Способ электроформования крахмальных нитей для гибкой структуры

Реферат

 

Изобретение относится к гибким структурам, содержащим крахмальные нити, которые могут быть применены для производства бумаги. Способ изготовления нитей включает стадии образования крахмальной композиции, содержащей от 10 до 80% крахмала и от 20 до 90% добавок, и электроформования крахмальной композиции. Способ изготовления гибкой структуры включает стадии образования крахмальной композиции, ее электроформования, осаждения множества крахмальных нитей. Изобретение позволяет получить гибкие структуры с улучшенной прочностью, адсорбирующей способностью и мягкостью, удешевляется и ускоряется процесс изготовления пленки. 2 с. и 20 з.п.ф-лы., 1 табл., 11 ил.

Изобретение касается гибких структур, содержащих крахмальные нити, а конкретнее гибких структур, имеющих отличающиеся области.

Нетканые материалы из целлюлозных волокон, такие как бумага, общеизвестны из уровня техники. В настоящее время нетканые волокнистые материалы с низкой плотностью обычно используют для изготовления бумажных полотенец, туалетной бумаги, носовых платков, салфеток, влажных салфеток и т.д.

Большой спрос на такие бумажные изделия вызвал потребность в улучшенных разновидностях этих изделий и способов их изготовления. Чтобы удовлетворить таким потребностям, изготовители в бумажной промышленности должны сбалансировать стоимость оборудования и ресурсов с общей стоимостью доставки изделий потребителю.

При обычных процессах производства бумаги древесноцеллюлозные волокна распускают, размалывают или рафинируют для достижения определенной степени гидратации волокон с целью образования водной волокнистой суспензии. Процессы производства бумажных материалов для использования при изготовлении тонкой бумаги, бумаги для салфеток и гигиенических изделий обычно включают в себя приготовление водной суспензии и последующее удаление воды из суспензии при одновременной перегруппировке волокон в ней для образования бумажного полотна. После обезвоживания полотно обрабатывают с получением сухого рулона или листов и, в конце концов, превращают в потребительскую упаковочную тару. Для проведения процесса обезвоживания и операций по переработке необходимо использовать оборудование различных типов, что требует значительных капиталовложений.

Другим аспектом обычного процесса производства бумаги является введение в волокнистую массу различных добавок с целью достижения определенных конечных свойств. Например, при производстве бумаги часто применяют такие добавки, как, например, смолы для придания прочности, разрыхляющие, поверхностно-активные вещества, пластификаторы, пигменты, латексы, полимерные микросферы, средства для придания огнестойкости, красители, отдушки и т.д. Эффективное удерживание этих добавок на мокрой части процесса производства бумаги представляет собой трудность для изготовителя, так как та часть, которая не удерживается, не только приводит к экономическим потерям, но также создает значительные проблемы, связанные с загрязнением, если она становится частью производственных сточных вод. Кроме того, добавки могут быть добавлены к бумажному полотну после стадии обезвоживания посредством операций нанесения покрытий или пропитывания, общеизвестных из уровня техники. При этих операциях обычно требуется расход дополнительной тепловой энергии для повторной сушки бумаги после нанесения покрытия. Кроме того, в некоторых случаях необходимы кроющие композиции на основе растворителя, что увеличивает капитальные затраты и требует извлечения летучих веществ для удовлетворения требований распорядительных органов.

Для изготовления бумаги применяли другие натуральные волокна, отличные от целлюлозы, а также различные синтетические волокна, однако, все эти заменители оказались непригодными в качестве промышленно приемлемых заменителей целлюлозы из-за их высокой стоимости, плохой связывающей способности, химической несовместимости и трудностей обращения с ними в производственном оборудовании. В качестве заменителя целлюлозы в различных областях бумажного производства предлагали крахмальные нити, однако, попытки использовать такие крахмальные нити в промышленности оказались неудачными. В результате этого бумажные материалы по-прежнему изготавливают исключительно из целлюлозных ингредиентов на основе древесины.

Таким образом, согласно настоящему изобретению предлагается гибкая структура, содержащая длинные крахмальные волокна, и способ их изготовления. В частности, согласно настоящему изобретению предлагается гибкая структура, содержащая множество крахмальных нитей, при этом структура содержит одну или большее число областей, обладающих отчетливыми интенсивными свойствами в отношении улучшенной прочности, абсорбирующей способности и мягкости.

Кроме того, согласно настоящему изобретению предлагаются способы изготовления крахмальных нитей. В частности, согласно настоящему изобретению предлагается способ электроформования для изготовления множества крахмальных нитей.

Гибкая структура содержит множество крахмальных нитей. По меньшей мере, некоторые из множества крахмальных нитей имеют размер от около 0,001 до около 135 дтекс, а конкретнее от 0,01 до 5 дтекс. Отношение длины главной оси, по меньшей мере, некоторых крахмальных нитей к эквивалентному диаметру поперечного сечения, перпендикулярного к главной оси крахмальных нитей, больше чем 100/1, конкретнее больше чем 500/1, более конкретнее больше чем 1000/1, и еще более конкретнее больше чем 5000/1.

Структура содержит, по меньшей мере, первую область и вторую область, при этом каждая из первой и второй областей имеет, по меньшей мере, одно общее интенсивное свойство, выбранное из группы, состоящей из плотности, основного веса, высоты, непрозрачности, частоты крепирования и их любого сочетания. По меньшей мере, одно общее интенсивное свойство первой области по величине отличается от, по меньшей мере, одного общего интенсивного свойства второй области.

В одном варианте воплощения изобретения одна из первой и второй областей представляет собой по существу непрерывную сетку, а другая из первой и второй областей - множество отдельных участков, рассредоточенных по всей по существу непрерывной сетке. В другом варианте воплощения изобретения, по меньшей мере, одна из первой и второй областей представляет собой полунепрерывную сетку.

Гибкая структура может, кроме того, содержать, по меньшей мере, третью область, имеющую, по меньшей мере, одно интенсивное свойство, которое является общим с интенсивным свойством первой области и интенсивным свойством второй области, но отличается по величине. В одном варианте воплощения изобретения, по меньшей мере, одна из первой, второй и третьей областей может представлять собой по существу непрерывную сетку. В другом варианте воплощения изобретения, по меньшей мере, одна из первой, второй и третьей областей может содержать отдельные или прерывистые участки. В еще одном варианте воплощения изобретения, по меньшей мере, одна из первой, второй и третьей областей может содержать по существу полунепрерывные участки. В еще одном варианте воплощения изобретения, по меньшей мере, одна из первой, второй и третьей областей может содержать множество отдельных участков, рассредоточенных по всей по существу непрерывной сетке.

В варианте воплощения изобретения, в котором гибкая структура содержит по существу непрерывную сетчатую область и множество отдельных участков, рассредоточенных по всей по существу непрерывной сетчатой области, по существу непрерывная сетчатая область может иметь относительно высокую плотность по сравнению с относительно низкой плотностью множества отдельных участков. Когда структура расположена на горизонтальной плоскости отсчета, первая область определяет первую высоту, а вторая область простирается наружу от первой области, определяя вторую высоту больше (относительно горизонтальной плоскости отсчета), чем первая высота.

В варианте воплощения изобретения, содержащем, по меньшей мере, три области, первая область может определять первую высоту, вторая область - вторую высоту и третья область - третью высоту, когда структура расположена на горизонтальной плоскости отсчета. По меньшей мере, одна из первой, второй и третьей высот может отличаться от, по меньшей мере, одной из других высот, например, вторая высота может быть промежуточной между первой высотой и третьей высотой.

В одном варианте воплощения изобретения вторая область содержит множество крахмальных подушек, при этом отдельная подушка может содержать выступающую часть, проходящую от первой высоты до второй высоты, и консольную часть, проходящую вбок от выступающей части на второй высоте. Плотность крахмальной консольной части может быть равна, по меньшей мере, одной из плотности первой области и плотности второй области или отличаться от них либо быть промежуточной между плотностью первой области и плотностью выступающей части. Консольные части обычно приподняты над первой плоскостью с образованием по существу свободных пространств между первой областью и консольными частями.

Гибкую структуру можно изготовить посредством образования множества крахмальных нитей формованием из расплава, сухим формованием, мокрым формованием, электроформованием или их любым сочетанием; использования формующего элемента, имеющего трехмерную нитеприемную сторону, выполненную для приема на себя множества крахмальных нитей; осаждения множества крахмальных нитей на нитеприемную сторону формующего элемента, при этом множество крахмальных нитей, по меньшей мере, частично приспосабливается к ее рельефу; и отделения множества крахмальных нитей от формующего элемента.

Стадия осаждения множества крахмальных нитей на нитеприемную сторону формующего элемента может включать в себя, по меньшей мере, частичное приспособление множества крахмальных нитей к трехмерному рельефу формующего элемента. Это может быть осуществлено, например, приложением перепада давления текучей среды к множеству крахмальных нитей.

В одном варианте воплощения изобретения стадия осаждения множества крахмальных нитей на формующий элемент включает в себя осаждение крахмальных нитей под острым углом к нитеприемной стороне формующего элемента, при этом острый угол составляет от около 5 до около 85o.

В одном варианте воплощения изобретения формующий элемент содержит полимерную основу, соединенную с усиливающим элементом. Формующий элемент может быть проницаемым, непроницаемым или частично проницаемым для текучей среды. Усиливающий элемент может быть расположен между нитеприемной стороной и, по меньшей мере, частью задней стороны основы. Нитеприемная сторона может иметь по существу непрерывный рельеф, по существу полунепрерывный рельеф, прерывистый рельеф и их любое сочетание. Основа может содержать множество сквозных отверстий, которые могут быть непрерывными, отдельными или полунепрерывными, аналогично или противоположно рельефу основы.

В одном варианте воплощения изобретения формующий элемент образован усиливающим элементом, расположенным на первой высоте, и полимерной основой, соединенной с усиливающим элементом при расположении поверхности к поверхности и проходящей наружу от усиливающего элемента до второй высоты. Формующий элемент может состоять из множества переплетенных нитей, сукна или их любого сочетания.

Когда множество крахмальных нитей осаждается на нитеприемную сторону формующего элемента, они вследствие своей гибкости и/или в результате приложения перепада давления текучей среды стремятся, по меньшей мере, частично плотно прилегать к трехмерному рельефу формующего элемента, при этом образуются первые области из множества крахмальных нитей, поддерживаемых рифленой основой, и вторые области из множества крахмальных нитей, отклоненных в ее отверстие или отверстия и поддерживаемых усиливающим элементом.

В одном варианте воплощения изобретения формующий элемент содержит подвесные части. Полимерная основа такого формующего элемента содержит множество опор, простирающихся наружу от усиливающего элемента, и множество консольных частей, простирающихся вбок от опор на второй высоте с образованием свободных пространств между консольными частями и усиливающим элементом, при этом множество опор и множество консольных частей в сочетании образуют трехмерную нитеприемную сторону формующего элемента. Такой формующий элемент может быть образован, по меньшей мере, двумя слоями, соединенными вместе при расположении поверхности к поверхности, так что части сетки одного из слоев соответствуют отверстиям в другом слое. Формующий элемент, содержащий подвесные части, может быть образован дифференциальным отверждением фоточувствительного полимерного слоя через маску, имеющую рисунок с участками различной непрозрачности.

Способ изготовления гибкой структуры согласно настоящему изобретению, кроме того, может содержать стадию уплотнения выбранных частей множества крахмальных нитей, например, приложением механического давления к множеству крахмальных нитей.

Кроме того, способ может содержать стадию предварительного сокращения множества крахмальных нитей. Это предварительное сокращение может быть осуществлено посредством крепирования, микросокращения или их сочетания.

Способ электроформования для изготовления крахмальных нитей содержит стадии образования крахмальной композиции, имеющей вязкость при растяжении от около 50 до около 20000 Пас, и электроформования из крахмальной композиции крахмальных нитей размером от около 0,001 до около 135 дтекс. Стадия электроформования из крахмальной композиции обычно осуществляется электроформованием через фильеру.

Крахмал в крахмальной композиции имеет средневесовую молекулярную массу от около 1000 до около 2000000, и крахмальная композиция имеет капиллярное число, по крайней мере, 0,05 и конкретнее, по меньшей мере, 1,00. В одном варианте воплощения изобретения крахмальная композиция содержит от около 20 до около 90 вес.% амилопектина. Крахмал в крахмальной композиции может иметь средневесовую молекулярную массу от около 1000 до около 2000000. Крахмальная композиция может содержать высокомолекулярный полимер, имеющий средневесовую молекулярную массу, по меньшей мере, 500000.

Крахмальная композиция может содержать от около 10 до около 80 вес.% крахмала и от около 20 до около 90 вес.% добавок. Такая крахмальная композиция может иметь вязкость при растяжении от около 100 до около 15000 Пас при температуре от около 20 до около 180oС.

Крахмальная композиция может содержать от около 20 до около 70 вес.% крахмала и от около 30 до около 80 вес.% добавок. Такая крахмальная композиция может иметь вязкость при растяжении от около 200 с до около 10000 Пас при температуре от около 20 до около 100oС.

Крахмальная композиция, имеющая вязкость при растяжении от около 200 до около 10000 Паc, может иметь капиллярное число от около 3 до около 50. Конкретнее крахмальная композиция, имеющая вязкость при растяжении от около 300 до около 5000 Пас, может иметь капиллярное число от около 5 до около 30.

В одном варианте воплощения изобретения крахмальная композиция содержит от около 0,0005 до около 5 вес.% высокомолекулярного полимера, по существу совместимого с крахмалом и имеющего средневесовую молекулярную массу, по меньшей мере, 500000.

Крахмальная композиция может содержать добавки, выбранные из группы, состоящей из пластификаторов и разбавителей. Такая крахмальная композиция, кроме того, может содержать от около 5 до около 95 вес.% белка, при этом белком может быть белок кукурузы, белок сои, белок пшеницы или их любое сочетание.

Способ изготовления крахмальных нитей, кроме того, может содержать стадию вытягивания крахмальных нитей воздушными струями.

В одном варианте воплощения изобретения способ изготовления гибкой структуры, содержащей крахмальные нити, включает в себя стадии: образуют крахмальную композицию, имеющую вязкость при растяжении от около 100 до около 10000 Пас; используют формующий элемент, имеющий трехмерную нитеприемную сторону и заднюю сторону, противоположную ей, при этом нитеприемная сторона имеет по существу непрерывный рельеф, прерывистый рельеф или их любое сочетание; электроформуют крахмальную композицию, тем самым изготавливая множество крахмальных нитей; и осаждают множество крахмальных нитей на нитеприемную сторону формующего элемента, при этом крахмальные нити приспосабливаются к трехмерному рельефу нитеприемной стороны.

При промышленном процессе формующий элемент непрерывно перемещается в продольном направлении.

Фиг. 1 представляет схематический вид сверху одного варианта выполнения гибкой структуры согласно настоящему изобретению; фиг.1А - схематический вид в разрезе по линии 1A-1A на фиг.1; фиг. 2 - схематический вид сверху другого варианта выполнения гибкой структуры согласно настоящему изобретению; фиг. 3 - схематический вид в разрезе другого варианта выполнения гибкой структуры согласно настоящему изобретению; фиг. 4 - схематический вид сверху одного варианта выполнения формующего элемента, который может быть использован для образования гибкой структуры согласно настоящему изобретению; фиг.4А - схематический вид в разрезе по линии 4А-4А на фиг.4; фиг. 5 - схематический вид сверху другого варианта выполнения формующего элемента, который может быть использован для образования гибкой структуры согласно настоящему изобретению; фиг.5А - схематический вид в разрезе по линии 5А-5А на фиг.5; фиг.6 - схематический вид в разрезе еще одного варианта выполнения формующего элемента, который может быть использован для образования гибкой структуры согласно настоящему изобретению; фиг. 7 - схематический частичный вид сбоку и в разрезе варианта осуществления способа электроформования и выполнения устройства для изготовления гибкой структуры, содержащей крахмальные нити; фиг.7А - схематический вид в разрезе по линии 7А-7А на фиг.7; фиг. 8 - схематический вид сбоку другого варианта осуществления способа согласно настоящему изобретению; фиг. 9 - схематический вид сбоку другого варианта осуществления способа согласно настоящему изобретению; фиг. 9А - схематический частичный вид сбоку другого варианта осуществления способа согласно настоящему изобретению; фиг.10 - схематический вид варианта выполнения отрезка крахмальной нити, имеющей различные площади поперечных сечений, перпендикулярных к главной (продольной) оси нити; фиг.10А - схематический вид нескольких примерных, неисключительных вариантов форм площади поперечного сечения крахмальной нити; фиг. 11 - схематический вид отрезка крахмальной нити, имеющей множество надрезов на, по крайней мере, части длины нити.

Нижеприведенные термины имеют следующие значения при их использовании в описании: "Гибкая структура, содержащая крахмальные нити" или просто "гибкая структура" - это структура, содержащая множество крахмальных нитей, которые механически взаимно переплетены с образованием листообразного материала, имеющего определенные заданные микроскопические геометрические, физические или эстетические свойства.

"Крахмальная нить" - это тонкий и очень гибкий предмет, содержащий крахмал и имеющий главную ось, которая является очень длинной по сравнению с двумя взаимоперпендикулярными осями нити, которые перпендикулярны к главной оси. Отношение длины главной оси к эквивалентному диаметру поперечного сечения нити, перпендикулярного к главной оси, больше чем 100/1, конкретнее больше чем 500/1, более конкретнее больше чем 1000/1, и еще более конкретнее больше чем 5000/1. Крахмальные нити могут содержать другое вещество, как например воду, пластификаторы и другие необязательные добавки.

"Эквивалентный диаметр" используется здесь для определения площади поперечного сечения и площади поверхности элементарной крахмальной нити независимо от формы площади поперечного сечения. Эквивалентный диаметр - это параметр, который удовлетворяет уравнению S=1/4D2, где S - площадь поперечного сечения крахмальной нити (независимо от ее геометрической формы), = 3,14159 и D - эквивалентный диаметр. Например, поперечное сечение прямоугольной формы, образованной двумя взаимопротивоположными сторонами "А" и двумя взаимопротивоположными сторонами "В", может быть выражено как: S=AВ. В то же самое время эта площадь поперечного сечения может быть выражена как площадь круга, имеющего эквивалентный диаметр D. Далее эквивалентный диаметр D может быть вычислен по формуле: S=1/4D2, где S - известная площадь прямоугольника. (Конечно, эквивалентный диаметр круга является действительным диаметром круга). Эквивалентный радиус равен 1/2 эквивалентного диаметра.

"Псевдотермопластичный" в связи с "материалами" или "композициями", как имеется в виду, обозначает материалы и композиции, которые под действием повышенных температур, растворения в соответствующем растворителе или иным образом могут быть размягчены до такой степени, что они могут быть приведены в текучее состояние, в котором они могут быть формованы так, как желательно, а конкретнее переработаны для формования крахмальных нитей, пригодных для образования гибкой структуры. Псевдотермопластичные материалы могут быть формованы под совместным действием тепла и давления. Псевдотермопластичные материалы отличаются от термопластичных материалов тем, что размягчение или разжижение псевдотермопластиков вызывается присутствующими мягчителями и растворителями, без которых было бы невозможно привести их любой температурой или давлением в мягкое или текучее состояние, необходимое для формования, поскольку псевдотермопластики как таковые не "расплавляются". Влияние влагосодержания на температуру стеклования и температуру плавления крахмала может быть измерено посредством дифференциальной сканирующей калориметрии, описанной Zeleznac и Hoseny в "Cereal Chemistry", Vol.64. No.2, pp.121-124, 1987 г. Псевдотермопластичный расплав - это псевдотермопластичный материал в текучем состоянии.

"Микрогеометрия" и ее изменения относятся к сравнительно небольшим (т.е. "микроскопическим") деталям гибкой структуры, как например, к текстуре поверхности независимо от общей конфигурации структуры в противоположность ее общей (т.е. "макроскопической") геометрии. Термины, содержащие "макроскопический" или "макроскопически", относятся к общей геометрии структуры или ее части при ее рассмотрении в виде двухмерной конфигурации, например в плоскости X-Y. Например, на макроскопическом уровне гибкая структура, когда она расположена на плоской поверхности, представляет собой сравнительно тонкий и плоский лист. Однако на микроскопическом уровне структура может содержать множество первых областей, которые образуют первую плоскость, имеющую первую высоту (вертикальный разрез), и множество выпуклостей или "подушек", рассредоточенных по всей сетчатой области и простирающихся наружу от нее до второй высоты.

"Интенсивные свойства" - это свойства, которые не имеют величины, зависящей от совокупности величин в пределах плоскости гибкой структуры. Общее интенсивное свойство - это интенсивное свойство, которым обладают более чем одна область. В число таких интенсивных свойств гибкой структуры согласно настоящему изобретению входят, но не ограничиваются ими, плотность, основной вес, высота, непрозрачность и частота крепирования (если структура подлежит предварительному сокращению). Например, если плотность является общим интенсивным свойством двух различных областей, то величина плотности в одной области может отличаться от величины плотности в другой области. Области (как например, первая область и вторая область) являются распознаваемыми зонами, отличаемыми одна от другой по индивидуальным интенсивным свойствам.

"Основной вес" - это вес (измеренный в грамм-силе) единицы площади крахмальной гибкой структуры, при этом единица площади измерена в плоскости структуры из крахмальных нитей. Размер и форма единицы площади, по которой измеряют основной вес, зависит от относительных и абсолютных размеров и форм областей, имеющих различные основные веса.

"Плотность" - это отношение основного веса к толщине (измеренной перпендикулярно к плоскости гибкой структуры) области. Кажущаяся плотность - это основной вес образца, деленный на толщину в тысячных долях дюйма с использованием при этом соответствующих коэффициентов перевода из одних единиц в другие. Используемая здесь кажущаяся плотность выражена в единицах грамм/кубический сантиметр (г/см3).

"Толщина в тысячных долях дюйма" - это макроскопическая толщина, измеренная так, как описано ниже. Эту толщину следует отличать от высоты различных областей, которая является микроскопической характеристикой областей.

"Температура стеклования", Тg - это температура, при которой материал изменяется от вязкого или эластичного состояния до твердого или сравнительно хрупкого состояния.

"Продольное направление" (или ПН) - это направление, параллельное технологическое маршруту изготавливаемой гибкой структуры через производственное оборудование. "Поперечное направление" - это направление, перпендикулярное к продольному направлению и параллельное общей плоскости изготавливаемой гибкой структуры.

"X", "Y" и "Z" обозначают обычную систему декартовых координат, в которой взаимоперпендикулярные координаты "X" и "У" определяют плоскость отсчета, a "Z" определяет перпендикуляр к плоскости X-Y. "Z-направление" обозначает любое направление, перпендикулярное к плоскости X-Y. Аналогично этому термин "Z-размер" обозначает размер, расстояние или параметр, измеренный параллельно Z-направлению. Когда элемент, как например формующий элемент, изгибается или иным образом перестает быть плоским, плоскость X-Y следует за конфигурацией элемента.

"По существу непрерывной" областью (участком/сеткой/основой) называется площадь, в пределах которой можно соединить любые две точки непрерывной линией, проходящей полностью в пределах этой площади на всем своем протяжении. А именно по существу непрерывная область имеет существенную "непрерывность" во всех направлениях, параллельных первой плоскости, и оканчивается только на краях этой области. Термин "по существу" в сочетании с термином "непрерывный", как имеется в виду, указывает на то, что хотя и предпочитается абсолютная непрерывность, могут допускаться незначительные отклонения от абсолютной непрерывности, пока эти отклонения не оказывают заметного влияния на намеченные и предлагаемые характеристики гибкой структуры (или формующего элемента).

"По существу полунепрерывной" областью (участком/сеткой/основой) называется площадь, которая имеет "непрерывность" во всех, кроме, по меньшей мере, одного направлениях, параллельных первой плоскости, и в которой невозможно соединить любые две точки непрерывной линией, проходящей полностью в пределах этой площади на всем своем протяжении. Полунепрерывная основа может иметь непрерывность только в одном направлении, параллельном первой плоскости. По аналогии с непрерывной областью, описанной выше, хотя и предпочитается абсолютная непрерывность во всех, кроме, по меньшей мере, одного направления, могут допускаться незначительные отклонения от такой непрерывности, пока эти отклонения не оказывают заметного влияния на характеристики структуры (формующего элемента).

"Прерывистыми" областями называются раздельные или отделенные друг от друга площади, которые являются прерывистыми во всех направлениях, параллельных первой плоскости.

"Абсорбирующая способность" - это способность материала воспринимать жидкости различными средствами, включая капиллярность, осмос, растворитель или химическое действие, и удерживать такие жидкости. Абсорбирующая способность может быть измерена в соответствии с нижеописанным испытанием.

"Гибкость" - это способность материала или структуры без разрушения деформироваться под данной нагрузкой независимо от способности или неспособности материала или структуры возвращаться к своей форме до деформации.

"Формующий элемент" - это конструктивный элемент, который может быть использован в качестве опоры для крахмальных нитей, которые могут осаждаться на него во время процесса изготовления гибкой структуры согласно настоящему изобретению, и в качестве формующего устройства для образования (или "формования") желаемой микроскопической геометрии гибкой структуры согласно настоящему изобретению. Формующим элементом может быть любой элемент, который имеет способность придавать трехмерный рельеф структуре, изготавливаемой на нем, и выполнен в виде (но не ограничиваясь ими) пластины, ленты, тканой ткани и полосы.

"Усиливающий элемент" - желательный, но необязательный элемент в некоторых вариантах выполнения формующего элемента, служащий, главным образом, для обеспечения или способствования целостности, стабильности и долговечности формующего элемента, содержащего, например, полимерный материал. Усиливающий элемент может быть проницаемым, непроницаемым или частично проницаемым для текучей среды и может состоять из переплетенных нитей, сукна, пластмассы, другого подходящего синтетического материала или из их любого сочетания.

"Нажимная поверхность" - это поверхность, которая может быть прижата к нитеприемной стороне формующего элемента, имеющего на себе множество крахмальных нитей для прогиба, по меньшей мере, частично крахмальных нитей в формующий элемент, имеющий на себе трехмерный рельеф со впадинами и выступами.

"Децитекс" или "дтекс" - единица измерения крахмальной нити, выраженная в граммах на 10000 метров, г/10000 м "Формование из расплава" - это способ, при котором термопластичный или псевдопластичный материал превращают в волокнистый материал посредством силы вытягивания. Формование из расплава может включать в себя механическое вытягивание, формование из расплава с вытягиванием потоком газа, связывание прядением (спрядение) и электроформование.

"Механическое вытягивание" - это способ приложения силы к элементарной нити посредством приведения ее в соприкосновение с движущейся поверхностью, например, ролика для приложения силы к расплаву, и тем самым изготовления элементарных нитей.

"Формование из расплава с вытягиванием потоком газа" - это способ изготовления волокнистых нетканых материалов или изделий непосредственно из полимеров или смол с использованием высокоскоростного воздушного потока или другой подходящей силы для вытягиванием нитей. При этом способе сила вытягивания прилагается в виде высокоскоростного воздушного потока при выходе материала из фильеры.

"Спрядение" представляет собой способ, при котором элементарному волокну дают возможность падать на заданное расстояние под действием сил потока и тяжести и затем подвергают его действию силы, прилагаемой высокоскоростным воздушным потоком или другим соответствующим источником.

"Электроформование" - это способ, при котором используют электрический потенциал в качестве силы для вытягивания волокон.

"Сухое формование", также общеизвестное как "формование из раствора", включает в себя сушку от растворителя для стабилизации формования волокна. Материал растворяют в соответствующем растворителе и вытягивают посредством механического вытягивания, вытягивания высокоскоростным потоком газа, спрядения и/или электроформования. По мере того, как происходит испарение растворителя, волокно становится стабильным.

"Мокрое формование" включает в себя растворение материала в соответствующем растворителе и формование небольших волокон посредством механического вытягивания, вытягивания высокоскоростным потоком газа, спрядения и/или электроформования. После формования волокна его вводят в коагуляционное устройство, обычно представляющее собой ванну, наполненную соответствующим раствором, который отверждает желаемый материал, посредством чего производят стабильные волокна.

Высокомолекулярный полимер, "по существу совместимый с крахмалом", означает, что высокомолекулярный полимер способен образовывать по существу однородную композицию с крахмалом (т.е. композицию, которая для невооруженного глаза выглядит прозрачной или полупрозрачной), когда композицию нагревают до температуры выше ее температуры размягчения и/или плавления.

"Температура плавления" означает температуру или интервал температур, при которых или выше которых крахмальная композиция расплавляется или размягчается в достаточной степени, чтобы быть способной к переработке в крахмальные нити согласно настоящему изобретению. Следует учесть, что некоторые крахмальные композиции являются псевдотермопластичными композициями и как таковые могут не проявлять себя как истинно "расплавляющиеся" композиции.

"Температура переработки" означает температуру крахмальной композиции, при которой могут быть формованы крахмальные нити согласно настоящему изобретению, например, вытягиванием.

Гибкие структуры Отсылаем к фиг. 1-3, на которых гибкая структура 100, содержащая псевдотермопластичные крахмальные нити, имеет, по меньшей мере, первую область 110 и вторую область 120. Каждая из первой и второй областей имеет, по меньшей мере, одно общее интенсивное свойство, как например основной вес или плотность. Общее интенсивное свойство первой области 110 по величине отличается от общего интенсивного свойства второй области 120. Например, плотность первой области 110 может быть больше, чем плотность второй области 120.

Первая и вторая области 110 и 120 гибкой структуры 100 согласно настоящему изобретению могут также отличаться по их соответствующей микрогеометрии. Например, на фиг.1 первая область 110 представляет собой по существу непрерывную сетку, образующую первую плоскость на первой высоте, когда структура 100 расположена на плоской поверхности, а вторая область 120 может представлять собой множество отдельных участков, рассредоточенных по всей по существу непрерывной сетке. В некоторых вариантах воплощения изобретения эти отдельные участки могут представлять собой отдельные выступы или "подушки", простирающиеся наружу от сетчатой области до второй высоты, которая относительно первой плоскости больше, чем первая высота. Следует учесть, что подушки также могут образовывать по существу непрерывный рельеф и по существу полунепрерывный рельеф.

В одном варианте воплощения изобретения по существу непрерывная сетчатая область может иметь сравнительно высокую плотность, а подушки - сравнительно низкую плотность. В другом варианте воплощения изобретения по существу непрерывная сетчатая область может иметь сравнительно небольшой основной вес, а подушки - сравнительно большой основной вес. В еще одном варианте воплощения изобретения по существу непрерывная сетчатая область может иметь сравнительно низкую плотность, а подушки - сравнительно высокую плотность. Возможен вариант воплощения изобретения, в котором по существу непрерывная сетчатая область может иметь сравнительно большой основной вес, а подушки - сравнительно небольшой основной вес.

В других вариантах воплощения изобретения вторая область 120 может представлять собой полунепрерывную сетку. На фиг.2 вторая область 120 содержит отдельные участки 122, похожие на те, которые показаны на фиг.1, и полунепрерывные участки 121, как видно, простирающиеся в, по меньшей мере, одном направлении в плоскости X-Y (т.е. в плоскости, образованной первой областью 110 структуры 100, расположенной на плоской поверхности).

В варианте воплощения изобретения, показанном на фиг.2, гибкая структура 100 содержит третью область 130, имеющую, по меньшей мере, одно интенсивное свойство, которое является общим с интенсивным свойством первой области 110 и интенсивным свойством второй области 120, но отличается от них по величи