Новые бензамидоальдегиды

Реферат

 

Изобретение относится к новым производным бензамидоальдегидам формулы (I), где R1 - фенил, нафталин, хинолин, изохинолин, тетрагидрохинолин, тетрагидроизохинолин, пиридин, хиназолин, хиноксалин, причем ароматические и гетероароматические кольца могут быть замещены радикалами R4; R2 - водород, хлор, бром, фтор, алкил, -NHCO-нафтил, -NHSO2- C1-4-алкил, -О-С1-4-алкил, -СО-NH- C1-4-алкил, NO2; R3 - углеводородный остаток с 1-6 атомами углерода, который может нести циклоалкильное, индолильное, фенильное кольцо, или остаток группы -SCH3-; R4 - алкил, -О-С1-4-алкил, хлор, фтор, бром, йод, CF3, пиридин; Х - связь, - (СН2)m-, - (СН2)m-О-(СН2)0-, - (СН2)m-S-(СН2)o-, - (СН2)m-SO- (СН2)o-, - (СН2)m-SO2- (СН2)0-, -CH=CH-, -CC-, -CO-CH=CH-, -CH= CH-CO-, - (СН2)m-CO-(СН2)0-, - (СН2)m-NR5CO-(СН2)0-, (R5=H, C1-4-алкил), - (СН2)m- CONR5-(СН2)0-, - (СН2)m-NHSO2-(СН2)0-, - (СН2)m-SO2NH-(СН2)0-, -NH-CO-CH= CH-, -CH=CH-CO-NH- или незамещенный или замещенный радикалом R2 фенил; n = 1 или 2, m = 0 - 4; о = 0 - 4. Новые бензамидоальдегиды обладают ингибирующей активностью и благодаря этому могут использоваться в качестве ингибиторов протеаз цистенина. 2 з.п. ф-лы.

Изобретение относится к новым бензамидоальдегидам, которые могут применяться для борьбы с болезнями.

Калпаины представляют собой внутриклеточные, протеолитические ферменты из группы так называемых цистеин-протеаз и имеются во многих клетках. Калпаины активируются повышенной концентрацией кальция, причем различают между калпаином I или -калпаином, который активируется -молярными концентрациями ионов кальция, и калпаином II или m-калпаином, который активируется m-молярными концентрациями ионов кальция (см. публикацию P. Johnson, Int. J. Biochem. 1990, 22(8), 811-22). В настоящее время в литературе упоминаются еще и другие калпаиновые изоферменты (см. K. Suzuki et al., Biol. Chem. Hoppe-Seyler, 1995, 376(9), 523-9).

Имеется предположение, что калпаины играют важную роль в различных физиологических процессах. К этому относятся расщепление регуляторных протеинов - таких как например, протеин-киназы С, цитоскелетные протеины (как MAP 2 и спектрин), мышечные протеины, протеины при активировании тромбоцитов, протеины в митозе и другие, которые приведены в публикациях M.J. Barrett et al. , Life Sci. 1991, 48, 1659-69 и K.K. Wang et al., Trends in Pharmacol. Sci., 1994, 15, 412-9; а также протеолитический распад при ревматоидных артритах и нейропептидный метаболизм.

В различных патофизиологических процессах наблюдались повышенные уровни калпаина, например: сердечная ишемия (например, инфаркт сердца), почек или центральной нервной системы (например "удар", кровоизлияние в мозг), воспаления, мышечная дистрофия, катаракта глаз, повреждение центральной нервной системы (например, травма) или болезнь Альцгеймера (см. выше К.К. Wang и др. ). Поэтому предполагается связь этих болезней с повышенным уровнем внутриклеточного кальция. Вследствие этого зависящие от кальция процессы чрезмерно активируются и больше не поддаются физиологической регуляции. В соответствии с этим чрезмерная активность калпаинов может также вызвать патофизиологические процессы.

Поэтому имеются утверждения, что ингибиторы калпаиновых ферментов могут быть полезными для лечения таких болезней. Различные исследования это подтверждают. Так например, такие авторы, как Seung-Chyul Hong et al., в источнике Stroke 1994, 25(3), 663-9, и R.T. Bartus et al., в источнике Neurological Res. 1995, 17, 249-58, показали нейропротективное действие ингибиторов калпаинов при острых нейродегенеративных нарушениях или ишемии, имеющейся, например, после кровоизлияния в мозг (мозгового инсульта). После экспериментальных мозговых повреждений ингибиторы калпаина улучшали возникшие дефициты функции памяти и нервнодвигательные нарушения (см. публикацию K.E. Saatman et al. Proc. Natl. Acad. Sci. USA, 1996, 93, 3428-3433). Авторы C. L. Edelstein и др. в публикации Proc. Natl. Acad. Sci. USA, 1995, 92, 7662-6, обнаружили протективное действие ингибиторов калпаина на поврежденные гипоксией почки. Авторы Yoshida, Ken Ischi et al., Jap. Circ. J. 1995, 59(1), 40-8, смогли показать благоприятные эффекты ингибиторов калпаина после сердечных нарушений, которые были вызваны ишемией или реперфузией. В связи с тем, что ингибиторы калпаина тормозят выделение -АР4-протеина, было предложено их потенциальное применение при терапии болезни Альцгеймера (см. J. Higaki et al., Neuron, 1995, 14, 651-59). Выделение интерлейкина-1 также подавляется ингибиторами калпаина (см. N. Watanabe et al. , Cytokine 1994, 6(6), 597-601). Далее было найдено, что ингибиторы калпаина оказывают цитотоксическое действие на опухолевые клетки (см. E. Shiba et al, 20th Meeting Int. Ass. Breast Cancer Res., Sendai Jp, 1994, 25-28. Sept., Int. J. Oncol. 5 (Suppl.), 1994, 381).

Другие возможные области применения ингибиторов калпаина приведены автором K.K. Wang, в публикации Trends in Pharmacol. Sci., 1994, 15, 412-8.

Ингибиторы калпаина уже были описаны в литературе. Однако в подавляющем большинстве это или необратимые или пептидные ингибиторы. Необратимые ингибиторы являются, как правило, алкилирующими веществами и имеют тот недостаток, что они реагируют в организме неселективно или они нестабильны. Так например, эти ингибиторы часто проявляют нежелательные побочные эффекты, такие как токсичность, и поэтому они ограничены в их применении или вообще неприменимы. К необратимым ингибиторам причисляются, например, эпоксиды Е 64 (см, E.B. McGowan et al., Biochem. Biophys. Res. Commun. 1989, 158, 432-5), -галоген-кетоны (см. H. Angliker et al., J. Med. Chem. 1992, 35, 216-20) и дисульфиды (см. R. Matsueda et al., Chem. Lett. 1990, 191-194).

Многие известные обратимые ингибиторы цистеин-протеаз, такие как калпаин, представляют собой пептидные альдегиды или кетоны, в частности дипептидные и трипептидные альдегиды, как например, Z-Val-Phe-H (MDL 28170) (см. S. Mehdi, Trends in Biol. Sci. 1991, 16, 150-3) и соединения, описанные в европейской заявке ЕР 520336. При физиологических условиях пептидные альдегиды имеют часто тот недостаток, что вследствие имеющейся реактивности они нестабильны (см. J.A. Fehrentz и В. Castro, Synthesis, 1998, 676-678), могут быстро метаболизировать, обладают малой растворимостью в воде (что важно для внутривенного применения) или лишь медленно преодолевают оболочки клеток, такие как гематоэнцефалические барьеры и оболочки клеток нейронов (калпаин представляет собой внутриклеточный фермент и каждый ингибитор должен проникать в клетки). Так например, наиболее известные пептидные ингибиторы MDL 28170, АК 275 и АК 295 (см. Seung-Chuyl Hong et al., Stroke 1994, 25(3), 663-669; R.T. Bartus et al., J. Cerebral Blood Flow and Metabolism, 1994, 14, 537-544) правда исследовались фармакологически на животных, однако можно было наблюдать действие только тогда, когда вещества применялись необычным для лечения методом, например внутримозгово-желудочковым или внутриартериальным. Применение известных пептидных альдегидов или кетонов, которые представляют собой ингибиторы калпаина, при лечении болезней является таким образом ограниченным или не имеющим смысла.

Далее имеются попытки найти обратимые непептидные ингибиторы калпаина. Так например, в заявках Японии JP 8183759, JP 8183769, JP 8183771 и в европейской заявке ЕР 520336 описаны происходящие от дипептидов альдегиды, причем в эти пептидные ингибиторы вместо аминокислоты встроены насыщенные карбоциклические кольца, например, циклогексаны, или насыщенные гетероциклические кольца, например, пиперидины, вследствие чего были получены новые ингибиторы калпаина.

Кроме того, существует описание соединений, которые выводятся из структуры Это, в частности, соединения, в которых арил представляет собой фенильное кольцо, которое может нести простые заместители, такие как алкильные остатки (см. международные заявки WO 95/09838; WO 93/14082; WO/12140; публикацию Synthesis 1995, 181; заявки ЕР 363284, J 59206-344 и DT 2050679). Как показано в публикации Synthesis 1995, 181, соединения, где арил означает фенил, являются, однако, слабыми ингибиторами фермента калпаина. Неизвестно, оказывают ли заместители в этом фенильном кольце влияние на ингибиторное действие соединений.

Задачей изобретения является разработка новых непептидных бензамидоальдегидов, проявляющих высокую активность ингибирования калпаина.

Поставленная задача решается предлагаемыми бензамидоальдегидами формулы I и их таутомерными и изомерными формами, а также, при необходимости, их физиологически приемлемыми солями, где заместители имеют следующие значения: R1 - фенил, нафталин, хинолин, изохинолин, тетрагидрохинолин, тетрагидроизохинолин, пиридин, хиназолин, хиноксалин, причем ароматические и гетероароматические кольца могут быть замещены 1-3 радикалами R4, где R4 означает алкил с 1-4 атомами углерода, -О-С14-алкил, хлор, фтор, бром, йод, CF3, пиридин; R2 - водород, хлор, бром, фтор, C1-C4-алкил, -NHCO-нафтил, -NHSО2-C1-4-алкил, -O-C1-4-алкил, -CO-NH-C1-4-алкил, NО2; R3 - углеводородный остаток с 1-6 атомами углерода, который может нести еще циклопропильное, циклобутильное, циклопентильное, циклогексильное, индолильное, фенильное кольцо, или остаток группы -SСН3-; Х - связь, -(СН2)m-, -(CH2)m-О-(CH2)0-, -(CH2)m-S-(CH2)0-, -(СН2)m-SO-(CH2)0-, -(CH2)m-SО2-(CH2)0-, -СН= СН-, -CC-, СО-СН=СН-, -СН=СН-СО-, -(СН2)m-СО-(СН2)0-, -(CH2)m-NR5CO-(CH2)0-, -(CH2)m-СОNR5-(CH2)0-, (R5=Н,C1-4-алкил), -(CH2)m-NHSО2-(СН2)0-, -(СН2)m-SО2NH-(CH2)0-, -NH-CO-CH= CH-, -СН=СН-СО-NH- или незамещенный или замещенный радикалом R2 фенил, n - число 1 или 2, m - число 0, 1, 2, 3 или 4 и о - число 0, 1, 2, 3 или 4.

Предпочтительными являются бензамидоальдегиды формулы (I), у которых R2 означает водород, C1-C4-алкил, метокси, фтор, хлор или бром; R3 - -CH2-фенил, -CH2-циклогексил или -CH2-индолил, и R1, X, n, m, o имеют вышеуказанные значения.

Бензамидоальдегиды формулы (I) предпочтительно представляют собой ингибиторы протеаз цистеина.

Соединения формулы (I) могут применяться как рацематы или как чистые энантиомерные соединения или как дистереомеры. Если желательны энантиомерные соединения, то их можно получить, например, за счет того, что с помощью подходящего оптически активного основания или кислоты проводят классическое расщепление рацематов соединений формулы (I) или их промежуточных продуктов. С другой стороны, энантиомерные соединения можно также получать с помощью соответствующих торговых соединений, например оптически активных аминокислот.

Соединения формулы I могут также иметься в мезомерной или таутомерной форме, например такие, при которых кетогруппа формулы I находится в виде энольного таутомера.

Часть новых соединений I может содержать основную или кислотную группу. В этих случаях соединения могут быть в форме их физиологически приемлемых солей, которые получают посредством взаимодействия соединений с подходящей кислотой или основанием.

В качестве кислот пригодны, например, соляная кислота, лимонная кислота, винная кислота, молочная кислота, фосфорная кислота, уксусная кислота, муравьиная кислота, малеиновая кислота, фумаровая кислота, яблочная кислота, янтарная кислота, малоновая кислота, серная кислота, метансульфокислота и толуолсульфокислота.

В качестве основания подходят, в частности, гидроокись натрия, гидроокись калия, аммиак и простые органические амины.

Получение бензамидоальдегидов формулы I согласно изобретению может осуществляться различными путями, приведенными на схеме синтеза (см. в конце описания).

Производные бензойной кислоты формулы II подвергают взаимодействию с подходящими аминоспиртами формулы III с получением соответствующих бензамидоальдегидов формулы IV. При этом используются обычные методы образования пептидных связей, приведенные, например, в публикации C.R. Larock, Comprehensive Organic Transformations, VCH Publisher, 1989, стр.972 сл. или в источнике Houben-Weyl, Methoden der organischen Chemie, 4-ое изд., Е5, раздел V. Предпочтительно работают с "активированными" кислотными производными формулы II, причем кислотную группу СООН переводят в группу COL. L представляет собой уходящую группу, такую как, например, хлор, имидазол и N-гидроксибензотриазол. Эту активированную кислоту затем подвергают взаимодействию с аминами с получением амидов формулы IV. Реакция происходит в безводных, инертных растворителях, таких как метиленхлорид, тетрагидрофуран и диметилформамид при температуре от -20 до +25oС.

Эти производные спиртов формулы IV можно окислять с получением производных альдегида формулы I согласно изобретению. Для этого можно пользоваться различными известными реакциями окисления (см. C.R. Larock, Comprehensive Organic Transformations, VCH Publisher, 1989, стр. 604 сл.), как, например, окисление по Сверну и по Сверн-аналогу (см. T.T. Tidwell, Synthesis 1990, 857-70), гипохлоритом натрия/TEMPO (см. S.L. Harbenson et al., см. выше) или реактивом Десса-Мартина (см. J. Org. Chem. 1983, 48, 4155). Предпочтительно работают в инертных, апротонных растворителях, таких как диметилформамид, тетрагидрофуран или метиленхлорид с окислителем, как например ДМСО/пиридин х SO3 или ДМСО/оксалилхлорид при температуре от -50 до +25oС, в зависимости от метода (см. вышеприведенные источники).

Альтернативно этому бензойную кислоту формулы II можно подвергать взаимодействию с производными аминогидроксамовой кислоты формулы VI с получением бензамидо-альдегидов формулы I. При этом пользуются такой же реакцией, что и при получении соединения формулы IV. Производные аминогидроксамовой кислоты формулы VI получают из защищенных аминокислот формулы V посредством взаимодействия с гидроксиламином. При этом также пользуются вышеописанным способом получения амида. Отщепление защитной группы, например трет-бутилоксикарбонила, производится обычно с помощью трифторуксусной кислоты. Полученные таким образом бензамид-гидроксамовые кислоты формулы VII могут преобразовываться реакцией восстановления в альдегиды формулы I согласно изобретению. При этом в качестве восстановителя используют, например, литийалюминийгидрид при температуре от -60 до 0oС в инертном растворителе, таком как тетрагидрофуран или эфир.

Аналогично вышеописанному способу можно изготавливать бензамидкарбоновую кислоту или производные кислоты формулы IX, такие как, сложные эфиры или амиды, которые также реакцией восстановления могут переводиться в альдегиды формулы I согласно изобретению. Эти способы приведены в публикации R.C. Larock, Comprehensive Organic Transformations, VCH Publisher, 1989, стр.619-26.

Бензамидоальдегиды формулы I представляют собой ингибиторы цистеин-протеаз, такие как калпаин I и II, а также катепсин В и L и могут применяться для борьбы с заболеваниями, связанными с повышенной активностью ферментов калпаина и/или катепсина. Вследствие этого настоящие бензамидоальдегиды формулы I могут применяться для лечения нейродегенеративных заболеваний, которые возникают после ишемии, травм, субарахноидальных кровоизлияний и/или инсульта, и/или нейродегенеративных заболеваний, таких как многоинфарктное слабоумие, болезнь Альцгеймера и/или болезнь Хантингтона и/или же для лечения повреждений сердца после сердечной ишемии, повреждений почек после почечной ишемии, повреждений скелетных мышц, мышечной дистрофии, повреждений, вызванных пролиферацией гладкомышечных клеток, коронарных спазмов сосудов, церебральных спазмов сосудов, катаракты глаз и/или рестеноза кровеносного русла после ангиопластии. К тому же бензамидоальдегиды формулы I могут быть полезными при хемотерапии опухолей и их метастазов и/или для лечения заболеваний, при которых имеется высокий уровень интерлейкина 1, например при воспалениях и/или ревматических заболеваниях.

Ингибиторное действие бензамидоальдегидов формулы I определяли посредством известных в литературе испытаний ферментов, причем в качестве масштаба эффективности определяли концентацию ингибитора, при которой тормозится 50% активности фермента (=КТSO). Бензамидоальдегиды формулы I измерялись таким образом на свойства ингибитора калпаина I, калпаина II и катепсина В.

Испытание катепсина В Ингибиторное действие катепсина В определяли аналогично методу из публикации S. Hasnain et al., J. Biol. Chem. 1993, 268, 235-40. К 88 мкл катепсина В (катепсин В из печени человека (Calbiochem), разбавленного на 5 един. в 500 мкмоль буферного раствора) подавали в 2 мкл раствора ингибитора, полученного из ингибитора и ДМСО (конечная концентрация: 100 мкмоль до 0,01 мкмоль). Эту смесь на 60 мин при комнатной температуре (25oС) предварительно инкубировали и потом запускали реакцию посредством добавки 10 мкл (10 ммоль) Z-Arg-Агд-pNA (в буфере с 10% ДМСО). Реакцию наблюдали 30 мин при 40 нм в считывающем устройстве с микротитровыми пластинками. Из максимальных подъемов определяли значения KT50.

Испытание на ингибирование калпаина I и II Испытание ингибиторных свойств ингибитора калпаина производили в буфере с 50 ммоль трис-HCl, рН 7,5; 0,1 моль NaCl; 1 ммоль дитио-треитола: 0,11 ммоль CaCl2, причем применяли флурогенный субстрат калпаина Suc-Lеu-Тyr-7-амино-4-метилкумарина далее: АМС; (25 ммоль растворяли в ДМСО, Bachem/Швейцария) (см. Sasaki et al. J. Biol. Chem. 1984, Vol. 259, 12489-12494). Выделяли человеческий -калпаин из эритроцитов, следуя методам авторов Croall и DeMartino (ВВА 1984, Vol. 788, 348-355) и Graybill et al. (Bioorg. & Med. Lett. 1995, Vol. 5, 387-392). После нескольких хроматографических приемов (ДЭАЭ-сефароза, фенил-сефароза, супердекс 200 и Blue-сефароза) получали фермент с чистотой <95%, по оценке электрофореза на полиакриламидном геле с применением додецилсульфата натрия, анализа Вестерн-блоттинг и N-конечного секвенсирования. Флуоресценцию продукта расщепления АМС наблюдали с помощью флуориметра марки Spex-Fluorolog при ex =380 нм и em =460 нм. В промежутке измерения в 60 мин расщепление вещества является линейным и автокаталитическая активность калпаина малой, если испытания проводились при температуре 12oС (см. Chatterjee et al. 1996, Bioorg. & Med. Chem. Lett. , Vol 6, 1619-1622). Ингибиторы и субстрат калпаина подавали в испытательную композицию в качестве растворов ДМСО, причем ДМСО не должен превышать конечной концентрации в 2%.

В типичную испытательную смесь подавали 10 мкл субстрата (250 мкм в конце) и затем 10 мкл -калпаина (2 мкг/мл в конце, т.е. 18 нмоль) в кювету емкостью 1 мл, содержащую буфер. Вызванное калпаином расщепление субстрата измеряли в течение 15 до 20 мин. После этого производили подачу 10 мкл ингибитора (50 или 100 мкмоль раствора ДМСО) и измерение торможения расщепления измеряли еще 40 мин. Значения Ki определяли по обычному уравнению для обратимого торможения, т.е. К:=I(v0/v)-1; причем I - концентрация ингибитора, v0 - начальная скорость перед подачей ингибитора; vi - скорость реакции в равновесии.

Для 2-фенил-N-(3-фенилпропан-1-аль-2-ил)бензамида (пример 30) определяли значение Ki < 0,5 мкмоль. Поэтому это производное является значительно более эффективным, чем имеющий очень близкое сродство N-(1-3-фенил-пропан-1-аль-2-ил-)бензамид (из публикации M. R. Angelastro et al., J. Med. Chem. 1990, 33, 11-13).

Вызванный калпаином распад тирозинкиназы рр60src в тромбоцитах После активирования тромбоцитов тирозинкиназу pp60src расщепляли калпаином. Это было подробно исследовано авторами Oda и др. в J. Biol. Chem., 1993, Vol 268, 12603-12608. При этом было показано, что расщепление рр6Оsrc можно предотвратить калпептином, ингибитором калпаина. Следуя этой публикации, была исследована клеточная эффективность новых веществ. Свежую, смешанную с цитратом человеческую кровь центрифугировали 15 мин при 200 g. Богатую тромбоцитами плазму собирали и разбавляли тромбоцитным буфером 1:1 (тромбоцитный буфер: 68 ммоль NaCl, 2,7 ммоль KCl, 0,5 ммоль MgCl22О, 0,24 ммоль NaH2PO4H2O, 12 ммоль NаНСО3, 5,6 ммоль глюкозы, 1 ммоль ЭДТК (значение рН 7,4). После центрифугирования и промывания тромбоцитным буфером тромбоциты устанавливали на 107 клеток/мл. Выделение человеческих тромбоцитов производили при комнатной температуре.

Выделенные тромбоциты (2106) с различной концентрацией ингибиторов (растворенные в ДМСО) в испытательной смеси предварительно инкубировали 5 мин при 37oС. После этого производили активирование тромбоцитов посредством 1 мкмоль ионофора А23187 и 5 ммоль CaCl2. Через 5 мин инкубации тромбоциты коротко центрифугировали при 13000 об/мин и гранулы помещали в пробный буфер, содержащий додецилсульфат натрия (состав пробного буфера: 20 ммоль трис-HCl, 5 ммоль ЭДТК, 5 ммоль этиленгликоль тетрауксусной кислоты), 1 ммоль дитиотреитола, 0,5 ммоль фенилметилсульфонилфторида, 5 мкг/мл лейпептина, 10 мкм пепстатина, 10% глицерина и 1% (додецилсульфат натрия)). Протеины отделяли в 12 %-ном геле и pp60src и его продуктов расщепления (52 и 47 кД) идентифицировали с помощью метода Вестерн-Блотинг. Применяемые поликлональные антитела кролика Anti-Cys-src (рр60c-src) были приобретены от фирмы Biomol Feinchemikalien (Гамбург). Эти первичные антитела индицировали связанными с HRP вторыми антителами из козы (фирма Boehringer Mannheim, Германия). Анализ Вестерн-Блотинг производили известными методами.

Количественную оценку расщепления pp60src производили денситометром, причем в качестве контрольных тромбоцитов применяли неактивированные (контроль 1: расщепления нет) и обработанные ионофором и кальцием тромбоциты (контроль 2: соответствует 100 %-ному расщеплению). Значение ЭД50 соответствует концентрации ингибитора, при которой интенсивность цветовой реакции полосы 60 кД соответствует величине интенсивности контроля 1 плюс контроль 2, разделенные на 2.

Индуцированная глутаматом гибель клеток кортикальных нейронов Тест проводили аналогично описанному в публикации Choi D. W., Maulucci-Gedde M. А. и Kriegstein A. R. (1987) "Glutamate neurotoxicity in cortical cell culture", J. Neurosci. 7, 357-368, тесту. Из 15-дневных эмбрионов мышей препарировали половины коры головного мозга и ферментативно получали отдельные клетки (трипсин). Эти клетки (глия и кортикальные нейроны) высаживали на пластинки с 24 чашками. Через три дня (при покрытых ламинином пластинках) или через семь дней (при покрытых орнитином пластинках) с помощью UDD (5-фтор-2-дезоксиуридина) проводили (митотическую обработку). Через 15 дней после препарирования клеток посредством добавки глутамата (15 мин) вызывали гибель клеток. После удаления глутамата подавали ингибиторы калпаина. Через 24 ч определяли повреждение клеток посредством выявления лактатдегидрогеназы (LDH) в надосадочной жидкости культур клеток.

Вызванная кальцием гибель клеток NT2 В клеточной линии NT2 человека (продромальные клетки фирмы Stratagene GmbH) можно вызвать гибель клеток посредством кальция в присутствии ионофора А23187. 105 клеток на чашку микротитатора выносили на микротитровые пластинки за 20 ч до испытания. Через этот промежуток времени клетки инкубировали с различной концентрацией ингибиторов в присутствии 2,5 мкмоль ионофора и 5 ммоль кальция. К реакционной смеси прибавляли через 5 часов 0,05 мл ХТТ (Cell Proliferation Kit II фирмы Boehringer Mannheim). Оптическую плотность определяли приблизительно через 17 ч в соответствии с указаниями изготовителя, в считывающем устройстве Easy Reader EAR 400 фирмы SLT. Оптическая плотность, при которой погибло половина клеток, высчитывается из обоих контролей с клетками без ингибиторов, которые инкубировали в отсутствие и в присутствии ионофора.

При ряде неврологических болезней или психических нарушений наступает повышенная активность глутамата, которая приводит к состоянию повышенной возбудимости или токсическим эффектам центральной нервной системы.

Следовательно, вещества, которые тормозят вызванные глутаматом эффекты, могут применяться для лечения таких болезней. Антагонисты глутамата, к ним относятся, в частности, NMDA-антагонисты (N-метил-D-аспартат), соответственно их модуляторы и АМРА-антагонисты ((R,S)-амино-3-гидрокси-5-метил-изоксазолпропионовая кислота), годятся для терапевтического применения в качестве средства против нейродегенеративных заболеваний (хорея Хантингтона, болезнь Паркинсона), нейротоксические нарушения после гипоксии, аноксии или ишемии, возникающие, например, после кровоизлияния в мозг, или в качестве антиэпилептических средств, антидепрессантов и анксиолитиков (срав. публикации Arzneim. Forschung 1990, 40, 511-514; TIPS, 1990, 11, 334-338 и Drugs of the Future 1989, 14 (11), 1059-1071).

Посредством внутримозгового применения возбуждающих аминокислот (=ЕАА= Excitatory Amino Acids) индуцируется такое массивное перевозбуждение, что оно в короткое время приводит к судорогам и к гибели животных. Посредством системной - например, внутрибрюшинной - дозы действующих центрально ЕАА-антагонистов эти симптомы поддаются торможению. В связи с тем, что чрезмерное активирование ЕАА-рецепторов центральной нервной системы играет значительную роль при патогенезе различных неврологических заболеваний, из обнаруженного ЕАА-антагонизма ин виво можно сделать заключение о терапевтическом применении веществ против подобных заболеваний центральной нервной системы. К таким заболеваниям относятся также очаговые или глобальные ишемии, травмы, эпилепсия, а также различные нейродегенеративные заболевания, как например, хорея Хантингтона, болезнь Паркинсона и т.п.

Как уже было показано, ингибиторы калпаина проявляют в культурах клеток протективное действие против вызванной ЕАА гибели клеток (см. Н. Cauer et al. , Brain Research 1993, 607, 354-356; Yu Cheg и A.Y. Sun, Neurochem. Res. 1994, 19, 1557-1564). Полученные согласно изобретению ингибиторы калпаина неожиданным образом эффективны даже по отношению к вызванным ЕАА (например NMDA или АМРА) судорогам и этим указывают на терапевтическое применение при вышеназванных заболеваниях центральной нервной системы.

Лекарственные формы согласно изобретению содержат наряду с обычными вспомогательными средствами терапевтически эффективное количество соединения формулы I.

Для местного наружного применения, например, как пудра, мазь или аэрозоли, активные начала могут содержаться в обычной концентрации. Как правило, активные начала содержатся в количестве от 0,001 - 1 вес. %, предпочтительно, 0,01 - 0,1 вес.%.

При внутреннем применении лекарственные формы даются в отдельных дозах. В отдельной дозе даются на 1 кг веса тела 0,1 - 100 мг. Лекарственные формы могут выдаваться ежедневно в одну или несколько дозировок в зависимости от вида и тяжести заболевания.

В соответствии с желаемым видом применения лекарственные формы согласно изобретению содержат наряду с активным началом обычные наполнители и растворители. Для местного наружного применения могут использоваться фармацевтические технические вспомогательные вещества, такие как этанол, изопропанол, оксиэтилированное касторовое масло, оксиэтилированное гидрированное касторовое масло, полиакриловая кислота, полиэтиленгликоль, полиэтиленгликостеарат, этоксилированные спирты жирного ряда, парафиновое масло, вазелин и ланолин. Для внутреннего применения пригодны, например, молочный сахар, пропиленгликоль, этанол, крахмал, тальк и поливинилпирролидон.

Кроме того, лекарственные формы могут содержать антиокислители, такие как токоферол и бутилированный оксианизол и бутилированный окситолуол, а также улучшающие вкус дополнительные вещества, стабилизаторы, эмульгаторы и вещества, придающие скользкость.

Содержащиеся в лекарственной форме наряду с активным началом вещества, а также вещества, применяемые при изготовлении фармацевтических лекарственных форм, являются токсикологически приемлемыми и совместимыми с соответствующим активным началом. Изготовление лекарственных форм происходит обычным образом, например, посредством смешения активного начала с другими обычными наполнителями и растворителями.

Лекарственные формы могут даваться различным образом, например, перорально, парентерально, внутривенно посредством вливания, подкожно, внутрибрюшинно и локально. Возможны такие лекарственные формы, как таблетки, эмульсии, растворы для вливания и инъекции, пасты, мази, гели, кремы, лосьоны, пудры и аэрозоли.

Примеры Пример 1. N(Бутан-1-аль-2-ил-)-2-((Е-2-фенилэтен-1-ил)-амидо)-бензамид а) 2-Амино-N-(бутан-1-ол-2-ил)-бензамид 10,0 г (61 ммоль) ангидрида изатовой кислоты и 11 г (123,6 ммоль) 2-амино-1-бутанола кипятили в 200 мл тетрагидрофурана 8 часов с обратным холодильником. После этого тетрагидрофуран удаляли под вакуумом и полученный остаток распределяли между 2 М натровым щелоком и этилацетатом. Этилацетат сушили и концентрировали под вакуумом. Получали 10,5 г (82%) продукта.

б) N-(Бутан-1-ол-2-ил-)-2-((Е-2-фенилэтен-1-ил)-амидо)-бензамид 1 г (5 ммоль) Вышеназванного промежуточного продукта примера 1а и 0,6 г (6 ммоль) триэтиламина растворяли в 50 мл тетрагидрофурана. При 0oС 0,95 г (5,7 ммоль) хлорида коричной кислоты, растворенного в небольшом количестве тетрагидрофурана, подавали по каплям таким образом, что температура оставалась ниже 5oС. Все перемешивали в течение 1 ч. После этого реакционную смесь концентрировали в вакууме и остаток распределяли между 2 М натровым щелоком и этилацетатом. Органическую фазу сушили и концентрировали в вакууме. Этому сырому продукту давали вскипеть в простом эфире и после этого отсасывали. Получали 1,1 г (56%) целевого продукта.

в) N-(Бутан-1-аль-2-ил-)-2-((Е-2-фенилэтен-1-ил)-амидо)-бензами К 0,9 г (7 ммоль) оксалилхлорида в 25 мл безводного хлористого метилена при температуре от -60 до -50oС медленно подавали по каплям 1,1 г (14 ммоль) диметилсульфоксида, растворенного в 5 мл хлористого метилена. Все перемешивали 15 мин. После этого добавляли по каплям 2 г (6 ммоль) промежуточного продукта примера 1б, растворенного в 10 мл хлористого метилена, таким образом, что температура оставалась ниже -50oС. Все снова перемешивали 30 мин. Потом добавляли 1,5 г (15 ммоль) триэтиламина и все нагревали до комнатной температуры. Реакционную смесь промывали водой, органическую фазу сушили и концентрировали в вакууме. Остаток обрабатывали эфиром и отсасывали. Получали 0,4 г (20%) продукта.

Масс-спектр: m/е=336 (М+).

Пример 2. N-(Бутан-1-аль-2-ил)-2-((2-нафтил-амино)-бензамид а) N (бутан-1-ол-2-ил-)-2-((2-нафтил-амидо)-бензамид 1 г (4,8 ммоль) промежуточного продукта примера 1а и 0,95 г (5 ммоль) хлорангидрида 2-нафтойной кислоты подвергались реакции аналогично пункту 1б. Получали 1,05 г (62%) продукта.

б) N-(Бутан-1-аль-2-ил-)-2-(2-нафтил-амидо)-бензамид 0,9 г (2,5 ммоль) Промежуточного продукта примера 2а окисляли аналогично пункту 1в диметилсульфоксидом/оксалилхлоридом. После хроматографической чистки (растворитель: толуол/ацетон = 17/3) получали 78 мг (9%) продукта.

1H-ЯMP (D6-ДМСО): =1,0 (3Н); 1,6-2,0 (2Н); 4,3 (1Н); 7,2-8,8(11Н); 9,0 (1Н); 9,7(1Н) и 12,1(1Н) млн. д.

Пример 3. N-(Бутан-1-аль-2-ил)-3-((2-нафтил-амидо)-бензамид а) Амид N-(3-этоксилкарбонилфенил)-2-нафтойной кислоты К 7,5 г (45,5 ммоль) сложного этилового эфира 3-аминобензойной кислоты, растворенного в 150 мл тетрагидрофурана, прибавляли последовательно 6,6 мл триэтиламина и при 0-5oС 9 г (47,5 ммоль) хлорангидрид 2-нафтойной кислоты, растворенного в 50 мл тетрагидрофурана. Все перемешивали прибл. 1 час. После этого фильтровали и остаток концентрировали под вакуумом. Полученный твердый продукт обрабатывали диэтиловым эфиром и снова отсасывали. Получали 9,3 г (64%) продукта.

б) 3-(2-Нафтиламидо)бензойная кислота.

9,0 г (28 ммоль) Продукта примера 3а растворяли в 100 мл тетрагидрофурана и примешивали 2,7 г (113 ммоль) гидроокиси лития, растворенной в 50 мл воды. Все мешали при комнатной температуре до полной конверсии (прибл. 6 ч). После этого удаляли под вакуумом тетрагидрофуран и полученную водную фазу подкисляли 2 М соляной кислотой. Осадок отсасывали. Получали 7,8 г (95 %) продукта.

в) N-(бутан-1-ол-2-ил)-3-((2-нафтил-амидо)-бензамид К 2 г (6,9 моль) промежуточного продукта примера 3б и 0,8 г (7,9 ммоль) триэтиламина, растворенного в 50 мл безводного тетрагидрофурана, добавляли по каплям при 0oС 0,8 г (7,7 ммоль) сложного этилового эфира хлормуравьиной кислоты, растворенного в небольшом количестве тетрагидрофурана. После этого при -20 до -10oС добавляли по каплям 0,6 г (6,7 ммоль) 2-аминобутанола. Все перемешивали при комнатной температуре 16 часов. Потом удаляли тетрагидрофуран в вакууме и остаток распределяли между водой и этилацетатом. Органическую фазу сушили и концентрировали в вакууме. Продукт кипятили с диэтиловым эфиром и отсасывали. Получали 1,5 г (58%) продукта.

г) N-(бутан-1 -аль-2-ил)-3-(2-нафтил-амидо)-бензамид.

1,3 г (3,5 ммоль) промежуточного продукта примера 3в окисляли аналогично пункту 1в диметилсульфоксидом/оксалилхлоридом. Получали после хроматографической чистки (растворитель: толуол/ацетон=1/1) 0,24 г (18%) продукта.

1Н-ЯМР (D6-ДМСО): = 1,0(3Н); 1,6-2,0 (2Н); 4,2(11-1), 7,3-8,8 (10Н); 8,9(1Н), 9,4(1Н) и 10,5(1Н) млн. д.

Пример 4 (S)-N-(3-Фенил-пропан-1-аль-2-ил)-2(3-пиридил)амидо-бензамид а) (S)-2-Амино-N-(3-фенилпропан-1-ол-2-ил)-бензамид.

Продукт получали аналогично пункту 1а из 5 г (S)-(-)-2-амино-3-фенил-1-пропанола и ангидрида изатовой кислоты. Получали 3,6 г продукта.

б) (S)-N-(3-Фенил-пропан-1-ол-2-ил)-2-(3-пиридил)амидо-бензамид

1,0 г (3,7 ммоль) промежуточного продукта примера 4а растворяли в 25 мл пиридина и примешивали порциями при 0oС 0,7 г (3,9 ммоль) гидрохлорида хлорангидрида никотиновой кислоты. Все перемешивали несколько часов (ТСХ-контроль). После этого реакционную смесь концентрировали в вакууме. Полученный сырой продукт (прибл. 2 г) без очистки подавали на следующую стадию.

в) (S)-N-(3-фенил-пропан-1-аль-2-ил)-2-(3-пиридил)амидо-бензами 2 г Промежуточного продукта примера 4б окисляли аналогично пункту 1в посредством диметилсульфоксида/оксалилхлорида. После хроматографической очистки (растворитель: толуол/ацетон = 1/1) получали 0,17 г продукта.

Масс-спектр: m/е = 373 (М+).

Пример 5. (S)-N-(3-Фенил-пропан-1-аль-2-ил)-2-(2-нафтил)амидо-бензамид а) (S)-N-(3-Фенил-пропан-1-ол-2-ил)-2-(2-нафтил)амидо-бензамид 1,5 г (5,6 ммоль) Промежуточного продукта примера 4а подвергали взаимодействию с 1,2 г (6,3 ммоль) хлорангидрида нафтойной кислоты аналогично пункту 4б. Получали 1,4 г (58 %) продукта.

б) (S)-N-(3-Фенил-пропан-1-аль-2-ил)-2-(2-нафтиламидо)-бензамид 1,2 г (4,7 ммол) промежуточного продукта примера 5а окисляли аналогично пункту 1в посредством оксалилхлорида/диметилсульфоксида. Получали 0,5 г (42 %) продукта.

Масс-спектр: m/е = 422 (М+).

Пример 6 (S)-N-(3-Фенил-пропан-1-аль-2-ил)-3-(2-нафтил)амидо-бензамид а) (S)-N-(3-Фенил-пропан-1-ол-2-ил)-3-(2-нафтиламидо)-бензамид.

2 г (6,8 ммоль) Промежуточного продукта примера 3б подвергали взаимодействию аналогично пункту 3в с (S)-2-амино-3-фенил-1-пропанолом. Получали 1 г (34%) продукта.

б) (S)-N-(3-Фенил-пропан-1-аль-2-ил)-3-(2-нафтил1)амидо-бензамид.

0,9 г (2,1 ммоль) Промежуточного продукта примера 6а окисляли аналогично пункту 1в посредством диметилсульфоксида/оксалилхлорида.

После хроматографической чистки (растворитель: толуол/ацетон= 3/1) получали 0,2 г (22%) продукта.

Масс-спектр: m/е = 422 (M+).

Пример 7 (S)-2-(2-Фенил-1-этил)амидо-N-(3-фенил-пропан-1-аль-2-ил)-бензамид.

а) (S)-2-(2-Фенил-1-этил)амидо-N-(3-фенил-пропан-1-аль-2-ил)-бензамид.

К 1,5 г (6,6 ммоль) 2-(2-фенил-1-этил)бензойной кислоты, 1,0 г (6,6 моль) (S)-2-амино-3-фенил-пропан-1-ола и 1,4 мл (9,9 ммоль) триэтиламина в 50 мл хлористого метилена добавляли последовательно 0,3 г (2,2 ммоль) N-гидроксибензотриазола (НОВТ) и порциями 1,3 г (6,6 моль) N'-(3-диметиламинопропил)-N-этилкарбодиимида (EDC). Все перемешивали 16 ч при комнатной температуре. После этого реакционную смесь разбавляли большим количеством этилацетата и промывали последовательно два раза посредством 2 М соляной кислоты, два раза - 2 М натровым щелоком и три раза - водой. Органическую фазу сушили и концентрировали в вакууме.

Остаток осаждали из смеси хлористого метилена и петролейного эфира. Получали 1,85 г (79%) продукта.

б) (S)-2-(2-Фенил-1-этил)амидо-N-(3-фенил-пропан-1-аль-2-ил)-бензамид.

1,6 г (4,5 ммоль) Промежут