дополнительно замещен группой CN, Br или низшим алкилом, содержащим от 1 до 4 атомов углерода; алкилом, который может быть дополнительно замещен азидо-, амино-, гидрокси-, хлор- или алкоксигруппой; CSNH2 или -CCH. А также может быть замещен в -положении CH2OH, тетразолилом или циклопропилом.

Предпочтительно, чтобы C являлся остатком N-метилтриптофана формулы VI, где R8 представляет собой атом водорода, (C1-C4)алкоксигруппу, главным образом метоксигруппу, или алкил, а R9 - атом водорода или галогена.

Предпочтительным остатком X является остаток -аминозамещенной (C4-C8)карбоновой кислоты, который может быть дополнительно замещен - или -(C1-C4)алкильным заместителем. Наиболее предпочтительно, чтобы X представлял собой -амино-- или -(C1-C4)алкил-, главным образом метил-, замещенный остаток октановой или масляной кислоты.

Предпочтительным остатком Y является остаток N-метил--аминозамещенной (C2-C4)карбоновой кислоты, который может быть дополнительно замещен - или -(C1-C4)алкильным заместителем. Наиболее предпочтительно, чтобы Y являлся остатком N-метилаланина или N-метилвалина.

Соединения формулы I имеют асимметричные атомы углерода, и соединения могут иметь как R-, так и S-конфигурацию.

Пептиды или пептолиды могут быть также с открытой цепью. Эти соединения с открытой цепью обычно получают как путем разрыва эфирной связи между остатками Y и A, так и путем разрыва амидной связи между любой другой парой соседних кислотных остатков. Например, производными с открытой цепью могут быть соединения формул IV и V: H-C-X-Y-A-B-R1Leu-LeuOR7 IV HA-B-R1Leu-Leu-C-X-YOR7 V где R7 представляет собой атом водорода или алкил.

Предпочтительной подгруппой соединений по изобретению являются соединения формулы Ip где Ap представляет собой остаток -гидроксизамещенной масляной кислоты, который может быть замещен по -положению группой R6p, представляющей собой CN-группу, возможно защищенные группы CH2OH, COOR2p, CONR3pR4p, COR5p или -CH= CH2, где R2p является атомом водорода или алкилом, который может быть дополнительно замещен арилом, R3p и R4p - одинаковые или различные и представляют собой атом водорода или алкил, либо образуют совместно с атомом азота 5- или 6-членное кольцо, которое может содержать второй гетероатом, а R5p представляет собой атом водорода или низший алкил; Bp является остатком -амино--метилзамещенной октановой кислоты; R1p является атомом водорода или метилом; представляет собой остаток триптофана или N-метилтриптофана, который может быть N'-(C1-C4)алкоксизамещенным; Xp является -аминозамещенным (C2-C14)остатком карбоновой кислоты; и Yp представляет собой -амино- или N-метил--аминозамещенный (C2-C10)остаток карбоновой кислоты.

Следующей подгруппой соединений по изобретению являются соединения формулы I'p где A'p представляет собой остаток -гидроксизамещенной масляной кислоты, который может быть замещен по -положению группой R'6p, представляющей собой CN, COOR'2p, CONR'3pR'4p, COR'5p, алкил, который может быть замещен азидогруппой, атомом галогена, алкоксигруппой, возможно защищенным гидроксилом или аминогруппой, винил (может быть замещен алкилом, атомом галогена или CN-группой), циклоалкил, тетразолил или группу -CCH; где R'2p представляет собой атом водорода или алкил, который может быть замещен арилом, R'3p и R'4p - одинаковые или различные и представляют собой атом водорода или алкил, либо образуют вместе с атомом азота кольцо, состоящее из 3-6 атомов, и которое может содержать второй гетероатом, а R'5p представляет собой атом водорода или низший алкил; B'p является остатком -амино--метилзамещенной октановой кислоты; R'1p является атомом водорода или метилом; C'p представляет собой остаток триптофана или N-метилтриптофана формулы где R'8p представляет собой атом водорода, алкоксигруппу, алкил или бензил, R'9p - атом водорода или галогена, R'10p - атом водорода или метил, а представляет собой одинарную или двойную связь; X'p является -аминозамещенным (C2-C14)остатком карбоновой кислоты; и Y'p представляет собой -амино- или N-метил--аминозамещенный (C2-C10)остаток карбоновой кислоты.

Все соединения по изобретению могут быть в виде их солей и эфиров, равно как и в свободном виде.

Наиболее предпочтительными являются соединения формул II и III (обозначаемые далее как соединения A и B соответственно) а также циклопептолид формулы I, где R1 = CH3 Объектом настоящего изобретения является также штамм гриба Bartalinia sp. NRRL 21123 - продуцент циклопептолида формулы I.

Объектом изобретения также является способ получения соединения формулы I, заключающийся в том, что проводят культивирование штамма гриба Bartalinia sp. NRRL 21123 в питательной среде, с последующим выделением из среды указанного соединения.

Циклогептапептолиды формулы A и B были выделены из культур грибного штамма F92-4471/08, изолированного из образцов лиственной подстилки, собранных вблизи Ла Платы (La Plata, Аргентина), для которого экспериментально установлено, что он принадлежит к роду Bartalinia. Образцы штамма F92-4471/08 в соответствии с условиями Будапештского договора были депонированы Отделом Сельского хозяйства США (коллекция NRRL-культур) 2 июля 1993 года и данному штамму присвоен депозитный номер NRRL 21123. Характеристики грибного штамма F92-4471/08 описаны далее в примере 1.

Таким образом, настоящее изобретение включает как штамм F92-4471/08 (NRRL 21123) в изолированной форме.

Соединения A и B и родственные соединения могут быть получены путем культивирования штамма F92-4471/08/NRRL 21123, или штаммов схожих грибных видов в питательной среде и извлечения из них указанных соединений, например, как описано в примере 2.

Характеристики соединений A и B приводятся в примере 3.

Соединения по изобретению могут быть получены путем модификаций соединений A и B, включающих: а) для получения соединений формулы I, в которых R6 представляет собой группу COOR2', где R2' является алкилом, который может быть замещен арилом, взаимодействие соединений формулы I, где R6 представлен CN-группой, с нуклеофилами, предпочтительно со спиртами, с соответствующим основным или кислотным катализатором, предпочтительно соляной кислотой, в органических растворителях, предпочтительно эфире, или б) для получения соединений формулы I, в которых R6 представляет собой COалкил, взаимодействие соединений формулы I, где R6 представлен CN-группой, с использованием в качестве нуклеофилов органометаллических соединений, предпочтительно соединений Гриньяра или литийалкилов, которые взаимодействуют в апротонных органических растворителях, предпочтительно эфирах, в присутствии катализатора или без него, или в) для получения соединений формулы I, в которых R6 представляет собой группу COOH, гидролиз соединений формулы I, где R6 представлен COOалкилом, с помощью минеральной кислоты, предпочтительно соляной, в водно-спиртовом растворе, или основания, или г) для получения соединений формулы I, в которых R6 представляет собой группу COOR2', этерификацию соединений формулы I, где R6 представлен группой COOH, стандартными методами, предпочтительно путем превращения в хлорангидрид кислоты с помощью, например, тионилхлорида, и обработки подходящим спиртом в присутствии или отсутствие кислотного связующего, или д) для получения соединений формулы I, в которых R6 представляет собой группу CH2OH, восстановление соединений формулы I, где R6 представлен группой COOR2, с помощью гидридов металлов или гидридов бора, предпочтительно борандиметилсульфидного комплекса, в органических растворителях, или е) для получения соединений формулы I, в которых R6 представляет собой группу CONR3R4, превращение соединений формулы I, где R6 представлен группой COOR2, реакцией с аминами, предпочтительно путем превращения свободной кислоты в хлорангидрид кислоты и затем реакцией с амином формулы HNR3R4, или ж) для получения соединений формулы I, в которых R6 представляет собой группу CHO, окисление соединений формулы I, где R6 представлен группой CH2OH, или з) для получения соединений формулы I, в которых R6 представляет собой возможно замещенный винил, взаимодействие соединений формулы I, где R6 представлен группой CHO и метильного производного реагента Виттига, или и) для получения соединений формулы I, в которых R6 представляет собой возможно замещенный алкил из соединений формулы I, где R6 представлен группой CH2OH, или к) для получения соединений формулы I, в которых R6 представляет собой группу CH2NH2, восстановление соединений формулы I, где R6 представлен группой CH2N3, или л) для получения соединений формулы I, в которых R6 представляет собой группу -CCH, из соединений формулы I, где R6 представлен группой CH=CBr2, или м) для получения соединений формулы I, в которых R6 представляет собой циклопропил, взаимодействие соединений формулы I, где R6 представлен винилом, с диазометаном, или н) для получения соединений формулы I, в которых R6 представляет собой тетразолил, взаимодействие соединений формулы I, где R6 представлен группой CN, с азидом, или о) для получения соединений формулы I, в которых R8 представляет собой атом водорода, удаление метоксигруппы из соединений формулы I, где R8 представлен группой OCH3, или п) для получения соединений формулы I, в которых символ обозначает одинарную связь, восстановление соединений формулы I, где символ обозначает двойную связь, или р) для получения соединений формулы I, в которых R8 представляет собой алкил или бензил, введение этих групп в соединения формулы I, где R8 представлен атомом водорода, или с) для получения соединений формулы I, в которых R9 представляет собой атом галогена, галогенирование соединений формулы I, где R9 представлен атомом водорода, или т) для получения соединений формулы I, в которых R8 представляет собой алкоксигруппу, а символ обозначает двойную связь, взаимодействие соединений формулы I, где R8 представлен атомом водорода, а символ обозначает одинарную связь, с щелочным вольфраматом и перекисью водорода и алкилирование N-гидроксииндольного промежуточного соединения, или у) для получения соединений формулы I, в которых R6 представляет собой группу CSNH2, взаимодействие соединений формулы I с производными серы, предпочтительно с дифенилфосфинодитионовой кислотой.

Соединения по настоящему изобретению могут также быть получены с помощью химического синтеза, например, с использованием обычных методик пептидного синтеза. Типичным завершающим этапом получения таких соединений является стадия циклизации, в которой линейный пептид или пептолид, содержащий соединенные друг с другом в нужном порядке остатки A, B, R1Leu, Leu, C, X и Y, замыкаются в цикл в результате образования амидной или эфирной связи.

Таким образом, изобретение охватывает способ получения циклических пептолидов формулы I, включающий в себя циклизацию линейных пептидов или пептолидов, содержащих остатки A, B, R1Leu, Leu, C, X и Y, соединенные друг с другом в соответствующем порядке.

Соединения по настоящему изобретению проявляют фармакологическую активность и могут поэтому быть использованы в качестве фармацевтических средств. В частности, данные соединения являются ингибиторами стимулированной экспрессии клеточных молекул адгезии, в особенности ингибиторами VCAM-1-экспрессии по сравнению с экспрессией E-селектина и ICAM-1. Эффект ингибирования VCAM-1 проявляется как на транскрипционном, так и посттранскрипционном уровнях. Способы анализа, с помощью которых можно зарегистрировать ингибирование экспрессии ICAM-1, VCAM-1 и E-селектина под действием соединений по изобретению, описаны после раздела "Примеры". Ввиду этого данные соединения могут быть полезны для лечения или профилактики тех болезней, при которых имеет место экспрессия клеточных молекул адгезии. Подобными болезнями являются многие приобретенные и наследственные заболевания/расстройства, при которых передвижение лейкоцитов играет значимую роль в патогенном процессе, особенно при остром и хроническом воспалительном процессе (например, аллергии, астме, псориазе, травме при реперфузии, ревматоидном артрите и септическом шоке) и аутоиммунных состояниях (например, рассеянном склерозе). Другие показания для применения соединений по изобретению включают раковые метастазы (например, при меланоме, остеокарциноме) и отторжение алло/ксенотрансплантата, так как известно, что ингибирование молекул адгезии сосудов может значительно улучшать прогнозы этих процессов.

Кроме этого, соединения по данному изобретению возможно использовать для лечения как гиперпролиферативных (псориаз), так и разнообразных злокачественных заболеваний кожи ввиду того, что они обладают ингибирующей активностью в субмикромолярных концентрациях, что обнаружено при тестировании в течение 72 часов как в основанных на измерениях кератиноцитов, так и в других тестах на пролиферацию.

Соединения по данному изобретению проявляют ингибирующую активность в отношении индуцируемого TNF и IL6 размножения ВИЧ в U1-клеточной линии культуры моноцитов, как количественно установлено с помощью p24 ELISA, и ввиду этого также могут быть полезны при лечении иммунодефицитов и вирусных заболеваний, особенно СПИДа.

Таким образом, изобретение также включает терапевтическое применение соединений по изобретению и содержащих их терапевтических составов.

При лечении и профилактике заболеваний, вызываемых экспрессией молекул адгезии, вводят субъекту терапевтически и профилактически эффективное количество соединения, предусмотренного изобретением.

Изобретение также относится к терапевтическому составу, обладающему способностью ингибировать экспрессию молекул адгезии и включающему в качестве активного ингредиента соединение формулы I в эффективном количестве и целевые добавки.

Соединения по изобретению могут быть использованы для получения лекарственных средств с целью лечения и профилактики заболеваний, вызываемых экспрессией молекул адгезии.

Составы могут быть использованы для парентерального, перорального, аэрозольного и местного применения и обычно включают один или несколько приемлемых носителей, разбавителей или эксципиентов и могут содержать стабилизаторы и подобные им добавки.

Применяемые дозы соединений можно, среди прочего, варьировать в зависимости от состояния или вида заболевания, от того, используются они для лечения или профилактики, и от способа и пути введения лекарственного препарата. В целом, однако, удовлетворительные результаты получены при пероральном введении в дозах от приблизительно 0,05 до приблизительно 10 мг/кг/день, предпочтительно от приблизительно 0,1 до приблизительно 7,5 мг/кг/день, более предпочтительно от приблизительно 0,1 до приблизительно 2 мг/кг/день при однократном введении или с разбивкой на дозы, вводимые от 2 до 4 раз в день. Альтернативно, для парентерального введения, например, посредством капельного внутривенного вливания или инфузии могут быть использованы дозы от приблизительно 0,01 до приблизительно 5 мг/кг/день, предпочтительно от приблизительно 0,05 до приблизительно 1 мг/кг/день и более предпочтительно от приблизительно 0,1 до приблизительно 1,0 мг/кг/день.

Подходящие для человека дневные дозы составляют таким образом при пероральном введении приблизительно от 2,5 до 500 мг, предпочтительно - приблизительно от 5 до 250 мг, более предпочтительно - приблизительно от 5 до 100 мг; или при внутривенном введении - приблизительно от 0,5 до 250 мг, предпочтительно - приблизительно от 2,5 до 125 мг, более предпочтительно - приблизительно от 2,5 до 50 мг.

Рассматриваемые соединения могут вводиться любым подходящим способом, включая энтеральный, парентеральный и местный или с помощью ингалятора. Приемлемыми для энтерального введения формами являются растворы для питья, таблетки и капсулы. Приемлемыми для парентерального введения формами являются растворы или суспензии для инъекций. Приемлемые для местного введения формы включают кремы, лосьоны и подобные им формы, содержащие в этом случае от 0,01 до 10%, предпочтительно - от 0,1 до 1% по весу основного ингредиента. Приемлемая разовая доза соединения по изобретению при пероральном введении может лежать в пределах от 1 до 50 мг, обычно она составляет от 1 до 10 мг. Соединение из примера 4 является предпочтительным соединением по изобретению и может вводиться высшим млекопитающим, например людям, с использованием тех же способов введения и тех же или меньших доз, что и обычно используемые соединения с известными нормами для подобных показаний.

Дальнейшее описание изобретения приводится в нижеследующих примерах, данных только с целью иллюстрации и ссылающихся на диаграммы, на которых: Фиг. 1 показывает УФ-спектры соединения A (а) и B (б).

Фиг. 2 показывает ИК-спектр соединения A.

Фиг. 3 показывает ИК-спектр соединения B.

Фиг. 4 показывает спектр протонного ЯМР соединения A.

Фиг. 5 показывает спектр протонного ЯМР соединения B.

Фиг. 6 показывает спектр 13C ЯМР соединения A.

Фиг. 7 показывает спектр 13C ЯМР соединения B.

В последующих примерах, иллюстрирующих изобретение, не ограничивая его, значения температуры даны везде в градусах Цельсия и использованы следующие сокращения: Bz - бензил; iPr - изопропил; nPr - н-пропил; HBa - модифицированная 2-гидроксимасляная кислота; TFA - трифторуксусная кислота; THF - тетрагидрофуран; db - двойная связь; sb - одинарная связь; br - широкий; d - дуплет; m - мультиплет; q - квартет; t - триплет; Пример 1. Описание штамма F/92-4471/08 (NRRL 21123) Грибной штамм NRRL 21123, продуцирующий соединения A и B, был выделен из образца лиственной подстилки, собранной вблизи Ла Платы, Аргентина.

В процессе роста на солодовой Среде А (2% экстракта солода, 0,4% дрожжевого экстракта, 2% агара в деионизированной воде) штамм NRRL 21123 образует после 3 дней инкубации при 27oC колонии диаметром от 25 до 35 мм. Колонии обычно дают короткий воздушный мицелий от белой до серой или серовато-коричневой окраски.

На основании измерения диаметра колоний на Среде А можно сказать, что оптимальной для роста является температура от 21 до 30oC, минимальной - температура от 0 до 6oC и максимальной - от 33 до 38oC. По истечении 4 дней инкубации при температуре от 21 до 33oC наблюдается образование спор.

Грибной штамм NRRL 21123 образует гиалин для светло-коричневых конидий на фиалидных или аннелидных конидиогенных клетках, внутри хорошо различимой пикниды. Конидии, как правило, состоят из пяти клеток, имеют цилиндрическую форму, обычно слегка изогнуты и в большинстве случаев имеют размеры 24-26 х 2,6-4 мкм. Каждая конидия несет на одном конце единичный неразветвленный гиалиновый отросток, а на другой концевой клетке от 2 до 4 (обычно 3) гиалиновых и неразветвленных отростков.

На основании этих морфологических характеристик и следуя правилам идентификации [B. C. Sutton (1960): The Coelomycetes (публикация Commonwealth Mycological Institude, Surrey, England)], штамм NRRL 21123 может быть приписан к роду Bartalinia Tassi.

Пример 2. Ферментация Штамм NRRL 21123 выращивают в течение 15 дней при температуре 21oC на косяке агара, содержащем Среду А (2% экстракта солода, 0,4% дрожжевого экстракта, 2% агара, деионизированная вода). Конидии с одного косяка суспендируют в 10 мл стерильной водопроводной воды. Суспензией конидий (по 1 мл) инокулируют каждую из двух колб Эрленмейера вместимостью 500 мл, содержащих по 200 мл Среды Б (2% экстракта солода, 0,4% дрожжевого экстракта в деионизированной воде). Для получения затравочной культуры колбы инкубируют в течение 6 дней при температуре 21oC на ротационном шейкере при 200 об/мин. Затравочной культурой (по 2 мл) инокулируют каждую из 200 колб Эрленмейера вместимостью 500 мл, содержащих по 200 мл Среды В (2,2% моногидрата мальтозы, 0,72% дрожжевого экстракта в деионизованной воде). Колбы инкубируют при температуре 21oC на ротационном шейкере при 200 об/мин и полученную через 6 дней клеточную культуру объединяют для дальнейшей обработки.

Пример 3. Выделение метаболитов, соединений A и B 50 л глубинной культуры штамма NRRL 21123, выращенного, как описано в примере 2, фильтруют, используя в качестве ускорителя фильтрования Clarcel. Собранный влажный мицелий экстрагируют смесью метанол-ацетон (1:1) (3 х 15 л). Объединенные экстракты концентрируют в вакууме на циркуляционном испарителе до остаточного объема жидкости приблизительно 3 л, который экстрагирует (4 х 1 л) этилацетатом. Этилацетатные экстракты объединяют и концентрируют в вакууме до получения 25 г маслянистого остатка, который затем фракционируют трехкратным распределением в системе растворителей: 90% водный метанол и гексан, получая после концентрирования в вакууме в виде нижней фазы 4,5 г неочищенного твердого материала. Полученный материал наносят на колонку с силикагелем (Мерк, Кизельгель 60, 40-63 мкм) размером 5,5 см внутр. диам. х 38 см и хроматографируют, элюируя сначала 1,4 л смеси растворителей метил-трет-бутиловый эфир/метанол (98: 2), затем 1 л той же смеси растворителей, взятых в отношении 95:5. Скорость подачи растворителя поддерживают равной 110 мл/мин. Отбирают фракции объемом 90 мл каждая, проявляющие ингибирующую активность в отношении ICAM-1-экспрессии (пример 4) и содержащие или соединение A (N 9-10) или соединение B (N 11-25).

Соединение A Объединенные фракции 9-10, полученные, как описано выше, в результате хроматографирования на силикагеле, упаривают в вакууме, получая 1 г неочищенного материала. Далее его очищают с помощью препаративной ЖХВД, используя колонку фирмы Мерк (50 мм внутр. диам. х 250 мм) с носителем LiChrosper RP-18 (7 мкм). Элюирование осуществляют линейным градиентом метанола в воде (80-100%) в течение 60 мин при скорости потока 25 мл/мин. В процессе хроматографирования осуществляют детектирование на длине волны 220 нм и собирают фракции объемом 25 мл. На основании данных по поглощению в УФ, ТСХ и биологической активности отбирают фракции 56-62, объединяют и концентрируют в вакууме, получая 0,6 г остатка. Окончательную очистку осуществляют с помощью хроматографии на Сефадексе LH-20 с использованием колонки размерами 2,7 см внутр. диам. х 86 см и элюируя метанолом. Элюированные фракции, содержащие по данным ТСХ соединение A в очищенном виде, объединяют и упаривают досуха в вакууме, получая 580 мг бесцветного порошка. Свойства соединения A приведены ниже в таблице 1.

Соединение B Объединенные фракции 11-25 дают после упаривания растворителя в вакууме 2 г неочищенного материала, который далее очищают препаративной ЖХВД, используя колонку фирмы Мерк (50 мм внутр. диам. х 250 мм) с носителем LiChrosper RP-18 (7 мкм). Элюирование осуществляют линейным градиентом метанола в воде (80-100%) в течение 60 мин при скорости потока 25 мл/мин. В процессе хроматографирования осуществляют детектирование на длине волны 220 нм и собирают фракции объемом 25 мл. Фракции 47-55 содержат основную часть соединения B по данным поглощения в УФ, ТСХ и биологической активности. Их объединяют и концентрируют в вакууме, получая 0,4 г остатка. Дальнейшую очистку осуществляют с помощью хроматографии на Сефадексе LH-20 на колонке размерами 2,7 см внутр. диам. х 86 см с элюированием метанолом. В процессе хроматографии осуществляют детектирование на длине волны 220 нм и собирают фракции объемом 12 мл. На основании данных по поглощению в УФ, ТСХ и биологической активности фракции 23-27 объединяют и упаривают в вакууме, получая 0,3 г остатка. Окончательный этап хроматографической очистки с использованием колонки (2,2 см внутр. диам. х 16 см), заполненной Кизельгелем 60, 40-63 мкм фирмы Мерк, с элюированием системой растворителей толуол-этанол (95:5) дает чистое по данным ТСХ соединение B. Полученные фракции объединяют и упаривают досуха в вакууме, получая 145 мг бесцветного порошка. Свойства соединения B также приведены ниже в таблице 1.

В таблице 1 даны ссылки на фиг. 1-7.

Пример 4. Соединение формулы I (A = A', R6 = COOCH3, B = B', R1 = CH3, C = C', R8 = OCH3, двойная связь, X = X', Y = Y') К смеси, состоящей из 2 г соединения A и 1,65 мл метанола, добавляют холодный раствор HCl в эфире (30 мл, 17% вес/объем, -20oC) и полученную смесь выдерживают в течение 3 дней при -20oC. После этого реакционную смесь выливают в водный бикарбонатный раствор и экстрагируют этилацетатом. Органическую фазу высушивают над сульфатом натрия, фильтруют и упаривают в вакууме. Неочищенный продукт растворяют в 30 мл смеси метанол/конц. водн. HCl (9/1) и перемешивают при комнатной температуре в течение 3 часов. Далее раствор разбавляют водой и экстрагируют этилацетатом. Органическую фазу высушивают над сульфатом натрия, фильтруют и упаривают в вакууме. Неочищенную реакционную смесь очищают при помощи хроматографии с обратимой фазой на LiChroprep RP-8 (градиент: метанол/вода = от 8/2 до 10/0) и последующей хроматографии на силикагеле (градиент: толуол/метанол = от 100/0 до 95/5), получая указанное в заголовке соединение в виде бесцветной пены и производное соединения формулы IV с незамкнутой цепью (R6 = 15 COOCH3, R7 = CH3) в виде бесцветного твердого вещества.

ТСХ: на силикагеле, толуол/метанол = 9/1, Rf = 0,41 (указанное в заголовке соединение), Rf = 0,38 (производное с незамкнутой цепью); хроматография с обратимой фазой на RP-8, метанол/вода/трифторуксусная кислота = 95/4/1, Rf = 0,34 (указанное в заголовке соединение), Rf = 0,51 (производное с незамкнутой цепью).

Пример 5. Соединение формулы I (A = A', R6 = COOH, B = B', R1 = CH3, C = C', R8 = OCH3, двойная связь, X = X', Y = Y') Раствор, содержащий 209 мг соединения формулы I из примера 4 в 15 мл смеси трет-бутанол/конц. водн. HCl (9/1), нагревают при 60oC в течение 8 часов. Реакционную смесь выливают в насыщенный водный бикарбонатный раствор и экстрагируют этилацетатом. Органическую фазу промывают буферным раствором pH 7, высушивают над сульфатом натрия, фильтруют и упаривают в вакууме. Неочищенный продукт очищают с помощью хроматографии на силикагеле (градиент: толуол/метанол = от 100/0 до 95/5), получая указанное в заголовке соединение в виде бесцветной пены.

ТСХ: на силикагеле, толуол/метанол = 9/1, Rf = 0,25; хроматография с обратимой фазой на RP-8, метанол/вода = 92/8, Rf = 0,34.

Пример 6. Соединение формулы I (A = A', R6 = CONHCH3, B = B', R1 = CH3, C = C', R8 = OCH3, двойная связь, X = X', Y = Y') К охлажденному до 0oC раствору, содержащему 10 мг соединения из примера 5 в 0,5 мл дихлорметана, добавляют 50 мкл тионилхлорида. Реакционную смесь выдерживают при 0oC в течение 1,5 часов, после чего упаривают в вакууме при 0oC. Оставшееся масло желтого цвета растворяют в 1 мл дихлорметана при 0oC и к нему добавляют 100 мкл 40% водного раствора метиламина. Через 45 минут реакционную смесь выливают в 0,1 М водный HCl, экстрагируют этилацетатом и распределяют между этилацетатом и насыщенным водным бикарбонатным раствором. Органическую фазу промывают солевым раствором, высушивают над сульфатом натрия и упаривают в вакууме. Неочищенный продукт очищают при помощи хроматографии на силикагеле (градиент: толуол/этилацетат/метанол = от 100/0/0 до 65/25/10), получая указанное в заголовке соединение в виде бесцветной пены.

ТСХ: на силикагеле, толуол/метанол = 9/1, Rf = 0,25; хроматография с обратимой фазой на RP-8, метанол/вода = 95/5, Rf = 0,33.

Аналогично тому, как описано в примере 6, получают соединения формулы I (A = A', B = B', C = C', X = X', Y = Y' и R1 = CH3), представленные в табл. А.

Пример 13. Соединение формулы I (A = A', R6 = COO-iPr, B = B', R1 = CH3, C = C', R8 = OCH3, двойная связь, X = X', Y = Y') К охлажденному до 0oC раствору, содержащему 15 мг соединения из примера 5 в 0,75 мл дихлорметана, добавляют 75 мкл тионилхлорида. Реакционную смесь выдерживают при 0oC в течение 2 часов, после чего упаривают в вакууме при 0oC. Оставшееся масло желтого цвета растворяют в 1 мл дихлорметана при 0oC и к нему добавляют 30 мкл изопропанола. По истечении 3 часов при 0oC реакционную смесь выливают в 0,1 М водный HCl и экстрагируют этилацетатом. Органическую фазу промывают солевым раствором, высушивают над сульфатом натрия и упаривают в вакууме. Неочищенный продукт очищают при помощи хроматографии на силикагеле (градиент: толуол/метанол = от 100/0 до 95/5), получая указанное в заголовке вещество в виде бесцветной пены.

ТСХ: на силикагеле, толуол/метанол = 9/1, Rf = 0,47; хроматография с обратимой фазой на RP-8, метанол/вода = 95/5, Rf = 0,37.

Аналогично тому, как описано в примере 9, получают соединения формулы I (A = A', B = B', C = C', X = X', Y = Y' и R1 = CH3), представленные в табл. Б.

Пример 16. Соединение формулы I (A = A', R6 = COCH3, B = B', R1 = CH3, C = C', R8 = OCH3, двойная связь, X = X', Y = Y') Раствор 200 мг соединения A в 2 мл добавляют к раствору метильного производного реактива Гриньяра (2 ммоля в 5 мл эфира) и перемешивают при комнатной температуре в течение 24 ч. После этого добавляют дополнительные 2 ммоля MeMgJ в эфире и опять перемешивают 24 часа при комнатной температуре. Реакционную смесь выливают в 0,1 М раствор H