Новые производные пиразола, способ их получения и содержащие их фармацевтические композиции
Реферат
Изобретение относится к производным пиразола формулы I, где 1 означает группу - NRR1R2 или группу -OR2, g2 - g6 одинаковые или разные и независимо друг от друга означают водород, галоген, С1-4 алкил, С1-4алкоксил, трифторметил или C1-4 алкилтиогруппу; w2-w6 одинаковые или разные и независимо друг от друга означают водород, галоген, С1-4алкил, C1-4алкоксил или трифторметил, при условии, что, по крайней мере, один из заместителей g2-g6 и один из заместителей w2-w6 отличаются от водорода; R1 означает водород или С1-4алкил; R2 - неароматический С3-15-карбоциклический радикал, незамещенный или одно- или многократно замещенный С1-4алкилом; R3 - водород или группа CH2-R6; R4 и R5 каждый независимо друг от друга означают водород или С1-4 алкил; или R4 означает водород и R5 и w6 вместе образуют этиленовый радикал; R6 означает водород, или когда заместители g2 g3, g4, g5 и/или g6 отличаются от С1-4 алкила, R6 означает водород, С1-4 алкил или С1-5 алкоксил, и их солям. Объектами изобретения также являются способ получения производных пиразола формулы I и фармацевтическая композиция их содержащая. Технический результат - получение новых соединений, которые являются антагонистами рецепторов СВ2 и фармацевтической композиции, имеющей сродство к рецепторам СВ2. Они могут быть использованы для лечения ауотоиммунных заболеваний. 3 с. и 14 з.п.ф-лы, 2 табл.
Изобретение относится к новым производным пиразола и их возможным солям, способу их получения и содержащим их фармацевтическим композициям.
Особенно настоящее изобретение относится к новым производным пиразола, обладающим высоким сродством к периферическим рецепторам каннабиноидов, называемых рецепторами CB2 и пригодны в терапевтических областях, где содержатся рецепторы CB2. 9-THC является основным активным компонентом Cannabis Sativa (Tuner, 1985; в Marijuana, 1984; изд. Harvey, DY, IRL Press, Oxford). Характеризация рецепторов каннабиноидов возможна за счет включения синтетических лигандов, таких как агонисты WIN-55212-2 (J.Pharmacol. Exp. Ther. , 264, 1352-1363 (1993)) или CP-55940 (J.Pharmacol. Exp. Ther., 247, 1046-1051 (1988)). В многочисленных статьях описываются не только психотропные эффекты каннабиноидов, но и также влияние этих последних на относящуюся к иммунитету функцию (Hollister L.E., Psychoact. Drugs, 24, 159-164 (1992)). Большинство исследований ин витро показывают иммуносупрессорные воздействия каннабиноидов: ингибирование пролиферативных ответных реакций T-лимфоцитов и B-лимфоцитов, индуцированных митогенами (Luo Y.D. и др. Int. J. Immunopharmacol., 14, 49-56 (1992); Schwartz Н. и др., J. Neuroimmunol., 55, 107-115 (1994)), ингибирование активности цитотоксических T-клеток (Klein и др., J. Toxicol. Environ. Health, 32, 465-477 (1991)), ингибирование бактерицидной активности макрофагов и синтеза -ФНО (-фактора некроза опухоли) (Arata S. и др. Life Sci. , 49, 473-479 (1991); Fisher-Stenger и др., J. Pharm. Exp. Ther., 267, 1558-2565 (1993)), ингибирование цитолитической активности и продуцирования -ФНО некоторых лимфоцитов (Kusher и др., Cell. Immun., 154, 99-108 (1994)). Наоборот, в некоторых исследованиях наблюдают эффекты амплификации: повышение биологической активности интерлейкина-1 за счет гистиоцитов мыши или дифференцированных макрофагальных линий клеток вследствие повышенных уровней -ФНО (Zhu и др., J, Pharm. Exp. Ther., 270, 1334-1339 (1994); Shivers S.C. и др. Life Sci., 54, 1281-1289 (1994)). Эффекты каннабиноидов возникают вследствие взаимодействия со специфическими рецепторами высокого сродства, присутствующими на центральном (Devane и др., Molecular Pharmacology, 34, 605-613 (1988)) и периферическом уровне (Nye и др. The Journal of Pharmacology and Experimental Theraupetics, 234, 784-791 (1985); Kaminski и др. Molecular Pharmacology, 42, 736-742 (1992); Munro и др., Nature, 365, 61-65 (1993)). Центральные эффекты зависят от первого типа рецептора каннабиноидов (CB1), который находится в головном мозге. Кроме того, Munro и др., Nature, 365, 61-65 (1993) клонировали второй рецептор каннабиноидов, соединенный с протеинами G, называемый CB2, который присутствует только на периферии и в особенности в клетках иммунного происхождения. Наличие рецепторов каннабиноидов СВ2 в лимфоидных клетках может объяснять иммуномодуляцию, осуществляемую агонистами рецепторов каннабиноидов, как указано выше. Многочисленные производные пиразола описаны в литературе: более конкретно, в заявке на европейский патент 268554 и в описании изобретения к выложенной акцептованной заявке на патент ФРГ 3910248 заявляются пиразолы, обладающие гербицидными свойствами; в заявке на европейский патент 430186 и в заявке на патент Японии 3031840 описываются соединения, пригодные для фотографии; и в заявке на европейский патент 418845 предметом изобретения являются пиразолы, обладающие противовоспалительной, анальгезирующей и антитромботической активностью. Также описаны производные пиразолкарбоксамида, особенно в заявках на европейские патенты 0289879 и 0492125: эти соединения обладают инсектицидными свойствами. Кроме того, в заявке на европейский патент 0477049 описываются производные пиразол-3-карбоксамида формулы (I); в которой, например, RI означает различным образом замещенную арильную группу; RII означает водород или алкил с 1-4 атомами углерода; RIII означает гидроксил, алкоксил с 1-6 атомами углерода, аминогруппу; RIV означает водород, галоген или алкил с 1-6 атомами углерода; RV означает различным образом замещенную фенильную группу; n означает 0, 1, 2 или 3. Эти соединения оказывают воздействие на центральную нервную систему и в особенности путем взаимодействия с рецептором нейротензина. Кроме того, в заявках на европейские патенты 576357 и 658546 описываются производные пиразола, обладающие сродством к рецепторам каннабиноидов. Сверх того, в заявке на европейский патент 656354 описывается N-пиперидино-5-(4-хлорфенил)-1-(2,4-дихлорфенил) -4-метилпиразол-3-карбоксамид или SR 141716 и его фармацевтически приемлемые соли, которые обладают высоким сродством к центральным рецепторам каннабиноидов. В настоящее время получены новые производные пиразола, которые обладают повышенным сродством к рецептору CB2 человека и специфичностью к вышеуказанному рецептору и которые являются сильнодействующими имммуномодуляторами. В настоящем описании под выражением "повышенное сродство к человеческому рецептору CB1>> понимают сродство, характеризующееся константой сродства обычно ниже 100 нМ, вплоть до 0,1 нМ, и термином "специфический" обозначают соединения, константа сродства которых к рецептору CB2 обычно, по крайней мере, в десять раз меньше константы сродства к рецептору CB1. Согласно одному из аспектов настоящего изобретения, предметом изобретения являются соединения формулы (I): в которой X1 означает группу -NR1R2 или группу -OR2; g2, g3, g4, g5, g6 и w2, w3, w4, w5, w6 являются одинаковыми или разными, и каждый из них, независимо друг от друга, означает водород, атом галогена, алкил с 1-4 атомами углерода, алкоксил с 1-4 атомами углерода, трифторметил, нитрогруппу, алкилтиогруппу с 1-4 атомами углерода; при условии, что по крайней мере один из заместителей g2, g3, g4, g5, g6 и по крайней мере один из заместителей w2, w3, w4, w5, w6 отличаются от водорода; R1 означает водород или алкил с 1-4 атомами углерода; R2 означает неароматический карбоциклический радикал с 3-15 атомами углерода, незамещенный или одно- или многократно замещенный заместителем, выбираемым среди атома галогена, алкила с 1-4 атомами углерода или алкоксила с 1-4 атомами углерода; R3 означает водород или группу -CH2-R6; R4 и R5, каждый, независимо друг от друга, означают водород, алкил с 1-4 атомами углерода или трифторметил; или R4 означает водород и R5 и w6 вместе образуют этиленовый или триметиленовый радикал; R6 означает водород или, когда заместители g2, g3, g4, g5 и/или g6 являются другими, чем алкил с 1-4 атомами углерода, R6 означает водород, алкил с 1-4 атомами углерода, фтор, гидроксил, алкоксил с 1-5 атомами углерода, алкилтиогруппу с 1-5 атомами углерода, гидроксиалкоксил с 1-5 атомами углерода, цианогруппу, алкилсульфинил с 1-5 атомами углерода, алкилсульфонил с 1-5 атомами углерода; также как их возможные соли. Когда соединение формулы (I) согласно изобретению включает один или несколько асимметрических атомов углерода, различные оптические изомеры, также как рацематы, составляют часть изобретения. Возможные соли соединения формулы (I) включают соли присоединения фармацевтически приемлемых кислот, такие как гидрохлорид, гидробромид, сульфат, гидросульфат, дигидрофосфат, метансульфонат, метилсульфат, малат, оксалат, фумарат, нафталинсульфонат, глюконат, гликонат, цитрат, изоэтионат, п-толуолсульфонат, мезитиленсульфонат или бензолсульфонат. Неароматические карбоциклические радикалы с 3-15 атомами углерода включают моно- или полициклические, конденсированные, мостиковые или спирановые, насыщенные или ненасыщенные, при случае терпеновые радикалы. Эти радикалы незамещены или однократно или многократно замещены группой, выбираемой среди алкила с 1-4 атомами углерода, алкоксила с 1-4 атомами углерода или галогена, при условии, что в случае терпенов или терпеновых радикалов, как, например, борнил, ментил или ментенил, алкильные группы терпена не рассматриваются как заместители. Моноциклические радикалы включают циклоалкилы, как, например, циклопропил, циклопентил, циклогексил, циклогептил, циклооктил, циклододецил, которые незамещены или однократно или многократно замещены алкилом с 1-4 атомами углерода, алкоксилом с 1-4 атомами углерода или галогеном, как, например, 2-метилциклогекс-1-ил, 2,6- диметилциклогекс-1-ил, 2,2,6,6-тетраметилциклогекс-1-ил. Ди- или трициклические, конденсированные, мостиковые или спирановые, при случае терпеновые, радикалы включают, например, бицикло[2.2.1]гептил или норборнил, борнил, изоборнил, норадамантил, адамантил, бицикло[3.2.1]октил, бицикло[2.2.2] октил, трицикло[5.2.1.02,6] децил, спиро[5,5]-ундецил, бицикло[2.2.2]окт-2-ен-5-ил, трицикло[2.2.1.02,6]-гепт-3-ил, причем вышеуказанные радикалы незамещены или однократно или многократно замещены алкилом с 1-4 атомами углерода, галогеном или алкоксилом с 1-4 атомами углерода, как, например, 1,3,3- триметилбицикло[2.2.1]гепт-2-ил или фенхил. В настоящем описании алкильные или алкоксильные группы являются линейными или разветвленными. Под атомом галогена понимают атом хлора, брома, фтора или иода. Согласно настоящему изобретению, предпочтительны соединения формулы (I), в которой X1 означает группу -NR1R2; g2, g3, g4, g5, g6 и w2, w3, w4, w5, w6 являются одинаковыми или разными и каждый из них, независимо друг от друга, означает водород, атом галогена, алкил с 1-4 атомами углерода, алкоксил с 1-4 атомами углерода, трифторметил, нитрогруппу, алкилтиогруппу с 1-4 атомами углерода; при условии, что по крайней мере один из заместителей g2, g3, g4, g5, g6 и по крайней мере один из заместителей w2, w3, w4, w5, w6 являются отличными от водорода; R1 означает водород или алкил с 1-4 атомами углерода; R2 означает неароматический карбоциклический радикал с 3-15 атомами углерода, незамещенный или однократно или многократно замещенный заместителем, выбираемым среди атома галогена, алкила с 1-4 атомами углерода или алкоксила с 1-4 атомами углерода; R3 означает водород или группу -CH2-R6; R4 и R5, каждый, независимо друг от друга, означают водород, алкил с 1-4 атомами углерода или трифторметил; R6 означает водород, метил или этил; также как их возможные соли. Из соединений формулы (I), в которой X1 означает группу -NR1R2, предпочтительными являются такие, в которых R1 означает водород. Из соединений формулы (I), в которой X1 означает группу -NR1R2 или группу -OR2, предпочтительными являются такие, в которых R2 означает 1,3,3-триметилбицикло[2.2.1]гепт-2-ил или бицикло [3.2.1] окт-3-ил. Из соединений формулы (I) предпочтительными являются такие, в которых R3 означает водород или группу -CH2-R6, в которой R6 означает водород. Из соединений формулы (I) предпочтительными являются такие, в которых либо каждый из R3 и R5 означает водород, либо R4 означает водород, a R5 означает алкил с 1-4 атомами углерода. Из соединений формулы (I) предпочтительными являются такие, в которых g2, g5 и g6 означают водород и g3 и g4 имеют значения, указанные выше для соединений формулы (I). Из соединений формулы (I) предпочтительными являются такие, в которых w5 и w6, означают водород, w4 означает атом галогена, алкил с 1-4 атомами углерода, алкоксил с 1-4 атомами углерода, трифторметил или алкилтиогруппу с 1-4 атомами углерода, и либо каждый из w2 и g3 означают водород, либо один из них означает водород, а другой означает атом галогена, алкил с 1-4 атомами углерода или трифторметил. Одной группой предпочтительных соединений согласно настоящему изобретению является группа соединений формулы (Ia): в которой R1, R2 имеют значения, указанные для соединения формулы (I); R3a означает водород или группу -CH2-R6a; R6a означает водород или при условии, что заместители g3a и g4a являются другими, чем алкил с 1-4 атомами углерода, R6a означает водород, метил или этил; g3a означает водород, атом галогена, алкил с 1-4 атомами углерода или трифторметил; g4a означает атом галогена, алкил с 1-4 атомами углерода или трифторметил; w4a означает атом галогена, алкил с 1-4 атомами углерода или трифторметил; каждый из w2a и w3a означает водород или один из них означает водород, а другой означает атом галогена, алкил с 1-4 атомами углерода или трифторметил; также как их возможные соли. Из этих соединений особенно предпочтительными являются соединения формулы (I'a): в которой R1, R2 имеют значения, указанные для соединений формулы (I); R3a имеет значение, указанное для соединений формулы (Ia); g'3a означает водород, атом хлора, атом фтора, метил или трифторметил; g'4a означает атом хлора, атом фтора, метил или трифторметил; w'4a означает атом хлора, атом фтора, метил или трифторметил; каждый из w'2a и w'3a означает водород или один из них означает водород, а другой означает атом хлора, атом фтора, метил или трифторметил; и их возможные соли. Еще более предпочтительными соединениями являются соединения формулы (I'a), в которой: R1 означает водород; R2 означает 1.3.3-триметилбицикло[2.2.1] гепт-1-ил или бицикло[3.2.1] окт-3-ил; R3a имеет значение, указанное для соединений формулы (Ia); w'2a, w'3a, w'4a, g'3a и g'4a имеют значения, указанные для соединений формулы (I'a); также как их возможные соли. В высшей степени предпочтительными являются соединения формулы (I'a), в которой; g'3a означает водород, атом хлора, атом фтора или метил; g'4a означает атом хлора, атом фтора или метил; w'4a означает атом хлора, атом фтора или метил; каждый из w'2a и w'3a означает водород или один из них означает водород, а другой означает атом хлора, атом фтора или метил; R1, R2 и R3 имеют значения, указанные для соединений формулы (I'a); также как их возможные соли. Другой группой предпочтительных соединений согласно изобретению является группа соединений формулы (Ib): в которой R1, R2 имеют значения, указанные для соединений формулы (I); R3a, w2a, w3a, w4a, g3a и g4a имеют значения, указанные для соединений формулы (Ia); R5b означает алкил с 1-4 атомами углерода; также как их возможные соли. Из этих соединений особенно предпочтительными являются соединения формулы (I'b): в которой R1, R2 имеют значения, указанные для соединений формулы (I); R3a имеет значение, указанное для соединений формулы (Ia); w'2a, w'3a, w'4a, g'3a и g'4a имеют значения, указанные для соединений формулы (Ia); R'5b означает метил; также как их возможные соли. Еще более предпочтительными соединениями являются соединения формулы (I'b) в которой R1 означает водород; R2 означает 1,3,3-триметилбицикло[2.2.1] гепт-2-ил или бицикло[3.2.1] окт-3-ил; R3a имеет значение, указанное для соединений формулы (Ia); R'5b означает метил; w'2a, w'3a, w'4a, g'3a и g'4a имеют значения, указанные для соединений формулы (I'a); также как их соли. В высшей мере предпочтительными являются соединения формулы (I'b), в которой: g'3a означает водород, атом хлора, атом фтора или метил; g'4a означает атом хлора, атом фтора или метил; w'4a означает атом хлора, атом фтора или метил; каждый из w'2a и w'3a означает водород или один из них означает водород, а другой означает атом хлора атом фтора или метил; R1, R2, R2 и R'5b имеют значения, указанные для соединений формулы (I'b); также как их возможные соли. Следующей группой предпочтительных соединений согласно изобретению является группа соединений формулы (Ic): в которой: R2 имеет эначение, указанное для соединения формулы (I); R3a, w2a, w3a, w4a, g3a и g4a имеют значения, указанные для соединений формулы (Ia); так же, как их возможные соли. Согласно другому из аспектов настоящего изобретения, оно относится к способу получения соединений формулы (I) и их солей, отличающемуся тем, что: 1) функциональное производное пиразол-3-карбоновой кислоты формулы (II) в которой w2, w3, w4, w5, w6, g2, g3, g4, g5, g6, R3, R4 и R5 имеют значения, указанные для соединений формулы (I), обрабатывают соединением формулы (XXIV): H-X1 (XXIV), в которой X1 имеет значение, указанное для соединений формулы (I); 2) и, в случае необходимости, таким образом полученное соединение превращают в одну из его солей. Один из способов получения согласно изобретению (способ А) пригоден для синтеза соединений формулы (I), в которой X1 означает группу - NR1R2. Этот способ отличается тем, что: 1) функциональное производное пиразол-3-карбоновой кислоты вышеприведенной формулы (II) обрабатывают амином формулы (III): HNR1R2 (III), в которой R1 и R2 имеют значения, указанные для соединений формулы (I); 2) и, в случае необходимости, таким образом полученное соединение превращают в одну из его солей. В качестве функционального производного кислоты формулы (II) можно использовать хлорангидрид кислоты; ангидрид; смешанный ангидрид; сложный алкиловый эфир с 1-4 атомами углерода в алкильной части, в котором алкил является линейным или разветвленным; активированный сложный эфир, как, например, п-нитрофениловый сложный эфир, или свободную кислоту, в свою очередь активированную, например, с помощью N,N-дициклогексилкарбодиимида или с помощью бензотриазол-1- илокситрис(диметиламино)фосфонийгексафторфосфата (ВОР). Таким образом, в способе А, согласно изобретению, хлорангидрид пиразол-3-карбоновой кислоты, полученный путем взаимодействия тионилхлорида с кислотой формулы (II), можно вводить во взаимодействие с амином формулы HNR1R2, в инертном растворителе, таком как хлорированный растворитель (например, дихлорметан, дихлорэтан, хлороформ), простой эфир (например, тетрагидрофуран, диоксан) или амид (например, N, N-диметилформамид) в инертной атмосфере, при температуре от 0oC до комнатной температуры, в присутствии третичного амина, такого как триэтиламин, N-метилморфолин или пиридин. Один вариант осуществления способа А состоит в получении смешанного ангидрида кислоты формулы (II) путем реакции этилхлорформиата с кислотой формулы (II) в присутствии основания, такого как триэтиламин, и во введении его во взаимодействие с амином HNR1R2 в растворителе, таком как дихлорметан, в инертной атмосфере, при комнатной температуре и в присутствии основания, такого как триэтиламин. Другой способ получения (способ Б) согласно изобретению пригоден для синтеза соединений формулы (I), в которой X1 означает группу -OR2. Этот способ отличается тем, что: 1) функциональное производное пиразол-3-карбоновой кислоты формулы (II) обрабатывают спиртом формулы (XIV): HO-R2 (XIV), в которой R2 имеет значение, указанное для соединений формулы (I); 2) и в случае необходимости таким образом попорченное соединение превращают в одну из его солей. В качестве функционального производного кислоты формулы (II) можно использовать хлорангидрид кислоты; ангидрид; смешанный ангидрид или свободную кислоту, в свою очередь активированную, например, с помощью N,N-дициклогексилкарбодиимида или с помощью бензотриазол- 1-илокситрис(диметиламино)фосфонийгексафторфосфата (ВОР). Таким образом, в способе Б, согласно изобретению, хлорангидрид пиразол-3-карбоновой кислоты, полученный путем взаимодействия тионилхлорида с кислотой формулы (II), можно вводить во взаимодействие со спиртом формулы HO-R2, либо в инертном растворителе, таком как хлорированный растворитель (например, дихлорметан, дихлорэтан, хлороформ), простой эфир (например, тетрагидрофуран, диоксан) или амид (например, N, N- диметилформамид), в инертной атмосфере, при температуре от 0oC до комнатной температуры, в присутствии третичного амина, такого как триэтиламин, N-метилморфолин или пиридин, либо в пиридине при комнатной температуре, в присутствии 4-диметиламинопиридина. Один вариант осуществления способа Б состоит в получении смешанного ангидрида кислоты формулы (II) путем реакции этилхлорформиата с кислотой формулы (II), в присутствии основания, такого как триэтиламин, и во введении его во взаимодействие со спиртом HO-R2 в растворителе, таком как дихлорметан, в инертной атмосфере, при комнатной температуре и в присутствии основания, такого как триэтиламин. В процессе какой-либо из стадий получения соединений формулы (I), и преимущественно при получении промежуточного соединения формулы (II), может оказаться необходимой и/или желательной защита функциональных реакционноспособных или чувствительных групп, таких как аминогруппа, гидроксил или карбоксил, присутствующих в какой-либо из вводимых во взаимодействие молекул. Эту запрету можно осуществлять, используя обычные защитные группы, такие как группы, описанные в Руководстве "Защитные группы в органической химии" J.F. W. McOmie, изд. Plenum Press, 1973, и в Руководстве "Защитные группы в органическом синтезе" T.W.Greene и P.G.M.Wutts, изд. John Wiley et Sons, 1991. Удаление защитных групп можно осуществлять в надлежащей последующей стадии, используя известные специалисту способы, которые не затрагивают остальной части соответствующей молекулы. Таким образом, полученное соединение формулы (I) выделяют обычными способами. В зависимости от природы заместителей, соединение формулы (I) в случае необходимости может быть переведено в соль. Соль получают путем обработки с помощью выбранной кислоты в органическом растворителе. Путем обработки свободного основания, растворенного, например, в простом эфире, таком как диэтиловый эфир, или в спирте, таком как пропан-2-ол, или в ацетоне, или в дихлорметане, с помощью раствора выбранной кислоты в том же самом растворителе получают соответствующую соль, которую выделяют классическими способами. Таким образом получают, например, гидрохлорид, гидробромид, сульфат, гидросульфонат, дигидрофосфат, метансульфонат, оксалат, малеат, фумарат, нафталинсульфонат, бензолсульфонат. Соединения формулы (II) получают по различным методикам. Соединения формулы (II), в которой R3=R'3 и означает водород или группу CH2-R6, где R6 означает водород или алкил с 1- 4 атомами углерода, получают согласно Схеме 1 (см. в конце описания). Первая стадия состоит в получении соли щелочного металла производного ацетофенона формулы (IV), в которой R'3 означает водород или группу CH2-R6, где R6 означает водород или алкил с 1-4 атомами углерода, и g2 g3=, g4, g5 и g6 имеют указанное для формулы (I) значение, к которой затем добавляют эквимолярное количество диэтилоксалата (стадия b1) для получения соли сложного кетоэфира формулы (V). В частном случае, где R'3=H, щелочным металлом предпочтительно является натрий (M= Na) и соль сложного кетоэфира (формулы (V), Alk=CH3) получают по способу, описанному в Bull. Soc.Chim.Fr., 14, 1098 (1947), используя метилат натрия в метаноле для осуществления стадии В стадии также можно воздействовать трет. -бутилатом калия в этаноле на производное формулы (IV), затем добавлять диэтилоксалат, как описано выше. Реакцию проводят при температуре кипения с обратным холодильником растворителя. Таким образом получают соединение формулы (V), в которой М=K и Alk = CH2CH3. В частном случае, где R'3=CH3, щелочным металлом предпочтительно является литий (M=Li) и соль сложного кетоэфира (формулы (V), Alk=CH2CH3) получают по способу, описанному в J.Heterocyclic Chem., 26, 1389-1392 (1989), используя литиевую соль гексаметилдисилазана в инертном растворителе, таком как диэтиловый эфир или циклогексан, для осуществления стадии В стадии таким образом полученное соединение формулы (V) и избыток гидразина (гидразинмоногидрат или водный раствор гидразина) кипятят с обратным холодильником в уксусной кислоте. Путем осаждения в воде со льдом таким образом получают пиразол-3-карбоксилаты формулы (VI). В стадии таким образом полученное соединение формулы (VI) обрабатывают сильным основанием, таким как гидрид натрия или амид натрия, в растворителе для получения аниона, который вводят во взаимодействие с соединением формулы (VII), в которой Hal означает галоген, предпочтительно хлор, бром или иод, R4 означает водород и w2, w3, w4, w5, w6 и R5 имеют значения, указанные для соединений формулы (I), для получения соединения формулы (IX). Реакцию проводят предпочтительно в толуоле при температуре от комнатной до температуры кипения с обратным холодильником растворителя для получения преобладающего целевого соединения формулы (IX). Когда реакцию осуществляют в N, N-диметилформамиде при температуре от 0oC до комнатной, то наблюдают преобладающее образование геометрического изомера формулы (XI): Альтернативно, согласно стадии соединение формулы (V) вместе с избытком производного гидразина формулы (VIII), в которой R4, R5, w2, w3, w4, w5, w6 имеют значения, указанные для соединений формулы (I), кипятят с обратным холодильником в уксусной кислоте; путем осаждения в смеси воды со льдом получают соединения формулы (IX). В стадии путем гидролиза в щелочной среде соединений формулы (IX), затем подкисления получают целевые соединения формулы (II). Гидролиз проводят при использовании, например, гидроксида щелочного металла, такого как гидроксид калия, гидроксид натрия или гидроксид лития, в инертном растворителе, таком как вода, метанол, этанол, диоксан или смесь этих растворителей, при температуре от 0oC до температуры кипения с обратным холодильником растворителя. Соединения формулы (IX), в которой R4 означает водород, предпочтительно получают через вышеописанные стадии затем Соединения формулы (IX), в которой R4 и R5 отличаются от водорода, предпочтительно получают через стадию описанную выше. Соединения формулы (IX), в которой R'3 означает CH2-(C1-C4)-алкил, предпочтительно получают, либо когда R4 и R5 отличаются от водорода, из самих соединений формулы (IX), либо когда R4=H, из соединений формулы (VI), согласно Схеме 2 (см. в конце описания). Стадия состоит в получении 4-бромметилпиразол-3- карбоксилата формулы (X) путем воздействия N-бромсукцинимида на соединение формулы (VI) или формулы (IX), где R'3 означает метил. Реакцию проводят в инертном растворителе, как тетрахлорид углерода, в присутствии дибензоилпероксида и при температуре кипения с обратным холодильником растворителя. Когда используют соединение формулы (VI), то предпочтительно осуществляют бромирование согласно стадии соединения, пиразольный азот которого защищен (Y=N-защитная группа). В качестве N-защитной группы используют хорошо известные специалисту классические N-защитные группы, как, например, трет.- бутоксикарбонил. Стадия состоит в получении соединения формулы (VI) или (IX), в которой R'3 означает группу -CH2-(C1-C4)-алкил, путем воздействия органокупрата (Alk')2CuLi, в котором Alk' означает алкил с 1-4 атомами углерода. Реакцию проводят по способу, описанному в заявке на европейский патент 0658546. В случае необходимости, когда используют соединение формулы (VI), защищенное по пиразольному азоту, после стадии N-защитную группу удаляют известными специалисту способами. Соединения формулы (II), в которой R4 означает водород и R3=R''3 и означает группу -CH2-R6, где R6 отличается от водорода или отличается от алкила с 1-4 атомами углерода, получают согласно Схеме 3 (см. в конце описания). В стадии атом азота соединения формулы (VI) (R'3=CH3) защищают с помощью N-защитной группы, такой как трет.-бутоксикарбонил (Boc), согласно известным специалисту способам. Стадия заключается в получении 4-бромметилпиразол-3- карбоксилата формулы (XVI) по способу, описанному выше в стадии Схемы 2. В стадии соединение формулы (XVI) обрабатывают соединением формулы R6-A, в которой R6, имеющий указанное для формулы (I) значение, отличается от водорода или отличается от алкила с 1-4 атомами углерода и A означает водород или катион, такой как катион щелочного или щелочноземельного металла или четвертичная аммониевая группа, такая как тетраэтиламмониевая группа. Для получения соединения формулы (XVIII), в которой R6 означает алкоксил с 1-5 атомами углерода или гидроксиалкоксил с 1-5 атомами углерода, в качестве реагента формулы (XVII) используют спирт с 1-5 атомами углерода или двухатомный спирт с 1-5 атомами углерода в присутствии не нуклеофильного основания, такого как гидрид металла, как, например, гидрид натрия или калия. В зависимости от значений R6 в стадии способа можно получать смесь сложных эфиров, которую омыляют в стадии для получения кислоты формулы (II). Для получения соединения формулы (XVIII), в которой R6 означает алкилтиогруппу с 1-5 атомами углерода, в качестве реагента формулы (XVII) используют тиоспирт с 1-5 атомами углерода в присутствии не нуклеофильного основания, такого как гидрид металла, как гидрид натрия или калия. В желательном случае полученный в стадии сложный эфир формулы (XVIII), в котором R6 означает алкилтиогруппу с 1-5 атомами углерода, путем воздействия на него окислителя, такого как пероксид водорода или м-хлорнадбензойная кислота, можно превращать в соединение формулы (XVIII), где R6 означает алкилсульфонил с 1-5 атомами углерода или алкилсульфинил с 1-5 атомами углерода. Для получения соединения формулы (XVIII), в котором R6 означает цианогруппу, в качестве реагента формулы (XVII) можно использовать цианид четвертичного аммония, например тетраэтиламмоний цианид, или цианид металла, такой как цианид натрия; в этом последнем случае реакцию нуклеофильного замещения согласно стадии осуществляют в присутствии межфазного катализатора. Для получения соединения формулы (XVIII), в котором R6 означает фтор, в качестве реагента формулы (XVII) можно использовать фторирующий агент; в качестве фторирующего агента можно использовать фторид металла, как, например, фторид калия, применяемый в присутствии комплексообразующего агента, как Kryptofix. Для получения соединения формулы (XVIII), в котором R6 означает гидроксил, в качестве реагента формулы (XVII) используют гидроксид щелочного или щелочноземельного металла, такой как гидроксид натрия или калия. В стадии удаляют N-защитную группу известными специалисту способами. В стадии таким образом полученное соединение формулы (XIX) обрабатывают сильным основанием, таким как гидрид натрия или амид натрия, в растворителе для получения аниона, который вводят во взаимодействие с соединением формулы (VII), в которой Hal означает галоген, предпочтительно хлор, бром или иод; R4 означает водород и w2, w3, w4, w5, w6 и R5 имеют значения, указанные для соединений формулы (I), для получения соединения формулы (XX). Реакцию проводят предпочтительно в толуоле при температуре от комнатной до температуры кипения с обратным холодильником растворителя с целью получения в большинстве своем целевого соединения формулы (XX). Когда реакцию проводят в N,N-диметилформамиде при температуре от 0oC до комнатной, наблюдают преобладающее образование геометрического изомера формулы (XXIII): В стадии путем гидролиза в щелочной среде соединений формулы (XX), затем подкисления получают целевые соединения формулы (II). Гидролиз осуществляют при использовании, например, гидроксида щелочного металла, такого как гидроксид калия, гидроксид натрия или гидроксид лития, в инертном растворителе, таком как вода, метанол, этанол, диоксан или смесь этих растворителей, при температуре от 0oC до температуры кипения с обратным холодильником растворителя. Соединения формулы (II), в которой R3=R''3 и означает группу -CH2-R6, в которой R6 отличается от водорода или отличается от алкила с 1-4 атомами углерода, и R4 и R5 отличны от водорода, получают согласно Схеме 4, где Alk означает метил или этил (см. в конце описания). Стадия состоит в получении 4-бромметилпиразол-3- карбоксилата формулы (XXI) по способу, описанному выше в стадии Схемы 2. В стадии соединение формулы (XXI) обрабатывают соединением формулы R6-A (XVII), таким, как описанное выше, и по методикам, описанным в стадии Схемы 3. В стадии путем гидролиза в щелочной среде соединений формулы (XXII), затем подкисления получают целевые соединения формулы (II). Гидролиз проводят по способам, описанным в стадии Схемы 1. В стадии Схемы 1 или в стадии Схемы 3, во время реакции соединения формулы (VI) или соединения формулы (XIX) с галогенированным производным формулы (VII) можно получать смесь в изменяемых соотношениях соединения формулы (IX) или соединения формулы (XX) с их соответствующими изомерами формулы (XI) или (XXIII): Оба изомера формул (IX) и (XI) или оба изомера формул (XX) и (XXIII) могут б