Производные пиперидина, способ их получения, фармацевтическая композиция на их основе и промежуточные соединения

Реферат

 

Изобретение относится к производным пиперидина общей формулы I а также к их фармацевтически приемлемым солям, где R1 - водород, C16-алкил, C26-алкенил, C38-циклоалкил, C610-арил, который может быть замещен СН3, галогеном, OR5, где R5 - C16-алкил, C12-алкил-гетероарил, содержащий в качестве гетероатома S, N или О; А - фенил, замещенный карбонильной или аминогруппой; В - C610-арил или C510-гетероарил, содержащий в качестве гетероатома S, N или О. Изобретение относится также к способу получения соединений формулы I, а также к фармацевтическим композициям. Соединения формулы I обладают аналгезирующей активностью и могут найти применение в медицине. 4 с. и 7 з.п. ф-лы, 2 табл.

Изобретение относится к новым соединениям, способу их получения, их использованию и фармацевтическим композициям, содержащим новые соединения. Новые соединения можно использовать в терапии, особенно для лечения боли.

Предпосылки создания изобретения и известный уровень техники -Рецептор был идентифицирован как играющий роль во многих функциях организма, таких как сердечно-сосудистая и болевая системы. Лиганды для -рецептора могут, следовательно, найти потенциальное использование в качестве анальгезирующих и/или антигипертензивных средств. Было также обнаружено, что лиганды для -рецептора обладают иммуномодулирующей активностью.

В настоящее время идентифицированы, по меньшей мере, три разные популяции опиоидных рецепторов (, и ), и все три обнаруживаются как в центральной, так и периферической нервных системах многих видов животных, включая человека. Анальгезию наблюдали на различных моделях животных, когда были активированы один или несколько из этих рецепторов.

За редким исключением, доступные в настоящее время селективные опиоидные -лиганды являются по природе пептидными соединениями и не пригодны для введения системными способами. Некоторые непептидные -антагонисты стали доступны в течение некоторого последнего времени (см. Takemori and Portoghese, 1992, Ann. Rev. Pharmacol. Tox. , 32:239-269.). Эти соединения, например налтриндол, характеризуются весьма слабой (т.е. слабее в 10 раз) селективностью связывания -рецептора по сравнению с -рецептором и не проявляют анальгезирующую активность, факт, который подразумевает необходимость разработки высокоселективных непептидных -лигандов.

Таким образом, проблемой, лежащей в основе данного изобретения, было получение новых анальгетиков, имеющих повышенное анальгезирующее действие, а также улучшенный профиль побочного действия по сравнению с современными -агонистами и значительную пероральную эффективность.

Анальгетики, которые были идентифицированы и описаны в известном уровне техники, имеют много недостатков, проявляющихся в том, что они имеют плохую фармакокинетику и не проявляют анальгезирующее действие при введении системными способами. Кроме того, документально подтверждено, что предпочтительные соединения, описанные в известном уровне техники, проявляют также значительное судорожное действие при системном введении.

Проблема, указанная выше, решена путем разработки новых соединений, которые имеют кольцо пиперидина с экзоциклической двойной связью, как будет описано ниже.

Описание изобретения Новые соединения по настоящему изобретению имеют общую формулу (I) где R1 выбирают из водорода, разветвленного или неразветвленного C16-алкила, C16-алкенила, C38-циклоалкила, C48-(алкилциклоалкила), где алкил представляет C12-алкил и циклоалкил представляет C36-циклоалкил; C610-арила или гетероарила, имеющего от 5 до 10 атомов, выбранных из С, S, N и О, где арил или гетероарил может быть необязательно и независимо замещен 1 или 2 заместителями, независимо выбранными из водорода, СН3, -(СН2)pСF3, галогена, -CONR5R4, -COOR5, -COR5, -(CH2)pNR5R4, -(CH2)рСН3(CH2)pSOR5R4, -(CH2)pSO2R5 и -(CH2)pSO2NR5, где R4 и R5, каждый независимо, такие, как определено выше для R1, и р равно 0, 1 или 2; (C12-алкил)-(C610-арила) или (C12-алкил)гетероарила, причем гетероарильные части имеют от 5 до 10 атомов, выбранных из С, S, N и О, и где арил или гетероарил может быть необязательно и независимо замещен 1 или 2 заместителями, независимо выбранными из водорода, СН3, -(CH2)qCF3, галогена, -CONR5R4, -COOR5, -COR5, -(CH2)qNR5 R4, -CH2)qCH3 (CH2)qSOR5R4, -(CH2)qSO2R5, -(CH2)qSOgNR5 и -(CH2)pOR5, где R4 и R5, каждый независимо, такой, как определено выше для R1, и q равно 0, 1 или 2, и где R18, R19, R20, R21, R22, R23, R24 и R25, каждый независимо, представляют водород, C16-алкил или C16-алкенил; R2 и R3, каждый независимо, представляют водород или C1-c6-алкил; А выбирают из где R8, R9, R10, R11, R12, R13, R14, R15 , R16 и R17, каждый независимо, такие, как определено выше для R1, и где фенильное кольцо каждого заместителя А может быть необязательно и независимо замещено по любому положению фенильного кольца 1 или 2 заместителями Z1 и Z2, которые, каждый независимо, выбирают из водорода, СН3, -(СН2)qСF3, галогена, -CONR6R7, -COOR6, -COR6, -(CH2)rNR6R7, -(CH2)rСН3(CH2)rSOR6, -(CH2)rSO2R6 и -(СН2)rSO2NR6R7, где R6 и R7, каждый независимо, такие, как определено выше для R1, и r равно 0, 1 или 2; Q представляет C5-C6-гидроарильный или гетерогидроароматический радикал, имеющий 5 или 6 атомов, выбранных из С, S, N и О; C5-C6-циклоалкил или гетероциклоалкил, имеющий 5 или 6 атомов, выбранных из С, S, N и О; и где каждый Q необязательно может быть замещен Z1 и Z2, как определено выше; В представляет замещенную или незамещенную ароматическую, гетероароматическую, гидроароматическую или гетерогидро- ароматическую часть, имеющую от 5 до 10 атомов, выбранных из С, S, N и О, и необязательно и независимо замещенную 1 или 2 заместителями, независимо выбранными из водорода, СН3, -(CH2)tCF3, галогена, -(CH2)tCONR5R4, -(CH2)tNR5R4, -(CH2)tCOR5, -(CH2) tCOOR5, -OR5, -(CH2) t SOR5, -(CH2)tSO2R5 и -(CH2)tSO2NR5R4, где R4 и R5, каждый независимо, такие, как определено выше для R1, и t равно 0, 1, 2 или 3; и R4 и R5, каждый независимо, такие, как определено выше для R1.

В объем данного изобретения включены также фармацевтически приемлемые соли соединений формулы (I), а также их изомеры, гидраты, изомерные формы и пролекарства.

Предпочтительные соединения изобретения представляют собой соединения формулы (I), где А выбирают из где R8, R9, R10 R11, R12, R13, R14, R15, R16 и R17, каждый независимо, такие как определено выше для R1, и где фенильное кольцо каждого заместителя А может быть необязательно и независимо замещено по любому положению фенильного кольца 1 или 2 заместителями Z1 и Z2, которые, каждый независимо, выбирают из водорода, СН3, -(СН2)qСF3, галогена, -CONR6R7, -COOR6, -COR6, -(CH2)rNR6R7, -(CH2)rСН3 (CH2)rSOR6, -(CH2)rSO2R6 и -(СН2)r2NR6R7, где R6 и R7, каждый независимо, такие, как определено выше для R1, и r равно 0, 1 или 2; Q выбирают из морфолина, пиперидина и пирролидина; R1, R4 и R5, каждый независимо, выбирают из водорода, разветвленного или неразветвленного C1-C4-алкила, C3-C5-циклоалкила, C4-C8-алкилциклоалкила), где алкил представляет C1-C2-алкил, и циклоалкил представляет C3-C6-циклоалкил; C6-C10-арила или гетероарила, имеющего от 5 до 6 атомов, выбранных из С, S, N и О, и где арил или гетероарил может быть необязательно и независимо замещен 1 или 2 заместителями, независимо выбранными из водорода, СН3, -(СН2)pСF3, галогена, -CONR5R4, -COOR5, -COR5, -(СН2)рNR5R4, -(CH2)рСН3 (CH2)pSOR5R4, -(CH2)pSO2R5 и - (CH2)p SO2NR5, где R4 и R5, каждый независимо, такие, как определено выше для R1, и р равно 0, 1 или 2; В выбирают из фенила, нафтила, индолила, бензофуранила, дигидробензофуранила, бензотиофенила, пиррила, фуранила, хинолинила, изохинолинила, циклогексила, циклогексенила, циклопентила, циклопентенила, инданила, инденила, тетрагидронафтила, тетрагидрохинила, тетрагидроизохинолинила, тетрагидрофуранила, пирролидинила и индазолинила, каждый из которых необязательно и независимо замещен 1 или 2 заместителями, независимо выбранными из водорода, СН3, СF3, галогена, -(CH2)qCONR5R4, -(CH2)qNR5R4, -(CH2)qCOR5, -C(CH2)qCO2R5 и -OR5, где q равно 0 или 1 и где R4 и R5 такие, как определено выше; R2 и R3, каждый независимо, представляют водород или метил.

Особенно предпочтительные соединения изобретения представляют собой соединения формулы (I), где А представляет где R8 и R9 оба представляют этил и где фенильное кольцо необязательно и независимо может быть замещено по любому положению фенильного кольца двумя заместителями Z1 и Z2, которые, каждый независимо, выбирают из водорода, СН3, -(CH2)qCF3, галогена, -CONR6R7, -COOR6, -COR6, -(CH2)rNR6R7, -(CH2)rСН3(CH2)rSOR6, -(CH2)r SO2R6 и -(CH2)rSO2 NR6R7, где R6 и R7, каждый независимо, такие, как определено выше для R1, и r равно 0, 1 или 2; R1 выбирают из водорода, метила, этила, -CH2CH=CH2, -CH2-циклопропил, -СН2-арил или CH2-гетероарил, причем гетероарильные части имеют от 5 до 6 атомов, выбранных из С, S, N и О; В выбирают из фенила, нафтила, индолила, бензофуранила, дигидробензофуранила, бензотиофенила, фуранила, хинолинила, изохинолинила, циклогексила, циклогексенила, циклопентила, циклопентенила, инданила, инденила, тетрагидронафтила, тетрагидрохинила, тетрагидроизохинолинила, тетрагидрофуранила и индазолинила, каждый из которых необязательно и независимо замещен 1 или 2 заместителями, независимо выбранными из водорода, СН3, СF3, галогена, -(CH2)qCONR5R4, -(CH2)qNR5R4, -(CH2)qCOR5, -(CH2)qCO2R5 и -OR5, где q равно 0 или 1, и где R4 и R5 такие, как определено выше; R2 и R3, каждый независимо, представляет водород или метил.

Заместители А и В соответственно могут быть необязательно замещены в любом положении кольца.

Термин "галоген" обозначает хлор, фтор, бром и иод.

Термин "арил" обозначает ароматическое кольцо, имеющее от 6 до 10 атомов углерода, такое как фенил и нафтил.

Термин "гетероарил" обозначает ароматическое кольцо, в котором один или несколько из 5-10 атомов в кольце представляют собой атомы, отличные от углерода, такие как N, S и О.

Термин "гидроароматический" обозначает частично или полностью насыщенное ароматическое кольцо, имеющее 5-10 атомов в кольце.

Термин "гетерогидроароматический" обозначает частично или полностью насыщенное ароматическое кольцо, в котором один или несколько из 5-10 атомов в кольце являются атомами, отличными от углерода, такими как N, S и О.

Термин "изомеры" обозначает соединения формулы (I), которые отличаются положением их функциональной группы и/или ориентацией. Термин "ориентация" обозначает стереоизомеры, диастереоизомеры, региоизомеры и энантиомеры.

Термин "изоформы" обозначает соединения формулы (I), которые отличаются кристаллической решеткой, такие как кристаллическое соединение и аморфные соединения.

Термин "пролекарство" обозначает фармакологически приемлемые производные, например сложные эфиры и амиды, такие что образующийся продукт биопревращения такого производного является активным лекарственным средством. Публикация Goodman and Gilmans, The Pharmacological basis of Therapeutics, 8th ed., McGraw-Hill, Jnt. Ed. 1992, "Biotransformation of Drugs, p. 13-15, описывающая пролекарства в общем, включена сюда в качестве ссылки.

Новые соединения данного изобретения полезны в терапии, особенно для лечения различных болезненных состояний, таких как хроническая боль, острая боль, боль при раке, боль, вызванная ревматоидным артритом, мигрень, висцеральная боль и т.д. Этот перечень, однако, не должен истолковываться как исчерпывающий.

Соединения изобретения полезны в качестве иммуномодуляторов, особенно при аутоиммунных болезнях, таких как артрит, при трансплантации кожи, органов-трансплантатов и для аналогичных хирургических потребностей, для коллагеновых болезней, различных аллергий, для использования в качестве противоопухолевых средств и антивирусных агентов.

Соединения изобретения полезны при болезненных состояниях, где имеет место дегенерация или дисфункция опиоидных рецепторов, или опиоидные рецепторы вовлечены в эту парадигму. Это применение может включать использование меченных изотопами вариантов соединений изобретения в диагностических методиках и в применениях для получения изображений, таких как позитронная эмиссионная томография (ПЭТ).

Соединения изобретения можно использовать для лечения диареи, депрессии, недержания мочи, различных психических болезней, кашля, отека легких, различных желудочно-кишечных нарушений, спинального повреждения и привыкания к чрезмерному употреблению лекарственных средств, включая лечение алкогольной, никотиновой, опиоидной и других зависимостей, и нарушений симпатической нервной системы, например гипертензии.

Соединения изобретения полезны в качестве анальгезирующего агента для применения во время общей анестезии и для оказания помощи контролируемой анестезией. Комбинации агентов с разными свойствами часто используют для достижения баланса действий, требуемых для поддержания анестезированного состояния (например, амнезии, анальгезии, мышечной релаксации и садативного эффекта). В эту комбинацию входят вводимые ингаляцией анестетики, снотворные средства, анксиолитики, нейромышечные блокаторы и опиоиды.

Соединения данного изобретения в меченной изотопом форме можно использовать в качестве диагностического агента.

В объем данного изобретения включено также использование любого из соединений приведенной выше формулы (I) для изготовления лекарственного средства для лечения любого из состояний, указанных выше.

Следующим аспектом изобретения является способ лечения субъекта, страдающего любым из указанных выше состояний, включающий введение эффективного количества соединения указанной выше формулы (I) пациенту, нуждающемуся в таком лечении.

Способы получения Соединения данного изобретения можно получить, как описано в схемах I-IV.

Как показано выше на схемах I и II, соединения вышеприведенной формулы (I) можно получить дегидратацией гидроксисоединений (g) или (h), где R1, R2, R3, А и В такие, как определено выше в формуле (I). Последующую дегидратацию гидроксильных соединений (g) или (h), где R1, R2, R3, А и В такие, как определено выше в формуле (I), можно проводить без растворителей или в растворителе, таком как вода, спирты, сложные эфиры, НМРА, дихлорметан, толуол, простые эфиры, кетоны, карбоновые кислоты, или в смеси растворителей в присутствии кислот Бронстедта или Льюиса, таких как серная кислота, хлористоводородная кислота, трифторуксусная кислота, трихлорид алюминия, ZnCl2 или подобные, или в присутствии оксидов металлов, таких как Al2O3, Cr2O3, TiO2, WO3, P2O5 или подобные, или в присутствии других дегидратирующих агентов, таких как I2, диметилсульфоксид, KHSO4, CuSO4, фталевый ангидрид или подобные.

Заместители R1, R2 и R3 и заместители на А и В соединения (I), как определено выше, можно модифицировать способами, известными в данной области и проиллюстрированными в литературе, см., например, Protecting groups by Green, or Modern Synthesis Reactions by House, которые хорошо известны специалисту в данной области, после или в процессе получения (I) из (g) и (h).

Как показано в способе по схеме I, соединения формулы (g), как описано выше, можно получить реакцией между кетоном формулы (с), где R1, R2 и R3 такие, как определено в формуле (I), и соединением формулы (е), где А и В такие, как определено в формуле (I), и X представляет подходящую группу, такую как Н, Cl, Br, I, OSO2R или подобные.

Реакцию можно проводить без растворителей или в органическом растворителе, таком как ТГФ, толуол, простой эфир, диметилсульфоксид, или смеси растворителей обработкой подходящим металлом, таким как магний, литий, медь, церий или подобные, или обработкой галогенидом металла, таким как SmI2, CrCl2 или подобные, или обработкой металлорганическими агентами, такими как алкилмагнийгалогениды, алкиллитий или подобные.

R1, R2 и R3 и заместители на А и В соединения формулы (g), как определено выше, можно модифицировать способами, известными в данной области, после или в процессе реакции металлорганических соединений (March, 3., Advanced Organic Chemistry, 4th Ed, John Willey and Sons, 1992).

Соединения формул (с) или (е) могут быть коммерчески доступны или их можно получить способами, известными в данной области (March, J. Advanced Organic Chemistry, 4th Ed, John Willey and Sons, 1992).

Как показано в способе b на схеме (II), соединения формулы (h), как описано выше, можно получить реакцией между кетоном формулы (i), где R1, R2 и R3 и В такие, как определено в формуле (I), и металлорганическим реагентом формулы (j), где А такой, как определено в формуле (I), и М представляет группу подходящего металла, такого как магний, литий, цинк, медь, церий или подобные. Реакцию можно проводить без растворителей или в органическом растворителе, таком как ТГФ, толуол, простые эфиры, диметилсульфоксид, или в смесях растворителей.

Как показано в способе с на схеме II, соединения формулы (h) можно также получить реакциями между карбонильным соединением формулы (I), где R1, R2 и R3 такие, как определено в формуле (I), и Х представляет подходящую уходящую группу, такую как Сl, Вr, ОН, OR, SR, NR2, N(OR')R или подобные, и металлорганическими реагентами формул (j) и (k), где А и В такие, как определено в формуле (I), и М представляет группу подходящего металла, такого как магний, литий, цинк, медь, церий или подобные. Реакции можно проводить без растворителей или в растворителях, таких как ТГФ, толуол, простые эфиры, диметилформамид, диоксан, диметилсульфоксид, или в смесях растворителей.

R1, R2 и R3 и заместители на А и В соединений (h), как определено выше, можно модифицировать способами, известными в данной области и проиллюстрированными в литературе, см., например. Protecting groups by Green, or Modern Synthesis Reactions by House, которые хорошо известны специалисту в данной области, после или в процессе реакций металлорганических соединений.

Соединения формул (i), (j), (k) и (1) могут быть коммерчески доступны или их можно получить способами, известными в данной области (March, 3., Advanced Organic Chemistry, 4th Ed, John Willey and Sons, 1992).

Как показано выше на схеме III, соединения вышеприведенной формулы (I) можно получить сочетанием по Сузуки винилгалогенида (о) (X=Вr, I) с бороновой кислотой, боронатным эфиром (р) в присутствии основания, такого как Nа2СО3, К2СО3, К3РO4, триэтиламин, CsF, NaOH, или алкоксидов и палладиевого катализатора, такого как (РРh3)4Рd, бис(дибензилиденацетон)Рd(0), Pd на угле с РРh3; в качестве катализатора можно также использовать соединения Pd(II), в том числе (РРh3)2PdCl2, 1,4-бис(дифенилфосфинобутан)палладий(II)хлорид, ацетат палладия, бис(ацетонитрил)палладий(II)хлорид, дихлор[1,1'-бис(дифенилфосфино)ферроцен] палладий(II) и ацетат палладия-три(о-толил)фосфин, где R1, R2, R3, А и В такие, как определено выше в формуле (I). Сочетание по Сузуки можно проводить в толуоле, ксилоле, анизоле, ДМФ, ТГФ, спиртах, простых эфирах, воде или в смеси растворителей.

Соединения формулы (р), где В такой, как определено в формуле (I), и Z представляет B(OH)2, могут быть коммерчески доступны или их можно получить гидролизом боронатного эфира. Соединения формулы (р), где В такой, как определено в формуле (I), и Z представляет B(OR)2 (R = Me, Et), можно получить реакцией соединения формулы В-М и В(ОR)3, где R = Me или Et и М представляет группу подходящего металла, такого как литий или магний или подобное. Соединения формулы (р), где В такой, как определено в формуле (I), и Z представляет 9-борабицикло[3.3.1]нонан (9-ББН), можно получить реакцией алк-1-ина с борабицикло[3.3.1]нонаном.

Заместители R1, R2 и R3 и заместители на А и В соединения формулы (I), как определено выше, можно модифицировать способами, известными в данной области и проиллюстрированными в литературе, см., например. Protecting groups by Green, or Modern Synthesis Reactions by House, которые хорошо известны специалисту в данной области, после или в процессе получения (I) из (о) и (р).

Как показано на схеме III, соединения формулы (о), где Х представляет Вr или I, можно получить галогенированием и отщеплением алкена формулы (n), R1, R2, R3 и А такие, как определено в формуле (I). Галогенирование можно проводить в растворителе, таком как дихлорметан, хлороформ, тетрахлорид углерода, дихлорэтан или уксусная кислота, с использованием молекулярного брома или йода в качестве галогенирующего агента. Последующую стадию отщепления проводят в растворителе, таком как вода, спирты, ДМФ или простые эфиры, с использованием основания, такого как гидроксид натрия, гидроксид калия, алкоксиды металлов или триэтиламин.

Как показано на схеме III, соединения формулы (n), как описано выше, можно получить реакцией Виттига кетона формулы (с), где R1, R2 и R3 такие, как определено в формуле (I), и реагента формулы (m), где А такой, как определено в формуле (I), и Y представляет подходящую фосфонатную или фосфониевую соль. Реакцию Виттига можно проводить в различных условиях, известных в данной области и проиллюстрированных в литературе (March, J., Advanced Organic Chemistry, 4th Ed, John Willey and Sons, 1992).

Реагенты формул (с) и (m) могут быть коммерчески доступны или их можно получить способами, известными в данной области (March, J. Advanced Organic Chemistry, 4th Ed, John Willey and Sons, 1992).

Как показано на вышеприведенной схеме IV, соединения формулы (u) можно получить дегидратацией гидроксисоединения (t), где R1, R2, R3, R12, R13 и В такие, как определено выше. Дегидратацию можно проводить без растворителя или в растворителе, таком как вода, спирты, сложные эфиры, НМРА, дихлорметан, толуол, простые эфиры, кетоны, карбоновые кислоты, или в смеси растворителей в присутствии кислот Бронстедта или Льюиса, таких как серная кислота, хлористоводородная кислота, трифторуксусная кислота, трихлорид алюминия, ZnCl2 или подобные, или в присутствии оксидов металлов, таких как Аl2Оз, Сr2О3, TiO2, WO3, Р2O5 или подобные, или в присутствии других дегидратирующих агентов, таких как I2, диметилсульфоксид, KHSO4, CuSO4, фталевый ангидрид или подобные.

Заместители R1, R2 и R3 и заместитель В соединения (u), как определено выше, можно модифицировать способами, известными в данной области и проиллюстрированными в литературе, см. например. Protecting groups by Green, or Modern Synthesis Reactions by House, которые хорошо известны специалисту в данной области, после или в процессе получения (u) из (t).

Как показано на вышеприведенной схеме IV, соединения формулы (t) можно получить из соединения (s), где R1, R2, R3, R13 и В такие, как определено выше, с использованием реакции алкилирования алкилгалогенидом, таким как МеI, в присутствии основания, такого как гидроксид натрия, и агента переноса фаз, такого как Bu4NHSO4. Соединения формулы (s) можно получить реакцией между кетоном формулы (r), где R1, R2, R3, R13 такие, как определено выше, и металлорганическим реагентом формулы (k), где В такой, как определено в формуле (I), и M представляет группу подходящего металла, такого как магния, литий, цинк, медь, церий или тому подобное. Реакцию можно проводить без растворителя или в растворителях, таких как ТГФ, простые эфиры, диметилформамид, диоксан, диметил-сульфоксид, или в смеси растворителей.

Заместители R1, R2, R3, R13 соединения (s), как определено выше, можно модифицировать способами, известными в данной области и проиллюстрированными в литературе, см. например, Protecting groups by Green, or Modern Synthesis Reactions by House, которые хорошо известны специалисту в данной области, после или в процессе получения (s) из (r) и (k).

Как показано на схеме IV, соединение формулы (r) можно получить реакциями между карбонильным соединением формулы (I), где R1, R2 и R3 такие, как определено в формуле (I), и Х представляет подходящую уходящую группу, такую как С1, Вr, ОН, OR, SR, NR2, N(OR1)R или подобные, и металлорганическим реагентом, полученным сначала обработкой основанием, таким как NaH, соединения (q), где R13 такой, как определено выше, с последующим переметаллизированием с использованием алкил-лития, такого как BuLi. Реакцию можно проводить в растворителях, таких как ТГФ, толуол, простые эфиры, диметилформамид, диоксан, или в смеси растворителей. Заместители R1, R2, R3, R13 соединения (r), как определено выше, можно модифицировать способами, известными в данной области и проиллюстрированными в литературе, см., например. Protecting groups by Green, or Modern Synthesis Reactions by House, которые хорошо известны специалисту в данной области, после или в процессе получения (r) из (q) и (1).

Как показано на схеме IV, соединения формулы (q) можно получит ацилированием 4-иоданилина с использованием либо ацилангидрида, либо ацилхлорида в органическом растворителе, таком как дихлорметан. Заместитель R13 соединения (q) такой, как определено ранее.

Изобретение далее описано более подробно с помощью следующих примеров, которые не должны никоим образом рассматриваться как ограничивающие изобретение.

А) Схема синтеза соединений примеров 1-7 Соединения примеров 1-7 получали путем следующей методики, показанной на приведенной схеме 1.

Получение N-трет-бутоксилкарбонил-N'-метил-N'-метоксилизонипекотамида (соединение 2) Смесь этилизонипекотата (соединение I) (4,71 г 30,0 ммоль), ди-трет-бутилдикарбоната (6,55 г, 30,0 ммоль) и Nа2СО3 (4,77 г, 45 ммоль) в Н2O-ТТФ (90/10 мл) кипятили с обратным холодильником в течение 2 часов. Реакционную смесь экстрагировали этилацетатом (150 мл). Органический слой промывали солевым раствором, сушили над MgSO4. Удаление растворителей давало N-трет-бутоксилкарбонилэтилизонипекотат (7,67 г).

H (400 МГц, СDСl3): 1,25 (т, J=7,2 Гц, 3Н), 1,45 (с, 9Н), 1,62 (м, 2Н), 1,87 (м, 2Н), 2,43 (м, 1Н), 2,84 (м, 2Н), 4,02 (м, 2Н), 4,13 (кв, J=7,2 Гц, 2Н); C-13 (100 МГц, CDCl3) : 14,0, 27,8, 28,2, 40,9, 42,9, 60,2, 79,2, 154,4, 174,2.

Вышеуказанный N-трет-бутоксилкарбонилэтилизонипекотат растворяли в ТГФ (60 мл) и смешивали с NHMe(OMe)HCl (4,39 г, 45,0 ммоль). Смесь обрабатывали изо-PrMgCl (2,0 М в ТГФ, 45 мл, 90 ммоль) при -20oС и полученный раствор перемешивали в течение 1 час при -5oС и затем гасили водным раствором NH4C1 и экстрагировали этилацетатом (2100 мл). Объединенные органические слои промывали солевым раствором, сушили над MgSO4. Удаление растворителей давало N-трет-бутоксилкарбонил- N'-метил-N'-метоксилизонипекотамид (соединение 2) (8,0 г, 98%).

H (400 МГц, CDCl3): 1,30 (с, 9Н), 1,54 (м, 4Н), 2,65 (м, 3Н), 3,02 (с, 3Н), 3,56 (с , 3Н), 3,99 (шир. с, 2Н); C-13 (100 МГц, СDСl3) : 27,7, 28,1, 32,0, 37,8, 43,1, 61,3, 79,1, 154,4, 176,0.

(ii) Получение 4-(4'-N', N'-диэтиламинокарбонилбензоил)-N-трет-бутоксилкарбонилпиперидина (соединение 3) К раствору 4-иод-N,N-диэтилбензамида (9,09 г, 30,0 ммоль) и ТМЭДА (6,96 г, 60,0 ммоль) в сухом ТГФ (60 мл) добавляли трет-бутиллитий (35,0 мл, 1,7 М, 60,0 ммоль) при -78oС. Через 30 мин по каплям добавляли N-трет-бутоксилкарбонил-N'-метил-N'-метоксилизонипекотамид (соединение 2) (8,0 г, 29,4 ммоль) в ТГФ (10 мл). Реакционную смесь нагревали до комнатной температуры и затем гасили водным раствором NH4C1, нейтрализовали хлористоводородной кислотой (концентрированной, 20 мл) при 0oС и экстрагировали этилацетатом (2100 мл). Объединенные органические слои промывали солевым раствором, сушили над MgSO4. Удаление растворителей давало сырой продукт, который очищали на колонке с силикагелем с элюированием MeOH-CH2Cl2 (2:98), получая 4-(4' -N', N' -диэтиламинокарбонилбензоил)-N-трет-бутоксилкарбонилпиперидин (соединение 3) (3,15 г, 28%).

H (400 МГц, СDСl3): 1,08 (шир.с, 3Н), 1,23 (шир.с, 3Н), 1,43 (с, 9Н), 1,61 (м, 2Н), 1,80 (м, 2Н), 2,89 (м, 2Н), 3,20 (шир.с, 2Н), 3,40 (м, 1Н), 3,53 (шир. с, 2Н), 4,11 (шир.с, 2Н), 7,44 (д, J=8,0 Гц, 2Н), 7,94 (д, J=8,0 Гц, 2Н).

(iii) Получение 4-(-гидроксил--(4-N-трет-бутоксилкарбонилпиперидинил)--(1-нафтил)метил)-N,N-диэтилбензамида (соединение 4) К раствору 1-бромнафталина (0,52 г, 2,5 ммоль) в сухом ТГФ (10 мл) добавляли н-бутиллитий (1,1 мл, 2,5 М, 2,75 ммоль) при -78oС. Через 30 мин по каплям добавляли 4-(4'-N', N'-диэтиламинокарбонилбензоил)-N-трет-бутоксилкарбонилпиперидин (соединение 3) (776 мг, 2,0 ммоль) в ТГФ (2 мл). Реакционную смесь нагревали до комнатной температуры и затем гасили водным раствором NH2Cl и экстрагировали этилацетатом (250 мл). Объединенные органические слои промывали солевым раствором, сушили над MgSO4. Удаление растворителей давало сырой продукт, который очищали на колонке с силикагелем с элюированием MeOH-CH2Cl2(0,5: 99,5-->5: 95), получая 4- (-гидроксил--(4-N-трет-бутоксилкарбонилпиперидинил)--(1-нафтил)метил)-N,N-диэтилбензамид (соединение 4) (760 мг, 74%).

Т. пл. 121-124oС (CH2Cl2).

max(KBr), см-1: 3402, 2960, 1685, 1626, 1425, 1283, 1160.

Элементный анализ. Вычислено для C32H40N2O4 0,50 H2O: С 73,11%; Н 7,86%; N 5,33%. Найдено С 72,86%; Н 7,64%; N 5,26%.

H (400 МГц, CDCl3): 1,03 (шир.с, 3Н), 1,16 (шир.с, 3Н), 1,18-1,35 (м, 3Н), 1,95 (м, 1Н), 2,60 (м, 2Н), 2,75 (шир.с, 2Н), 3,15 (шир.с, 2Н), 3,42 (шир.с, 2Н), 4,10 (шир.с, 2Н), 7,10-7,50 (м, 7Н), 7,75 (м, 3Н), 8,27 (шир.с, 1Н); C-13 (100 МГц, СDСl3) : 12,8, 14,1, 27,1, 27,2, 28,4, 39,2, 43,3, 45,4, 79,3, 80,4, 124,1, 124,9, 125,2, 125,3, 126,0, 127,3, 128,8, 129,2, 131,4, 135,0, 135,2, 139,4, 146,5, 154,6, 171,0.

(iv) Получение 4-(-гидроксил--(4-N-трет-бутоксилкарбонилпиперидинил)-2,6-диметилбензил)-N,N-диэтилбензамида (соединение 5) Получали по способу, описанному для соединения 4, за исключением использования 2-бром-м-ксилола (749 мг, 76%).

Т. пл. 92-96oС (CH2Cl2).

max(KBr), см-1: 3451, 2970, 1690, 1631, 1425, 1165.

Элементный анализ. Вычислено для C30H42N2O4 0,50 H2O: С 71,54%, Н 8,61%; N 5,56%. Найдено: С 71,70%; Н 8,34%; N 5,62%.

H (400 МГц, СDСl3): 1,10 (шир.с, 3Н), 1,21 (шир.с, 3Н), 1,32 (м, 2Н), 1,43 (с, 9Н), 1,69 (м, 1Н), 1,77 (м, 1Н), 2,32 (с, 6Н), 2,47 (с, 1Н), 2,75 (м, 3Н), 3,25 (шир.с, 2Н), 3,51 (шир.с, 2Н), 4,13 (шир.с, 2Н), 6,91 (м, 2Н), 7,00 (м, 1Н), 7,26 (д, J=8,4 Гц, 2Н), 7,39 (д, J=8,4 Гц, 2Н); C-13 (100 МГц, СDСl3) : 12,6, 14,0, 25,0, 27,7, 28,2, 39,1, 42,9, 43,1, 44,4, 53,3, 79,1, 83,0, 125,8, 126,3, 127,2, 131,2, 135,3, 136,7, 142,9, 147,8, 154,5, 170,7.

Пример 1 Получение N,N-диэтил-4-(фенилпиперидин-4-илиденметил)бензамида (соединение 6) К раствору 4-(-гидроксил--(4-N-трет-бутоксилкарбонилпиперидинил)бензил)-N, N-диэтилбензамида (932 мг, 2,0 ммоль) в сухом дихлорметане (10 мл) при комнатной температуре добавляли трифторуксусную кислоту (10,0 мл). Реакционную смесь перемешивали в течение 16 час при комнатной температуре и затем концентрировали. Остаток растворяли в AcOEt (100 мл). Полученный раствор промывали 1 н. раствором NaOH, водным раствором NH4Cl и солевым раствором, сушили над MgSO4. Удаление растворителей давало сырой продукт, который очищали на колонке с силикагелем с элюированием MeOH-CH2Cl2 (20:80), получая (-фенил--(4-N',N' -диэтиламинокарбонилфенил))-4-метиленпиперидин (соединение 6) (632 мг, 91%).

H (400 МГц, СDСl3): 1,08 (шир.с, 3Н), 1,17 (шир.с, 3Н), 2,29 (м, 4Н), 2,86 (м, 4Н), 2,94 (шир.с, 1Н), 3,24 (шир.с, 2Н), 3,47 (шир.с, 2Н), 7,09 (м, 4Н), 7,15 (м, 1Н), 7,24 (м, 4Н); C-13 (100 МГц, СDСl3) : 12,6, 14,1, 32,7, 32,8, 39,1, 43,2, 47,9, 126,0, 126,4, 127,9, 129,6, 134,9, 135,4, 135,9, 141,7, 143,2, 171,1.

Соль НСl: т. пл. 110-120oС (AcOEt-простой эфир-CH2Cl2).

max(KBr), см-1: 3440, 2970, 1617, 1438, 1289.

Элементный анализ. Вычислено для C23H28N2O1,0 НСl0,50 CH2Cl20,25 H2O: С 65,35%; Н 7,12%; N 6,49%. Найдено: С 65,14%; Н 7,08%; N 6,55%.

Пример 2 Получение N, N-диэтил-4-(1-нафтилпиперидин-4-илиденметил)бензамида (соединение 7) Получали по способу, описанному в примере 1, с использованием соединения 4 (226 мг, 71%).

Т. пл. 80-85oС (MeOH-CH2Cl2).

max(KBr),см-1: 3052, 2970, 1628, 1431, 1286.

Элементный анализ. Вычислено для С27H30N2O0,20 CH2Cl2 :С 78,62%; Н 7,37%; N 6,74%. Найдено: С 78,63%; Н 7,07%; N 6,54%.

H (400 МГц, СDСl3): 1,06 (шир.с, 3Н), 1,16 (шир.с, 3Н), 2,00 (м, 2Н), 2,53 (м, 2Н), 2,64 (шир.с, NH), 2,77 (м, 2Н), 2,97 (м, 2Н), 3,20 (шир.с, 2Н), 3,47 (шир. с, 2Н), 7,26 (м, 5Н), 7,43 (м, 3Н), 7,74 (м, 2Н), 8,0 (м, 1Н); C-13 (100 МГц, СDСl3) : 12,8, 14,1, 32,6, 33,5, 39,1, 43,2, 47,9, 48,2, 125,5, 125,7, 125,8, 126,1, 127,1, 127,2, 129,1, 131,9, 132,5, 133,8, 135,1, 138,3, 139,8, 142,6, 171,1.

Пример 3 Получение N,N-диэтил-4-(2,6-диметилфенилпиперидин-4-илиденметил)бензамида (соединение 8) Получали по способу, описанному в примере 1, с использованием соединения 5 (242 мг, 80%).

Соль НСl: разлож. 115oС (AcOEt-простой эфир-СН2Cl2).

max(KBr), см-1: 2970, 2725, 1590, 1464, 1290, 1101.

Элементный анализ. Вычислено для C25H32N2O1,0 НСl0,50 CH2Cl20,25 H2O: С 65,94%; Н 7,60%; N 6,03%. Найдено: С 65