Замещенные гидроксамовые кислоты, фармацевтические композиции на их основе и способ снижения уровней tnf
Реферат
Изобретение относится к новым соединениям формулы (1), где R1 и R2 - водород или R1 и R2 соединены друг с другом и вместе с атомами углерода, к которым они присоединены, представляют собой о-фенилен или о-нафтилен, которые могут быть замещены; R3 - замещенный фенил; R4 - водород, алкил, фенил или бензил, R4' - водород или алкил; R5 - -СН2-, -СН2-СО-, -СО-; n = 0, 1 или 2, полученным присоединением кислоты солям указанных соединений, которые содержат атом азота, способный протонироваться. Указанные соединения обладают ингибирующей активностью для снижения нежелательных уровней металлопротеиназ и ингибирующей активностью для снижения уровней TNF. Благодаря этим свойствам они могут использоваться в качестве активного соединения в фармкомпозициях, а также в способах снижения нежелательных уровней TNF и ингибирования нежелательных уровней металлопротеиназ. 5 с. и 10 з.п. ф-лы.
Изобретение относится к имидо- и амидозамещенным алканогидроксамовым кислотам, способу снижения уровней фактора некроза опухолей у млекопитающего посредством их введения и фармацевтическим композициям таких производных. Фактор некроза опухолей или TNF является цитокином, который высвобождается главным образом одноядерными фагоцитами в ответ на ряд иммуностимуляторов. При введении животным или людям он вызывает воспаление, лихорадку, сердечно-сосудистые эффекты, кровотечение, коагуляцию и острые фазовые реакции, схожие с наблюдаемыми во время острых инфекций и состояний шока. Таким образом, избыточное или нерегулируемое продуцирование TNF вовлечено в ряд болезненных состояний. Они включают в себя наличие в крови токсинов и/или синдром токсического шока {Tracey et al., Nature 330, 662-664 (1987) и Hinshaw et at. , Circ. Shock 30, 279-292 (1990)}; кахексию {Dezube et al., Lancet, 335 (8690), 662 (1990)} и респираторный дистресс-синдром взрослых (ARDS), при котором в материале, полученном путем аспирации легких пациентов с ARDS, была зарегистрирована концентрация TNF, превышающая 12000 пг/мл { Millar et al., Lancet 2 (8665), 712-714 (1989)}. Системная инфузия рекомбинантного TNF также приводит к изменениям, типичным для ARDS {Ferrai-Baliviera et al., Arch. Surg. 124 (12), 1400-1405 (1989)}. TNF, по-видимому, вовлечен в заболевания, связанные с резорбцией костей, включая артрит. Будучи активированными, лейкоциты вызывают резорбцию кости, активность, вклад в которую TNF подтверждается экспериментальными данными {Bertolini et al., Nature 319, 516-518 (1986) и Johnson et al., Endocrinology 124(3), 1424-1427 (1989)}. Также было показано, что TNF стимулирует резорбцию костей и ингибирует костеобразование in vitro и in vivo посредством стимуляции образования остеокластов и активации, в сочетании с ингибированием, функции остеобластов. Несмотря на то что TNF может быть вовлечен во многие заболевания, связанные с резорбцией костей, включая артрит, наиболее убедительной связью с заболеванием является ассоциация между продукцией TNF опухолью или тканями хозяина и гиперкальциемией, ассоциированной со злокачественностью {Calci. Tissue Int. (US) 46 (Suppl.), S3-10 (1990)}. При реакции "трансплантат против хозяина" повышенные уровни сывороточного TNF ассоциированы с основным осложнением после экстренных аллогенных трансплантаций костного мозга {Holler et al., Blood, 75(4), 1011-1016 (1990)}. Церебральная малярия является летальным сверхострым неврологическим синдромом, ассоциированным с высокими уровнями TNF в крови, и наиболее серьезным осложнением, встречающимся у пациентов с малярией. Уровни сывороточного TNF непосредственно коррелировали с тяжестью заболевания и прогнозом у пациентов с острыми приступами малярии {Grau et al., N. Engl. J. Med. 320(24), 1586-1591 (1989)}. Известно, что макрофагиндуцируемый ангиогенез TNF. опосредован TNF. Leibovich et al. {Nature, 329, 630-632 (1987)} показали, что TNF в очень низких дозах индуцирует in vivo образование капиллярных кровеносных сосудов в роговице крыс и развитие хориаллантоисных мембран цыплят, и предположили, что TNF является кандидатом на роль агента, вызывающего ангиогенез при воспалении, заживлении ран и опухолевом росте. Кроме этого, продуцирование TNF ассоциировано с раковыми состояниями, в частности с индуцированными опухолями {Ching et al., J. Cancer (1955) 72, 339-343 и Koch, Progress in Medical Chemistry, 22, 166-242 (1985)}. Кроме этого TNF играет определенную роль в хронических воспалительных заболеваниях легких. Отложение частиц диоксида кремния приводит к силикозу, заболеванию с прогрессирующей дыхательной недостаточностью, вызванной фиброзной реакцией. Антитела к TNF полностью блокировали индуцированный диоксидом кремния фиброз легких у мышей {Pignet et at., Nature, 344, 245-247 (1990)} . Высокие уровни продукции TNF (в сыворотке и изолированных макрофагах) продемонстрированы на животных моделях с фиброзом, индуцированным диоксидом кремния и асбестом {Bissonnette et al., Inflammation 13(3), 329-339 (1989)}. Кроме этого обнаружено, что альвеолярные макрофаги от пациентов с легочным саркоидозом спонтанно высвобождают большие количества TNF в сравнении с макрофагами от нормальных доноров {Baughman et al., J. Lab. Clin. Med. 115(1), 36-42 (1990)}. TNF также вовлечен в воспалительный ответ, который сопровождает реперфузию, называемую реперфузионной травмой, и представляющую собой главную причину поражения ткани после прекращения кровоснабжения {Vedder et al., PNAS 87, 2643-2646 (1990)}. Кроме этого TNF изменяет свойства клеток эндотелия и обладает различными прокоагулянтными активностями, а именно вызывает увеличение прокоагулянтной активности тканевого фактора и супрессию пути антикоагулянтного белка С, а также осуществляет down-регуляцию экспрессии тромбомодулина { Sherry et al., J. Cell Biol. 107, 1269-1277 (1988)}. TNF обладает провоспалительными активностями, которые в совокупности с его ранней продукцией (во время начальной стадии воспаления) делают его вероятным медиатором тканевого повреждения при некоторых важных заболеваниях, включающих в себя инфаркт миокарда, удар и циркуляторный шок, но не огранивающихся ими. Особенно важным может быть индуцируемая TNF экспрессия молекул адгезии, таких как факторы межклеточной адгезии (ICAM) или факторы адгезии эндотелиальных лейкоцитов (ELAM) на клетках эндотелия {Munro et al., Am. J. Path. 135(1), 121-132 (1989)}. Показано, что блокирование TNF моноклональными анти-TNF антителами является благотворным при ревматоидном артрите {Elliot et al., Int. J. Pharmac. 1995, 17(2), 141-145} . Высокие уровни TNF ассоциированы с болезнью Крона (Crohn's) {von Dullemen et al., Gastroenterology, 1995, 109(1), 129-135), и клинический успех достигается с помощью лечения TNF антителами. Более того, в настоящее время известно, что TNF является сильнодействующим активатором ретровирусной репликации, включая активацию ВИЧ-1 {Dun et al. , Proc. Nat. Acad. Sci. 86, 5974-5978 (1989); Poll et al., Proc. Nat. Acad. Sci. 87, 782-785 (1990); Monto et al., Blood 79, 2670 (1990); Clouse et al., J. Immunol. 142, 431-438 (1989); Poll et al., AIDS Res. Hum. Retrovirus, 191-197 (1992)}. СПИД является результатом инфекции Т-лимфоцитов вирусом иммунодефицита человека (ВИЧ). Идентифицированы по меньшей мере три типа штаммов ВИЧ, а именно ВИЧ-1, ВИЧ-2 и ВИЧ-3. Как следствие ВИЧ-инфекции происходит ослабление иммунитета, опосредованного Т-клетками, и у инфицированных индивидуумов проявляются тяжелые оппортунистические инфекции и/или необычные опухоли. Для внедрения ВИЧ в Т-лимфоциты требуется их активация. Другие вирусы, такие как ВИЧ-1, ВИЧ-2, инфицируют Т-лимфоциты после активации Т-клеток, и экспрессия белка и/или репликация таких вирусов опосредована либо поддерживается такой активацией Т-клеток. Как только активированный Т-лимфоцит инфицируется ВИЧ, он должен продолжать поддерживаться в активированном состоянии для того, чтобы обеспечивать возможность экспрессии генов ВИЧ и/или репликацию ВИЧ. Цитокины, в особенности TNF, вовлечены в опосредованную активированными Т-клетками экспрессию белка ВИЧ и/или вирусную репликацию посредством того, что они играют определенную роль в поддержании активации Т-лимфоцитов. Следовательно, вмешательство в активность цитокинов, такое как предотвращение или ингибирование продуцирования цитокинов, особенно TNF, у инфицированного ВИЧ индивидуума, помогает ограничить поддержание Т-лимфоцитов, вызываемое ВИЧ-инфекцией. Моноциты, макрофаги и родственные клетки, такие как клетки Купфера и глиальные клетки, также вовлечены в поддержание ВИЧ-инфекции. Эти клетки, подобно Т-клеткам, являются мишенями для вирусной репликации, и уровень вирусной репликации зависит от состояния активации данных клеток {Rosenberg et al. , The Immunopathogenesis of HIV Infection, Advances in Immunology, 57 (1989)}. Показано, что цитокины, такие как TNF, активируют репликацию ВИЧ в моноцитах и/или макрофагах {Poll et al., Proc. Natl. Acad. Sci. 87, 782-784 (1990)}, следовательно, предотвращение или ингибирование продукции цитокинов или активности цитокинов помогает в ограничении развития ВИЧ для Т-клеток. Дополнительные исследования идентифицировали TNF в качестве общего фактора активации ВИЧ in vitro и раскрыли ясный механизм действия через ядерный регуляторный белок, обнаруженный в цитоплазме клеток (Osborn et al., PNAS, 86, 2336-2340). Это данные подтверждают, что уменьшение синтеза TNF может оказывать антивирусное действие при ВИЧ-инфекциях путем снижения транскрипции и, тем самым, продукции вируса. Репликация при СПИДе латентного ВИЧ в линиях Т-клеток и макрофагов может быть индуцирована TNF {Folks et al., PNAS 86, 2365-2368 (1989)}. Предполагают, что молекулярный механизм вирус-индуцирующей активности обусловлен способностью TNF активировать ген-регуляторный белок (NFkB), обнаруженный в цитоплазме клеток, который способствует репликации ВИЧ посредством связывания с вирусной регуляторной генной последовательностью (LTR) {Osborn et al. , PNAS 86, 2336-2340 (1989)}. TNF при связанной со СПИДом кахексии представлен повышенными уровнями сывороточного TNF и высокими уровнями спонтанной продукции TNF в моноцитах периферической крови пациентов {Wright et al. , J. Immunol. 141(1), 99-104 (1988)}. В силу причин, схожих с указанными выше, TNF играет различные роли при других вирусных инфекциях, таких как вызываемые вирусом цитомегалии (CMV), вирусом гриппа, аденовирусами и семейством вирусов герпеса. Ядерный фактор kB (NFkB) является плейотропным транскрипционным активатором (Lenardo et al., Cell 1989, 58, 227-29). NFkB как транскрипционный активатор вовлечен в разнообразные заболевания и воспалительные состояния; предполагают, что он регулирует уровни цитокинов, включая TNF, но не ограничиваясь им, а также является активатором транскрипции ВИЧ (Dbaibo et al., J. Biol. Chem. 1993, 17762-66; Duh et al., Proc. Natl. Acad. Sci. 1989, 86, 5974-78; Bachelerie et al., Nature 1991, 350, 709-12; Boswas et al., J. Acquired Immune Deficiency Syndrome 1993, 6, 778-786; Suzuki et al., Biochem. and Biophys. Res. Comm. 1993, 193, 277-83; Suzuki et al., Biochem. and Biophys. Res. Comm. 1992, 189, 1709-15; Suzuki et al., Biochem. Mol. Bio. Int. 1993, 31(4), 693-700; Shakhov et al., Proc. Natl. Acad. Sci. USA 1990, 171, 35-47 и Staal et al., Proc. Natl. Acad. Sci. USA 1990, 87, 9943-47). Таким образом, ингибирование связывания NFkB может регулировать транскрипцию гена(ов) цитокинов и посредством этой модуляции и других механизмов может быть полезным для ингибирования большого числа болезненных состояний. Описанные здесь соединения могут ингибировать действие NFkB в ядре и, таким образом, являются полезными при лечении разнообразных заболеваний, включающих в себя ревматоидный артрит, ревматоидный спондилит, остеоартрит, другие артритные состояния, септический шок, сепсис, эндотоксический шок, болезнь "трансплантат против хозяина", атрофию, болезнь Крона, неспецифический язвенный колит, рассеянный склероз, системную красную волчанку, узловатую эритему при лепре, ВИЧ, СПИД и оппортунистические инфекции при СПИДе, но не ограничивающихся ими. На уровни TNF и NFkB воздействуют посредством контура взаимной обратной связи. Как отмечено выше, соединения по настоящему изобретению влияют на уровни и TNF, и NFkB. Многие клеточные функции опосредованы уровнями аденозин-3',5'-циклического монофосфата (цАМФ). Такие клеточные функции могут участвовать в воспалительных состояниях и заболеваниях, включая астму, воспаление и другие состояния (Lowe and Cheng, Drugs of the Future, 17(9), 799-807, 1992). Показано, что повышение уровня цАМФ в воспалительных лейкоцитах ингибирует их активацию и последующее высвобождение медиаторов воспаления, включая TNF и NFkB. Кроме этого, повышенные уровни цАМФ приводят к расслаблению гладкой мышцы дыхательных путей. Фосфодиэстеразы регулируют уровень цАМФ посредством гидролиза, и было показано, что ингибиторы фосфодиэстераз повышают уровни цАМФ. Таким образом, снижение уровней TNF и/или повышение уровней цАМФ составляет полезную терапевтическую стратегию лечения многих воспалительных, инфекционных и иммунологических заболеваний, а также заболеваний, связанных со злокачественными новообразованиями. Они включают в себя септический шок, сепсис, эндотоксический шок, гемодинамический шок и септический синдром, постишемическое реперфузионное повреждение, малярию, микобактериальную инфекцию, менингит, псориаз, застойную сердечную недостаточность, фиброз, кахексию, отторжение трансплантата, рак, аутоиммунное заболевание, оппортунистические инфекции при СПИДе, ревматоидный артрит, ревматоидный спондилит, остеоартрит, другие артритные состояния, болезнь Крона, неспецифический язвенный колит, рассеянный склероз, системную красную волчанку, узловатую эритему при лепре, лучевое поражение и гипероксическую альвеолярную травму, но не ограничиваются ими. Предшествующие усилия, направленные на подавление влияния TNF, простираются от использования стероидов, таких как дексаметазон и преднизолон, до применения как поликлональных, так и моноклональных антител {Beutler et al., Science 234, 470-474 (1985); WO 92/11383}. Ингибирование матриксной металлопротеиназы (ММР) ассоциировано с ингибированием TNF (Mohler et al., Nature, 370, 218-220 (1994)). MMPs, или матриксины, представляют собой семейство секретируемых и мембраносвязанных цинковых эндопептидаз, играющих ключевую роль как в физиологической, так и патологической деградации тканей (смотри Yu et al., Drugs & Aging, 1997 (3): 229-244; Wojtowicz-Praga et al., Int. New Drugs, 16:61-75 (1997)). Эти ферменты способны расщеплять компоненты внеклеточного матрикса, в том числе фибриллярный и нефибриллярный коллагены, фибронектин, ламинин и мембранные гликопротеины. Обычно существует тонкий баланс между клеточным делением, синтезом матрикса и деградацией матрикса (под контролем цитокинов), факторами роста и взаимодействиями клетка-матрикс. Однако в патологических условиях этот баланс может нарушаться. Состояния и заболевания, ассоциированные с нежелательными уровнями ММР, включают в себя метастазирование, инвазию и рост опухоли, ревматоидный артрит, остеоартрит, нарушение остеогенеза, такое как остеопороз, периодонтит, гингивит и корнеальную эпидермальную или желудочую язву, но не ограничиваются ими. Повышенная активность ММР зафиксирована при многих видах раков (Denis et at., Invest. New Drugs, 15:175-185 (1987)), и как и в случае с TNF, предполагают, что ММР вовлечены в инвазивные процессы ангиогенеза и метастазирования опухоли. Настоящее изобретение основано на открытии того, что определенные классы соединений неполипептидной природы, описанные здесь более полно, снижают уровни повышают уровни цАМФ и ингибируют фосфодиэстеразу. В частности, данное изобретение относится к (а) соединениям формулы где каждый из R1 и R2 независимо друг от друга представляет собой водород, или R1 и R2 соединены друг с другом и вместе с изображенными атомами углерода, к которым каждый из них присоединен, представляют собой о-фенилен или о-нафтилен, незамещенный или замещенный заместителями в количестве от 1 до 4, каждый из которых независимо выбран из группы, состоящей из нитро, гидрокси, амино, алкиламино, диалкиламино, ациламино, алкила из 1-10 атомов углерода, алкокси из 1-10 атомов углерода, циклоалкокси из 3-6 атомов углерода, инданилокси и галогено; R3 представляет собой фенил, замещенный заместителями в количестве от одного до четырех, выбранными из группы, состоящей из алкила из 1-10 атомов углерода, алкокси из 1-10 атомов углерода и циклоалкокси из 3-6 атомов углерода; R4 представляет собой водород, алкил из 1-10 атомов углерода, фенил или бензил; R4' представляет собой водород или алкил из 1-6 атомов углерода; R5 представляет собой -СН2-, -СН2-СО-, -СО-; и n = 0, 1 или 2; и (б) полученным присоединением кислоты солям указанных соединений, которые содержат атом азота, способный протонироваться. Если не определено особо, термин "алкил" означает одновалентную насыщенную разветвленную или прямую углеводородную цепь, содержащую от 1 до 8 атомов углерода. Представителями таких алкильных групп являются метил, этил, пропил, изопропил, бутил, изобутил, втор-бутил и mpem-бутил. "Алкокси" относится к алкильной группе, связанной с остальной частью молекулы через эфирный атом кислорода. Представителями таких алкоксигрупп являются метокси, этокси, пропокси, изопропокси, бутокси, изобутокси, втop-бутокси и трет-бутокси. Соединения формулы I применяют под наблюдением квалифицированных специалистов для ингибирования нежелательных эффектов TNF и для ингибирования фосфодиэстеразы. Соединения могут быть введены перорально, ректально или парентерально, отдельно или в комбинации с другими терапевтическими агентами, включая антибиотики, стероиды и так далее, нуждающемуся в лечении млекопитающему. Кроме этого, соединения по настоящему изобретению могут применяться местно при лечении или профилактике местных болезненных состояний, опосредованных либо обостренных избыточной продукцией TNF, соответственно, таких как вирусные инфекции, например инфекции, вызываемые вирусами герпеса, или вирусный конъюнктивит, псориаз, атопический дерматит и так далее. Данные соединения также могут быть использованы в ветеринарии для лечения отличных от человека млекопитающих, нуждающихся в предотвращении или ингибировании продуцирования TNF. Опосредованные TNF заболевания животных для терапевтического или профилактического лечения включают в себя такие болезненные состояния, как указанные выше, но в особенности вирусные инфекции. Примеры включают в себя вирус иммунодефицита кошек, вирус инфекционной анемии лошадей, вирус артрита коз, visna вирус и maedi вирус, равно как и другие лентивирусы. Кроме того, данное изобретение относится к соединениям, ингибирующим ММР, их композициям и их применению для лечения заболеваний и расстройств, ассоциированных с нежелательным продуцированием или активностью MMPs. Эти соединения способны ингибировать отторжение соединительной ткани и полезны для лечения или предотвращения состояний, в которые вовлечено отторжение тканей. Такие состояния включают в себя метастазирование, инвазию и рост опухоли, ревматоидный артрит, остеоартрит, нарушение остеогенеза, такое как остеопороз, периодонтит, гингивит и корнеальную эпидермальную или желудочную язву, но не ограничиваются ими. Таким образом, данное изобретение дополнительно включает в себя ММР-ингибирующие соединения формулы I и способы лечения, при которых вводят эффективное количество соединения, соответствующего формуле I. Соединения формулы I легко получают путем взаимодействия карбоновой кислоты формулы в которой каждый из R1, R2, R3, R5 и n - такие, как определено выше, с гидроксиламина гидрохлоридом или алкоксиамина гидрохлоридом в присутствии связующего вещества. Обычно реакцию проводят в инертном растворителе, таком как тетрагидрофуран, в атмосфере инертного газа, такого как азот. Реакция может проводиться при температуре окружающей среды. После завершения реакции, по существу, продукты могут быть легко выделены простым добавлением воды. Соединения формулы II, использующиеся здесь как промежуточные соединения, известны (патент США 5605914, описание которого включено посредством ссылки). Кратко, такие промежуточные соединения могут быть получены в результате взаимодействия аминокислоты формулы в которой R14 представляет собой гидроксильную или защитную группу, с ангидридом кислоты, N-карбэтоксиимидом, диальдегидом или о-бромароматической кислотой. Используемый здесь термин "защитные группы" означает такие группы, которые обычно не обнаруживаются в составе конечных терапевтических соединений, но которые намеренно вводят на какой-либо стадии синтеза для защиты групп, которые иначе могут быть изменены в ходе химических манипуляций. Такие защитные группы удаляют на более поздней стадии синтеза, и соединения, несущие подобные защитные группы, важны, таким образом, в основном в качестве химических промежуточных соединений (несмотря на то, что некоторые из производных также проявляют биологическую активность). В соответствии с этим точная структура защитных групп не является критичной. Многочисленные реакции по введению и удалению таких защитных групп описаны в ряде стандартных работ, включая, например, "Protective Groups in Organic Chemistry", Plenum Press. London and New York, 1973; Greene Th. W. "Protective Groups in Organic Synthesis", Wiley, New York, 1981; "The Peptides", Vol. I, Shcrder and Lubke, Academic Press, London and New York, 1965; "Methoden der organischen Chemie", Houben-Weyl, 4th Edition, Vol. 15/1, Georg Thieme Verlag, Stuttgart 1974, описания которых включены посредством ссылки. В некоторых из упомянутых выше реакций может быть использовано нитросоединение с нитрогруппой, превращаемой в аминогруппу посредством каталитического гидрирования. С другой стороны, защищенная аминогруппа может быть расщеплена с получением соответствующего аминосоединения. Аминогруппа может быть защищена в виде амида с использованием ацильной группы, которую можно селективно удалить в мягких условиях, в особенности бензилоксикарбонила, формила или низшей алканоильной группы, разветвленной в 1- или -положении относительно карбонильной группы, в частности третичного алканоила, такого как пивалоил, низшей алканоильной группы, которая замещена в положении относительно карбонильной группы, например трифторацетила. Соединения формулы I имеют по меньшей мере один хиральный центр (обозначенный как *) и могут существовать в форме оптических изомеров. Как рацематы этих изомеров, так и индивидуальные изомеры, равно как и диастереомеры, когда имеются два хиральных центра, находятся в пределах объема настоящего изобретения. Рацематы могут быть использованы как таковые или могут быть разделены на их индивидуальные изомеры механически, например с помощью хроматографии с использованием хирального абсорбента. С другой стороны, индивидуальные изомеры могут быть получены в хиральной форме либо выделены химически из смеси путем образования солей с хиральной кислотой или основанием, например с индивидуальными энантиомерами 10-камфорсульфоновой кислоты, камфорной кислоты, -бромкамфорной кислоты, метоксиуксусной кислоты, винной кислоты, диацетилвинной кислоты, яблочной кислоты, пирролидон-5-карбоновой кислоты и тому подобным, с последующим высвобождением одного или обоих разделенных оснований, возможным повторением процесса для того, чтобы получить одно или оба основания в существенно свободной от другого форме, то есть в форме с оптической чистотой >95%. Кроме этого, настоящее изобретение относится к физиологически приемлемым нетоксичным солям соединения формулы I, полученным присоединением кислоты. Такие соли включают в себя соли, полученные из органических и неорганических кислот, таких как, без ограничения, соляная кислота, бромисто-водородная кислота, фосфорная кислота, серная кислота, метансульфоновая кислота, уксусная кислота, винная кислота, молочная кислота, янтарная кислота, лимонная кислота, яблочная кислота, малеиновая кислота, сорбиновая кислота, аконитовая кислота, салициловая кислота, фталевая кислота, эмбоновая кислота, энантовая кислота и тому подобное. Кроме того, настоящее изобретение относится к физиологически приемлемым нетоксичным солям соединения формулы I, образованным при взаимодействии с основаниями, таким как натриевая соль, калиевая соль, соль алюминия и тому подобное. Первая предпочтительная подгруппа охватывает соединения формулы где R4 представляет собой водород или алкил из 1-4 атомов углерода; R4' представляет собой водород или алкил из 1-4 атомов углерода; R5 представляет собой -СН2-, -СН2-СО- или -СО-; каждый из R6 и R7 независимо от другого представляет собой алкил из 1-4 атомов углерода, алкокси из 1-4 атомов углерода или циклоалкокси из 3-6 атомов углерода; каждый из R8, R9, R10 и R11 независимо от других представляет собой водород, нитро, гидрокси, амино, алкиламино, диалкиламино, ациламино, алкил из 1-10 атомов углерода, алкокси из 1-10 атомов углерода, инданилокси и галогено; и n = 1. Среди соединений формулы IV особенно предпочтительными являются те, в которых каждый из R8, R9, R10 и R11 представляет собой водород, галогено, алкил из 1-4 атомов углерода или алкокси из 1-4 атомов углерода, и те, в которых один из R8, R9, R10 и R11 представляет собой амино или алкил, а оставшиеся из R8, R9, R10 и R11 представляют собой водород. Еще одна предпочтительная подгруппа охватывает соединения формулы где R4' представляет собой водород или алкил из 1-4 атомов углерода; R5 представляет собой С=O или CH2; каждый из R12 и R13 независимо от другого представляет собой алкокси из 1-4 атомов углерода, циклоалкокси из 3-6 атомов углерода или С6-С10бициклоалкокси; и каждый из R8, R9, R10 и R11 независимо от других представляет собой водород, нитро, гидрокси, амино, алкиламино, диалкиламино, ациламино, алкил из 1-10 атомов углерода, алкокси из 1-10 атомов углерода, инданилокси и галогено. Среди соединений формулы V особенно предпочтительными являются те, в которых каждый из R8, R9, R10 и R11 представляет собой водород, галогено, алкил из 1-4 атомов углерода или алкокси из 1-4 атомов углерода, и те, в которых один из R8, R9, R10 и R11 представляет собой амино, гидрокси или алкил, а остальные из R8, R9, R10 и R11 представляют собой водород. Особенно предпочтительные соединения выбраны из 3-(3-этокси-4-метоксифенил)-N-гидрокси-3-(1-оксоизоиндолинил)пропионамида, 3-(3-этокси-4-метоксифенил)-N-метокси-3-(1-оксоизоиндолинил)пропионамида, N-бензилокси-3-(3-этокси-4-метоксифенил)-3-фталимидопропионамида, N-бензилокси-3-(3-этокси-4-метоксифенил)-3-(3-нитрофталимидо)пропионамида, N-бензилокси-3-(3-этокси-4-метоксифенил)-3-(1-оксоизоиндолинил)пропионамида, 3-(3-этокси-4-метоксифенил)-N-гидрокси-3-фталимидопропионамида, N-гидрокси-3-(3,4-диметоксифенил)-3-фталимидопропионамида, 3-(3-этокси-4-метоксифенил)-N-гидрокси-3-(3-нитрофталимидо)пропионамида, N-гидрокси-3-(3,4-диметоксифенил)-3-(1-оксоизоиндолинил)пропионамида, 3-(3-этокси-4-метоксифенил)-N-гидрокси-3-(4-метилфталимидо)пропионамида, 3-(3-циклопентилокси-4-метоксифенил)-N-гидрокси-3-фталимидопропионамида, 3-(3-этокси-4-метоксифенил)-N-гидрокси-3-(1,3-диоксо-2,3-дигидро-1 Н-бензо[f]изоиндол-2-ил)пропионамида, N-гидрокси-3-{ 3-(2-пропокси)-4-метоксифенил} -3-фталимидопропионамида, 3-(3-этокси-4-метоксифенил)-3-(3,6-дифторфталимидо)-N-гидроксипропионамида, 3-(4-амино-фталимидо)-3-(3-этокси-4-метоксифенил)-N-гидроксипропионамида, 3-(3-амино-фталимидо)-3-(3-метокси-4-метоксифенил)-N-гидроксипропионамида, 3-(3-амино-фталимидо)-3-(3-этокси-4-метоксифенил)-N-гидроксипропионамида, 3-(3-амино-фталимидо)-3-(3-циклопентокси-4-метоксифенил)-N-гидроксипропионамида, N-гидрокси-3-(3,4-диметоксифенил)-3-(1-оксоизоиндолинил)пропионамида, N-бензилокси-3-(3-этокси-4-метоксифенил)-3-(3-нитрофталимидо)пропионамида, 3-(3-циклопентилокси-4-метоксифенил)-N-гидрокси-3-(1-оксоизоиндолинил)пропионамида, 3-(3-метилфталимидо)-3-(3-циклопентокси-4-метоксифенил)-N-гидроксипропионамида, 3-(4-метилфталимидо)-3-(3-циклопентокси-4-метоксифенил)-N-гидроксипропионамида, 3-(3-гидроксифталимидо)-3-(3-циклопентокси-4-метоксифенил)-N-гидроксипропионамида, 3-(4-гидроксифталимидо)-3-(3-цикпопентокси-4-метоксифенил)-N-гидроксипропионамида, 3-(3-метилфталимидо)-3-(3-этокси-4-метоксифенил)-N-гидроксипропионамида, 3-(4-метилфталимидо)-3-(3-этокси-4-метоксифенил)-N-гидроксипропионамида, 3-(3-гидроксифталимидо)-3-(3-этокси-4-метоксифенил)-N-гидроксипропионамида, 3-(4-гидроксифталимидо)-3-(3-этокси-4-метоксифенил)-N-гидроксипропионамида, N-гидрокси-N-метил-3-(3-этокси-4-метоксифенил)-3-(1- оксоизоиндолинил)пропионамида, 3-(3-циклопентилокси-4-метоксифенил)-N-гидрокси-3-(4-этилфталимидо)пропионамида, 3-(3-этокси-4-метоксифенил)-N-гидрокси-3-(3-гидроксифталимидо)пропионамида, 3-(3-этокси-4-метоксифенил)-N-гидрокси-3-(4-гидроксифталимидо)пропионамида, 3-(3-этокси-4-метоксифенил)-N-гидрокси-3-(3-метилфталимидо)пропионамида, 3-(3-ацетоамидофталимидо)-3-(3-этокси-4-метоксифенил)-N-гидроксипропионамида, 3-(4-ацетоамидофталимидо)-3-(3-этокси-4-метоксифенил)-N-гидроксипропионамида, 3-(3-этокси-4-метоксифенил)-N-гидрокси-3-(1,3-диоксо-2,3-дигидро-1Н-бензо[е] изо-индол-2'-ил)пропионамида, 3-(4-трет-бутилфталимидо)-3-(3-этокси-4-метокси-фенил)-N-гидроксипропионамида, 3-(3,4-диметоксифенил)-N-гидрокси-3-(1,3-диоксо-2,3-дигидро-1Н-бензо[е]изоиндол-2'-ил)пропионамида, 3-(3,4-диметоксифталимидо)-3-(3-этокси-4-метоксифенил)-N-гидроксипропионамида, 3-(3-этокси-4-метоксифенил)-N-гидрокси-3-(3-диметиламинофталимидо)пропионамида, 3-(6,8-диоксо(2Н-1,3-диоксолано[4,5-е]изоиндолин-7-ил))-3-(3-этокси-4-метоксифенил)-N-гидроксипропионамида и 3-(3-этокси-4-метоксифенил)-N-гидрокси-3-(3,4 -диметилфталимидо)пропионамида. Лекарственные формы для перорального введения включают в себя таблетки, капсулы, драже и прессованные фармацевтические формы сходной формы, содержащие от 1 до 100 мг лекарства на стандартную дозу. Для парентерального введения, которое включает в себя внутримышечный, внутриоболочечный, внутривенный и внутриартериальный способы введения, могут быть использованы изотонические физиологические растворы, содержащие от 20 до 100 мг/мл. Ректальное введение может осуществляться посредством использования суппозиториев, приготовленных из традиционных носителей, таких как масло какао. Таким образом, фармацевтические композиции содержат одно или более чем одно соединение формулы I, ассоциированное по меньшей мере с одним фармацевтически приемлемым носителем, разбавителем или эксципиентом. При приготовлении таких композиций активные ингредиенты обычно смешивают с эксципиентом или разбавляют эксципиентом, либо заключают внутрь такого носителя, который может быть в форме капсулы или саше. В том случае, когда эксципиент служит в качестве разбавителя, он может представлять собой твердое, полутвердое или жидкое вещество, которое действует как наполнитель, носитель или среда для активного ингредиента. Таким образом, данные композиции могут быть в форме таблеток, пилюль, порошков, эликсиров, суспензий, эмульсий, растворов, сиропов, мягких и твердых желатиновых капсул, суппозиториев, стерильных растворов для инъекций и стерильных упакованных порошков. Примеры подходящих эксципиентов включают в себя лактозу, декстрозу, сахарозу, сорбит, маннит, крахмал, аравийскую камедь, кальция силикат, микрокристаллическую целлюлозу, поливинилпирролидон, целлюлозу, воду, сироп и метилцеллюлозу; препараты могут дополнительно содержать смазывающие вещества, такие как тальк, магния стеарат и минеральное масло, увлажняющие агенты, эмульгирующие и суспендирующие агенты, консерванты, такие как метил- или пропилгидроксибензоаты, подсластители и ароматизаторы. Композиции предпочтительно готовят в стандартной лекарственной форме, означающей физически дискретные единицы, подходящие в качестве единичной дозы или предварительно определенной доли единичной дозы для введения по схеме, включающей в себя однократный или или многократный прием дозы, субъекту - человеку или другим млекопитающим, причем каждая единица содержит предварительно определенное количество активного вещества, рассчитанное так, чтобы производить желаемый терапевтический эффект, вместе с подходящим фармацевтическим эксципиентом. Данные композиции могут быть изготовлены таким образом, чтобы обеспечить немедленное, пролонгированное или замедленное высвобождение активного ингредиента после введения пациенту посредством использования методик, хорошо известным специалистам. Твердофазный иммуноферментный анализ на TNF может быть проведен обычным способом. Мононуклеарные клетки периферической крови (РВМС) выделяют от нормальных доноров центрифугированием в градиенте плотности в фиколл-гипаке (Ficoll-Hypaque). Клетки культивируют в RPMI, обогащенной 10% АВ + сыворотка, 2 мМ L-глутамина, 100 ед/мл пенициллина и 100 мг/мл стрептомицина. Лекарства растворяют в диметилсульфоксиде (Sigma Chemical) и дальнейшие разведения производят в обогащенной RPMI. Конечная концентрация диметилсульфоксида в присутствии или в отсутствие лекарства в суспензиях РВМС составляет 0,25 мас. %. Лекарства анализируют в полу-log разведениях, начиная с 50 мг/мл. Лекарства добавляют к РВМС (106 клеток/мл) в 96-луночных планшетах за один час до добавления липополисахаридов (LPS). РВМС (106 клеток/мл) в присутствии или в отсутствие лекарства стимулируют обработкой 1 мг/мл LPS из Salmonella minnesota R595 (List Biological Labs, Campbell, CA). Далее клетки инкубируют при 37oС в течение 18-20 часов. Собирают супернатанты и незамедлительно анализируют на уровни TNF, либо хранят замороженными при -70oС (не более 4 дней) перед тем, как провести анализ. Концентрацию TNF в супернатанте определяют с помощью наборов для твердофазного иммуноферментного анализа (ELISA) на человеческий TNF (ENDOGEN, Boston, МА) в соответствии с инструкциями производителя. Фосфодиэстераза может быть определена на общепринятых моделях. Например, используя метод Хилла и Митчелла (Hill and Mitchell), U937-клетки промоноцитной клеточной линии человека выращивают до 1106 кпеток/мл и собирают центрифугированием. Клеточный осадок 1109 клеток промывают забуференным фосфатом физиологическим раствором и далее замораживают при -70 oС для более поздней очистки либо немедленно лизируют в холодном буфере для гомогенизации (20 мМ трис-HCl, рН 7,1; 3 мМ 2-меркаптоэтанола; 1 мМ хлорида магния; 0,1 мМ этиленгликоль-бис-(-аминоэтиловый эфир)-N, N, N', N'-тетрауксусной кислоты (EGTA); 1 мкМ фенилметилсульфонилфторида (PMSF) и 1 мкг/мл леупептин