Устройство для получения монокристалла (варианты), способ получения монокристалла (варианты) и монокристалл (варианты)

Реферат

 

Изобретение относится к технологии получения монокристаллов. Сущность изобретения: в устройстве для получения монокристалла, использующем способ вытягивания вниз, расплав 5m сырья непрерывно загружают в тигель 2 с целью выращивания кристалла 18 путем загрузки порошкообразного сырья 5р на расположенную до зоны расплава пластину 3 внутри электрической печи 10 с помощью устройства 20 загрузки порошкообразного сырья, плавления порошкообразного сырья 5р на расположенной до зоны расплава пластине 3 с образованием расплава 5m сырья и перетекания его внутрь тигля 2. Для предотвращения увлажнения порошка 5р сырья в него внутри бункера 6 порошкообразного сырья вводят осушенный воздух. Транспортную трубу 9 для переноса сырья 5m охлаждают для предотвращения заполнения ее расплавом порошкообразного сырья 5р. Указанные особенности делают возможным получение монокристалла, имеющего стабильный химический состав, больший диаметр и большую длину при низкой стоимости. 7 c. и 13 з.п. ф-лы, 9 ил.

Изобретение относится к технологии получения монокристалла, в частности к устройству для получения монокристалла и способу, предназначенному для получения монокристалла вытягиванием вниз, а также непосредственно к монокристаллу.

Уровень техники В последние годы в производстве различных устройств, основанных на применении поверхностных акустических волн (ПАВ-устройств), использовали монокристаллы оксидов, таких как танталат лития LiTaO3, ниобат лития LiNbO3, тетраборат лития Li2B4O7 и лангасит Lа35SiO14 (обозначенные далее соответственно как ТЛ, НЛ, БКЛ и ЛГК). Они относятся к пьезоэлектрическим кристаллам, у которых коэффициент электромеханической связи больше, чем у субстрата из кристаллического кварца. БКЛ и ЛГК имеют угол среза с нулевым температурным коэффициентом. Поэтому при применении этих монокристаллов в устройстве, использующем поверхностные акустические волны, терминалы, например портативный телефон, уменьшаются в размерах и приобретают более высокие функциональные свойства. В кристаллах ТЛ и НЛ стехиометрическое отношение Li к Та или Li к Nb составляет 1:1. Имеющие такой состав кристаллы пригодны для оптических материалов, поскольку они, не имея в своих решетках дефектов или запрещенных зон, представляют собой идеальную кристаллическую структуру, а постоянство показателя преломления этих кристаллов исключает возбуждение диффузного отражения.

Методы выращивания вышеуказанных монокристаллов в грубом приближении подразделяются на три метода, а именно метод Чохральского, вертикальный метод Бриджмена (ВБ метод) и метод вытягивания вниз.

Как показано на фиг.6, метод Чохральского (способ вытягивания с вращением) заключается в закладке сырья, подлежащего кристаллизации, в платиновый тигель 41, нагреве сырья до его точки плавления или выше в электрической печи 42 с получением расплава, погружении нижнего конца затравочного кристалла 44, имеющего форму стержня, в полученный продукт 43 и вытягивании кристалла с медленным вращением таким образом, чтобы осуществлялся рост кристалла 45 от нижнего конца затравочного кристалла 44.

Как показано на фиг.7, вертикальный метод Бриджмена заключается в закладке сырья, подлежащего кристаллизации, в платиновый тигель 51, нагреве сырья до его точки плавления или выше в электрической печи 52 с получением расплава, помещении затравочного кристалла 53, имеющего форму пластины, одним его концом в платиновый тигель 51 и медленном перемещении платинового тигля 51 (с удержанием впереди него грани затравочного кристалла 53) в направлении от зоны высокой температуры к зоне низкой температуры в режиме, при котором внутри электрической печи 52 образуется температурный градиент, обеспечивающий успешный рост кристалла от грани затравочного кристалла 53.

Метод вытягивания вниз представляет собой способ выращивания монокристалла, опубликованный одним из авторов настоящего изобретения в работе, опубликованной в Journal of the Ceramic Society of Japan 105 [7] 1997. Как показано на фиг.8, этот способ заключается в закладке поликристаллического сырья в платиновый тигель 61, имеющий в своем дне небольшое отверстие 61а, помещении указанного тигля с целью плавления сырья в позицию максимального градиента внутри электрической печи 62, у которой верхняя зона выдерживается при температуре, превышающей точку плавления сырья, а нижняя - при температуре ниже этой точки, и вытягивании затравочного кристалла 63 вниз с вращением в положении, при котором верхний конец затравочного кристалла 63, имеющий форму стержня, вводится в контакт с расплавом сырья, вытекающим под действием силы тяжести из небольшого отверстия 61а платинового тигля 61.

Согласно этому способу рост кристалла обеспечивается удерживанием расплава сырья между платиновым тиглем 61 и затравочным кристаллом 63 за счет как смачивающих свойств расплава сырья относительно тигля 61, причем указанный расплав является расплавом, вытекающим из небольшого отверстия 61а в дне платинового тигля 61, так и за счет поверхностного натяжения расплава.

Обычно такие кристаллы как НЛ, ТЛ и ЛГК выращивают методом вытягивания с вращением (метод Чохральского), а БКЛ - главным образом вертикальным методом Бриджмена (ВБ метод). Однако БКЛ может быть выращен и методом Чохральского.

Тем не менее, обычные способы выращивания монокристаллов, типичным представителем которых является метод Чохральского, сталкиваются со следующими проблемами.

В зависимости от точек плавления материалов сырья, для выращивания НЛ обычно необходим платиновый тигель, а для выращивания ТЛ и ЛГК - иридиевый тигель. В зависимости от размера кристалла для выращивания кристаллов диаметром 7,5 см и 10 см необходимы тигли весом соответственно приблизительно 4 кг и приблизительно 5 кг. Если для поддержания постоянной температуры роста используют тепловой экран, возникает необходимость в 1-2 кг благородного металла, такого как платина и иридий. Т.к. такой благородный металл применяют в большом количестве, с точки зрения стоимости это выглядит очень обременительным.

Обычные методы, или способы реализуют так называемым порционным образом, при котором необходимо не только вытягивание монокристалла из тигля и его рост, но и плавление в тигле значительного избытка монокристалла с выдерживанием его общего количества при температуре выше точки плавления. Это накладывает ограничения на увеличение диаметра вытягиваемого кристалла и на увеличение его длины. Кроме того, по мере увеличения кристалла существенно увеличивается электрическая мощность, потребляемая нагревателем и т.п.

Такие кристаллы, как НЛ и ТЛ, имеют широкий диапазон твердых растворов. Т.к. их химический состав характеризуется от состава соответствующего им расплава, между начальным и конечным периодами роста кристаллов он легко изменяется. Если, например, температуру и молярное отношение (%) оксида лития (LiО2) отложить соответственно по вертикальной и горизонтальной осям, диаграмма состояния (фазовая диаграмма) ТЛ будет иметь вид, показанный на фиг.9. Когда для изготовления ПАВ-устройств используют монокристаллы с неоднородными составами, характеризующие их значения скорости распространения волны и пьезоэлектрических констант приобретают разброс, что приводит к уменьшению выхода годных изделий.

В случае метода Чохральского в качестве обработки, предваряющей помещение сырья в тигель, проводят реакционные и высокотемпературные обработки, такие как смешивание материалов сырья пентоксида тантала Ta2O5 и карбоната лития Li2СО3, спекание, растирание и прессование. Поэтому на стадии подготовки сырья состав изменяется за счет испарения оксида лития Li2O и т.п. веществ, имеющих высокое давление паров. Кроме того, на состав конечного кристалла влияет испарение специфических веществ на стадии роста кристалла.

В случае метода Чохральского монокристаллический стержень выращивают с помощью стадий введения затравок, получения головной части, а затем роста основной части (тела) кристалла. Однако на выращивание основной части уходит много времени. Кроме того, для получения основных частей, разброс диаметров которых невелик, необходимо дорогостоящее устройство АКД (автоматического контроля диаметров), что увеличивает стоимость продукции.

Как можно заключить из фиг.9, такие кристаллы, как НЛ и ТЛ, кристаллизуются в состав, конгруэнтный их расплаву, при Т1, являющейся наивысшей температурой в том случае, когда жидкая фаза превращается в твердую. Когда расплав Li и Nb закладывают в тигель и вытягивают затравочный кристалл по мере роста кристалла по методу Чохральского, первоначальный рост кристалла (кристалла, содержащего Nb в количестве, большем чем количество Li) происходит в состоянии его конгруэнтного состава, облегчающем кристаллизацию. Однако Li и Nb предварительно смешивают в тигле в пропорции 1 к 1, так что по мере роста кристалла количество Nb в расплаве становится меньше количества Li. В результате кристалл, в котором содержание Li превышает количество Li в конгруэнтном составе, растет в условиях медленной кристаллизации. Т.е. в монокристалле образуются зоны, имеющие отличающиеся составы.

В соответствии с этим в случае метода Чохральского расплав предварительно составляют таким образом, чтобы он имел конгруэнтный состав, и указанный метод применяют для выращивания конгруэнтного кристалла. Однако в этом случае расплав не всегда имеет однородный состав. Таким образом, состав легко приобретает разброс. То же имеет место также и в случае метода Бриджмена. Поскольку нужно, чтобы все необходимые материалы были заложены в тигель предварительно, избежать разброса нельзя. Поэтому трудно вырастить кристаллы, составы которых отличаются от конгруэнтного состава, т.е. являются инконгруэнтными (включая стехиометрический состав).

Конгруэнтные составы НЛ и ТЛ имеют следующий вид: Li/(Li+Nb)100=48% и Li/(Li+Ta)100=48%.

Следовательно, проблема получения кристалла, имеющего инконгруэнтный состав (компонентное отношение Li равно от 48,5 до 50,0% в случае, например, НЛ или ТЛ), до настоящего времени неизбежно приводила к необходимости использовать другие способы. Например, существует способ выращивания монокристалла, известный под именем "способа двойного тигля". Однако, как хорошо известно, диаметр кристалла, который можно вырастить этим способом, небольшой и ограничен приблизительно 2,5 см. Для областей применения, в которых в качестве пьезоэлектрических или оптических материалов ПАВ устройств или аналогичных им используют НЛ и ТЛ, с точки зрения производительности желателен монокристалл большего размера. Возникла потребность разработать способ выращивания кристалла, позволяющий при низкой стоимости вырастить большой монокристалл, имеющий стабильный состав и диаметр, превышающий 2,5 см.

В настоящее время стандартным способом для выращивания монокристалла БКЛ является вертикальный метод Бриджмена. В этом способе для выращивания кристалла БКЛ необходимо каждый раз приготавливать платиновый тигель заново. Таким образом, возникает проблема высоких стоимостей продукции.

Сущность изобретения Настоящее изобретение было разработано с учетом отмеченных проблем. Задача, которую было необходимо решить, заключается в разработке устройства для получения монокристалла и способа получения монокристалла, позволяющих получить монокристалл, имеющий стабильный состав, большой диаметр и большую длину при низкой стоимости, а также в обеспечении получения монокристалла НЛ, монокристалла ТЛ или других кристаллов, имеющих диаметр, превышающий 2,5 см, и стабильный состав.

Устройство для получения монокристалла, раскрытое в п.1 формулы изобретения, представляет собой устройство для получения монокристалла, предназначенное для выращивания кристалла путем установки тигля для плавления сырья в электрическую печь, выдерживания тигля при температуре не ниже точки плавления сырья и вытягивания вниз с одновременным вращением затравочного кристалла в положении, при котором верхняя концевая часть затравочного кристалла приводится в контакт с расплавом сырья, вытекающим из небольшого отверстия в нижней части тигля. Устройство характеризуется тем, что оно содержит средства загрузки порошкообразного сырья, предназначенные для введения порошкообразного сырья в тигель сверху, и пластину, расположенную до зоны расплава и предназначенную для приема порошкообразного сырья из указанных средств и плавления его с последующим введением расплава в часть тигля, собирающую расплав.

При использовании подобного устройства для получения монокристалла порошкообразное сырье загружают на расположенную до зоны расплава пластину с помощью средств загрузки порошкообразного сырья, а затем порошкообразное сырье расплавляют на расположенной до зоны расплава пластине с образованием расплава сырья и вводят расплав сырья в зону тигля, собирающую расплав, сохраняя существенно постоянным количество расплава сырья, вытекающее из небольшого отверстия в дне тигля. Таким образом может осуществляться рост кристалла при непрерывной загрузке расплава сырья в тигель. Поэтому появляется возможность легко получить монокристалл, имеющий большой диаметр и большую длину. Процесс выращивания кристалла из порошкообразного сырья может осуществляться непрерывно, так что состав полученного монокристалла становится стабильным. После первичных вложений средств дорогостоящие составляющие элементы, такие как платиновый тигель, могут быть использованы полуперманентно. В результате производственные затраты можно сделать низкими.

Устройство для получения монокристалла, раскрытое в п.2 формулы изобретения, характеризуется тем, что включенные в п.1 средства загрузки порошкообразного сырья содержат бункер порошкообразного сырья, предназначенный для приема порошкообразного сырья, средства введения осушенного воздуха, предназначенные для введения осушенного воздуха в порошкообразное сырье внутри указанного бункера порошкообразного сырья, и средства переноса порошкообразного сырья, предназначенные для переноса порошкообразного сырья из указанного бункера порошкообразного сырья на пластину, расположенную до зоны расплава.

В случае использования данного устройства для получения монокристалла введением осушенного воздуха в порошкообразное сырье с целью удаления влаги из порошка сырья можно предотвратить вызванную влагой конденсацию порошка сырья и стабильно загружать порошкообразное сырье, имеющее постоянное отношение компонентов, на расположенную до зоны расплава пластину.

Устройство для получения монокристалла, раскрытое в п.3 формулы изобретения, характеризуется тем, что расположенная до зоны расплава пластина вместе с тиглем установлена внутрь электрической печи, а средства переноса сырья содержат транспортную трубу, один конец которой связан с бункером порошкообразного сырья, а другой вставлен в электрическую печь, для переноса порошкообразного сырья на расположенную до зоны расплава пластину, и охлаждающие средства для наружного охлаждения указанной транспортной трубы.

Благодаря наличию указанных признаков структура устройства может быть сделана достаточно простой, т. к. тигель и расположенную до зоны расплава пластину можно нагревать от одной и той же электрической печи. Более того, охлаждением транспортной трубы переноса порошкообразного сырья от участка вне электрической печи на расположенную до зоны расплава пластину внутри электрической печи можно предотвратить плавление порошкообразного сырья в середине транспортной трубы и заполнение транспортной трубы.

Устройство для получения монокристалла, раскрытое в п.4 формулы изобретения, представляет собой устройство, предназначенное для выращивания кристалла посредством установки тигля для плавления сырья в электрическую печь, выдерживания тигля при температуре не ниже точки плавления сырья и вытягивания вниз с одновременным вращением затравочного кристалла в положении, при котором верхняя концевая часть затравочного кристалла приводится в контакт с расплавом сырья, вытекающим из небольшого отверстия, проделанного в нижней части тигля. Устройство характеризуется тем, что оно содержит камеру плавления сырья, предназначенную для плавления порошкообразного сырья (сырья в порошкообразном состоянии) с образованием расплава сырья, средства загрузки порошкообразного сырья, предназначенные для введения порошкообразного сырья в указанную камеру плавления сырья, и средства введения расплава сырья, предназначенные для введения расплава сырья, находящегося внутри камеры плавления сырья, в тигель.

При использовании подобного устройства для получения монокристалла порошкообразное сырье загружают в камеру плавления сырья с помощью средств загрузки порошкообразного сырья и расплавляют сырье в камере плавления сырья с образованием расплава сырья. Этот расплав сырья вводят с тигель с помощью средств введения расплава сырья. Таким образом, кристалл может расти одновременно с загрузкой расплава сырья в тигель. Поэтому рост кристалла может происходить в условиях, когда количество расплава в тигле от момента начала роста кристалла до конца этого процесса выдерживается существенно постоянным для поддержания количества расплава сырья, вытекающего из небольшого отверстия в нижней части тигля.

Устройство для получения монокристалла, представленное в п.5 формулы изобретения, характеризуется тем, что указанные в п.4 средства загрузки порошкообразного сырья содержат бункер порошкообразного сырья, предназначенный для получения порошкообразного сырья, средства введения осушенного воздуха, предназначенные для введения осушенного воздуха в порошкообразное сырье внутри указанного бункера порошкообразного сырья, и средства переноса сырья, предназначенные для переноса порошкообразного сырья из указанного бункера порошкообразного сырья в камеру плавления сырья.

В случае использования данного устройства для получения монокристалла введением осушенного воздуха в порошкообразное сырье с целью удаления влаги из порошка сырья можно предотвратить вызванную влагой конденсацию сырья и стабильно загружать порошкообразное сырье, имеющее постоянное отношение компонентов.

Устройство для получения монокристалла, раскрытое в п.6 формулы изобретения, характеризуется тем, что камеру плавления сырья, включенную в п.5, вместе с тиглем устанавливают внутрь электрической печи, а средства переноса сырья содержат транспортную трубу, один конец которой связан с бункером порошкообразного сырья, а другой вставлен в электрическую печь, для переноса порошкообразного сырья в камеру плавления сырья, и охлаждающие средства для наружного охлаждения указанной транспортной трубы.

Благодаря наличию указанных признаков структура устройства может быть сделана достаточно простой, т.к. тигель и камеру плавления сырья можно нагревать от одной и той же электрической печи. Более того, охлаждением транспортной трубы, предназначенной для переноса порошкообразного сырья от участка вне электрической печи в камеру плавления сырья внутри электрической печи можно предотвратить плавление порошкообразного сырья в середине транспортной трубы и заполнение транспортной трубы.

Устройство для получения монокристалла, раскрытое в п.7 формулы изобретения, характеризуется тем, что камера плавления сырья установлена над тиглем, а средства введения расплава сырья содержат направляющий компонент, предназначенный для переноса по его поверхности расплава сырья, вытекающего наружу и стекающего вниз из небольшого отверстия, проделанного в нижней части камеры плавления сырья, для направления расплава в тигель.

Благодаря применению указанного устройства по настоящему изобретению расплав сырья, вытекающий из нижней части камеры плавления сырья, переносится по поверхности направляющего компонента и опускается под действием собственного веса таким образом, чтобы загрузиться в тигель. Остающиеся в расплаве сырья вода или примеси, прежде чем попасть в тигель, испаряются и удаляются теплом, исходящим от электрической печи.

Способ получения монокристалла согласно п.8 формулы изобретения обеспечивает выращивание кристалла посредством установки тигля для плавления сырья в электрическую печь, выдерживания тигля при температуре не ниже точки плавления сырья и вытягивания вниз с одновременным вращением затравочного кристалла в положении, при котором верхняя концевая часть затравочного кристалла приводится в контакт с расплавом сырья, вытекающим из небольшого отверстия, проделанного в нижней зоне тигля. Предложенный способ характеризуется тем, что выращивание кристалла осуществляют при непрерывной загрузке расплава сырья в тигель с целью поддержания количества расплава сырья, вытекающего из небольшого отверстия в нижней части тигля, существенно постоянным путем установки пластины, расположенной до зоны расплава, внутри электрической печи внутри тигля или над ним, загрузки порошкообразного сырья в соответствующем количестве каждый раз из бункера порошкообразного сырья вне электрической печи на расположенную до зоны расплава пластину через транспортную трубу таким образом, чтобы расплавить порошкообразное сырье на расположенной до зоны расплава пластине, и введения расплава в часть тигля, собирающую расплав.

Согласно вышеуказанному способу можно легко получить монокристалл, имеющий большой диаметр и большую длину. Более того, полученный кристалл может иметь стабильный состав, т.к. процесс выращивания кристалла из порошкообразного сырья проводится непрерывно.

Способ получения монокристалла согласно п.11 формулы изобретения обеспечивает выращивание кристалла посредством установки тигля для плавления сырья в электрическую печь, выдерживания тигля при температуре не ниже точки плавления сырья и вытягивания вниз с одновременным вращением затравочного кристалла в положении, при котором верхняя концевая часть затравочного кристалла приводится в контакт с расплавом сырья, вытекающим из небольшого отверстия, проделанного в нижней части тигля. Предложенный способ характеризуется тем, что выращивание кристалла осуществляют одновременно с непрерывной загрузкой расплава сырья в тигель с целью поддержания существенно постоянным количества расплава сырья, вытекающего из небольшого отверстия в нижней части тигля, путем установки камеры плавления сырья над тиглем внутри электрической печи, загрузки порошкообразного сырья в соответствующем количестве каждый раз из бункера порошкообразного сырья, находящегося вне электрической печи, в камеру плавления сырья через транспортную трубу таким образом, чтобы расплавить порошкообразное сырье в камере плавления сырья, и последующего введения расплава в зону тигля, собирающую расплав.

Согласно вышеуказанному способу можно легко получить монокристалл, имеющий большой диаметр и большую длину. Более того, полученный кристалл может иметь стабильный состав, т.к. процесс выращивания кристалла из порошкообразного сырья проводится непрерывно.

Способ получения монокристалла согласно п.9 или 12 формулы изобретения характеризуется тем, что порошкообразное сырье, примененное в способе по п.8 или 11, представляет собой порошкообразное сырье, содержащее смесь порошка лития (Li) и порошка ниобия (Nb), а компонентное отношение лития к общему количеству лития и ниобия в порошкообразном сырье составляет от 48,5 до 50,0%.

Согласно данному способу можно получить монокристалл ниобата лития (LiNbO3) с инконгруэнтным составом расплава, имеющий компонентное отношение лития к общему количеству лития и ниобия от 48,5 до 50,0% и диаметр 3 см или более.

Способ получения монокристалла согласно п.10 или 13 формулы изобретения характеризуется тем, что порошкообразное сырье, примененное в способе по п.8 или 11, представляет собой порошкообразное сырье, содержащее смесь порошка лития (Li) и порошка тантала (Та), а компонентное отношение лития к общему количеству лития и тантала в порошкообразном сырье составляет от 48,5 до 50,0%.

Согласно данному способу можно получить монокристалл танталата лития (LiTaO3) с инконгруэнтным составом расплава, имеющий компонентное отношение лития к общему количеству лития и тантала от 48,5 до 50,0% и диаметр 3 см или более.

Монокристалл согласно п.14 формулы изобретения представляет собой монокристалл с инконгруэнтным составом расплава и диаметром 3 см или более.

Монокристалл согласно п.17 формулы изобретения - это монокристалл с инконгруэнтным составом расплава, который представляет собой ниобат лития (LiNbO3), а компонентное отношение лития к общему количеству лития и ниобия, содержащемуся в нем, составляет от 48,5 до 50,0%.

Монокристалл согласно п.15 формулы изобретения - это монокристалл по п. 14 с инконгруэнтным составом расплава, который представляет собой танталат лития (LiTaO3), а компонентное отношение лития к общему количеству лития и тантала, содержащемуся в нем, составляет от 48,5 до 50,0%.

Монокристалл согласно п. 16 или 19 формулы изобретения характеризуется тем, что имеет характеристики согласно любому из пп.14, 15, 17 и 18, а разброс значений его точки Кюри составляет2oС или менее.

Монокристалл согласно п.17 формулы изобретения - это монокристалл ниобата лития, характеризующийся тем, что имеет диаметр 3 см или более. При этом компонентное отношение лития к общему количеству содержащихся в данном монокристалле лития и ниобия составляет от 48,5 до 50,0%.

Монокристалл согласно п.18 формулы изобретения - это монокристалл согласно п.17 с диаметром 3 см или более.

Монокристалл согласно п. 20 формулы изобретения представляет собой монокристалл с инконгруэнтным составом расплава, полученный способом по любому из пп.8-13. При этом диаметр монокристалла составляет 3 см или более.

Перечень фигур чертежей Фиг. 1 (а) представляет собой схематичное изображение общего вида одного из вариантов осуществления устройства для получения монокристалла согласно настоящему изобретению, фиг.1(b) - фрагмент увеличенного поперечного сечения устройства, показанного на фиг.1(а).

Фиг. 2 представляет собой поперечное сечение главной части другого варианта осуществления устройства для получения монокристалла согласно настоящему изобретению.

Фиг. 3 представляет собой поперечное сечение главной части еще одного варианта осуществления устройства для получения монокристалла согласно настоящему изобретению.

Фиг. 4 представляет собой поперечное сечение главной части следующего варианта осуществления устройства для получения монокристалла согласно настоящему изобретению.

Фиг. 5(а) представляет собой схематичное изображение общего вида дополнительного варианта осуществления устройства для получения монокристалла согласно настоящему изобретению, а фиг.5(b) и (с) - фрагменты увеличенного поперечного сечения устройства, показанного на фиг.5(а).

Фиг. 6 представляет собой схему для объяснения действия одного из примеров обычных устройств для получения монокристалла.

Фиг. 7 представляет собой схему для объяснения действия одного из примеров обычных устройств для получения монокристалла.

Фиг. 8 представляет собой схему для объяснения действия одного из примеров обычных устройств для получения монокристалла.

Фиг.9 представляет собой фазовую диаграмму танталата лития.

Сведения, подтверждающие возможность осуществления изобретения Более подробно настоящее изобретение будет описано с помощью вариантов осуществления, показанных на чертежах.

(Первый вариант осуществления) Фиг. 1(а) представляет собой схематичное изображение общего вида одного из вариантов осуществления устройства 1 для получения монокристалла согласно настоящему изобретению. Обоснование этого варианта проводится для случая получения монокристаллов веществ с относительно высокой точкой плавления (1300oС-1900oС), таких как ТЛ, рутил (ТiO2) и различные оптически активные кристаллы.

На фиг.1(а) ссылочные номера 10, 20 и 30 относятся соответственно к электрической печи, средствам загрузки порошкообразного сырья и устройству вытягивания кристалла вниз.

В электрической печи 10 вокруг цилиндрической кварцевой трубы 10а установлен радиочастотный нагревательный индуктор 10b. Платиновый тигель 2 и тепловой экран 13 размещаются соответственно в верхней и нижней частях электрической печи 10. Внутри тигля 2 около его верхнего входного отверстия размещается расположенная до зоны расплава пластина 3 в форме зонтика (другими словами, в форме свода). Указанная пластина 3 изготавливается из металла с хорошей теплоустойчивостью и устойчивостью к коррозии, такого как платина или иридий, и поддерживается в фиксированном положении с помощью не показанных на чертеже опор за счет того, что отдельные участки их периферии присоединены к тиглю 2. Поскольку все перечисленные компоненты, т.е. тигель 2, расположенная до зоны расплава пластина 3 и тепловой экран изготовлены из металла, они нагреваются электромагнитными волнами, генерируемыми радиочастотным нагревательным индуктором 10b.

Указанный индуктор 10b разделен по вертикальной оси на множество спиральных элементов. Верхние спиральные элементы вызывают нагрев тигля 2 и пластины 3, расположенной до зоны расплава, до температуры не ниже точки плавления ТiO2 (например, до 1900oС). Нижние спиральные элементы вызывают нагрев теплового экрана 13 до температуры ниже точки плавления ТiO2 (например, до 1800oС). Тепловой экран 13 вызывает рост монокристалла от нижней грани тигля 2, нагреваемой радиационным теплом при отсутствии контакта с окружением, чтобы предотвратить образование кристаллических дефектов, вызванных резким падением температуры кристалла. Тепловой экран 13 оказывает также отжиговый эффект, снимающий напряжение кристалла.

Верхнее входное отверстие электрической печи 10, содержащей кварцевую трубу 10а, закрыто крышкой 10с, изготовленной из теплоизолятора. Нижний конец кварцевой трубы 10а присоединен к цилиндрическому кварцевому контейнеру 10d, имеющему дно. Вся конструкция электрической печи 10 удерживается в вертикальном положении с помощью опоры, не показанной на фиг., через теплоизолирующую стенку 10е, окружающую кварцевый контейнер 10d.

Средства загрузки порошкообразного сырья представляют собой устройство 20, которое имеет бункер 6 порошкообразного сырья для приема порошкообразного сырья 5р, трубу 7 введения сырья, предназначенную для введения порошкообразного сырья 5р из не показанного на фиг. источника загрузки порошкообразного сырья в бункер порошкообразного сырья 6, трубу 8 введения осушенного газа, служащую в качестве средств для введения осушенного газа (осушенный воздух, азот, аргон, гелий или т.п.) из не показанного на фиг. источника получения осушенного воздуха к порошкообразному сырью 5р внутри бункера 6 порошкообразного сырья, и средства переноса сырья, выполненные в форме устройства 21, предназначенного для переноса порошкообразного сырья 5р из бункера 6 порошкообразного сырья в тигель 2, к пластине 3 для приема сырья. Средства загрузки порошкообразного сырья имеют мешалку 31. Порошкообразное сырье 5р внутри бункера 6 порошкообразного сырья форсировано перемешивается за счет осуществляемого от двигателя 33 вращения лопастей 32 мешалки, установленной внутри бункера 6 порошкообразного сырья.

Устройство 21 переноса сырья имеет транспортную трубу 9, у которой верхняя концевая часть вставлена в нижнюю часть бункера 6 сырья, а конец нижней части вставлен в электрическую печь 10 для переноса порошкообразного сырья 5р к расположенной до зоны расплава пластине 3, охлаждающий кожух 11 (выполняющий функцию охлаждающих средств для охлаждения указанной транспортной трубы 9) и насос 12 загрузки порошка, пристроенный к середине транспортной трубы 9 для форсированного переноса порошкообразного сырья 5р. Транспортная труба 9 и охлаждающий кожух 11 вставлены в сквозное отверстие, проделанное в центральной части крышки 10с электрической печи 10. Охлаждающий кожух 11 установлен таким образом, чтобы окружать периметр транспортной трубы 9, и предназначен для поддержания температуры внутри транспортной трубы 9 ниже температуры плавления сырья для кристалла путем погашения тепла, приходящего от электрической печи 10, за счет наружного охлаждения транспортной трубы 9 охлаждающей средой, проходящей внутри кожуха.

Устройство 30 вытягивания кристалла вниз содержит цилиндрический вращающийся стержень 15, имеющий у своей верхней концевой части поддерживающий узел 15а, предназначенный для поддерживания затравочного кристалла 4, и устройство 16 вытягивания вниз с вращением, предназначенное для аксиального вращения вращающегося стержня 15 с удерживанием стержня 15 в вертикальном положении и, одновременно, с вертикальным его перемещением. Вращающийся стержень 15 проходит насквозь через дно кварцевого контейнера 10d, а скользящая часть указанного стержня 15 и кварцевый контейнер 10d герметизированы с помощью уплотняющего компонента 17.

Отверстие 18 для введения регулирующего газа расположено в боковой стенке около нижнего конца кварцевого контейнера 10d, при этом указанное отверстие предназначено для введения газа (например, газовой смеси N2 и O2 в количестве 2-3 частей по весу N2, или газообразного Аr) с целью регулирования атмосферы выращивания кристалла в камере обработки, образованной кварцевой трубой 10а, крышкой 10с и кварцевым контейнером 10d. Газ для регулирования атмосферы, введенный в камеру обработки, выпускается из выпускного отверстия 19 в крышке 10с и возвращается посредством возвращающего устройства, не приведенного на фиг.

На фиг. 1(b) показана структура тигля 2 и пластины 3, расположенной до зоны расплава. Как показано на фиг.1(b), порошкообразное сырье 5р, введенное через транспортную трубу 9 устройства 21 переноса сырья в электрическую печь 10, падает на расположенную до зоны расплава пластину 3. Указанная пластина нагревается электромагнитными волнами, излучаемыми нагревательным индуктором 10b электрической печи 10, до температуры не ниже точки плавления кристаллического сырья. Таким образом, порошкообразное сырье плавится на расположенной до зоны расплава пластине 3, капая в виде расплава сырья в часть тигля 2, собирающую расплав. Нижняя часть тигля 2 сделана в форме воронки (в форме обратного конуса). Кроме того, в центральной части нижней зоны и по ее периферии проделано множество небольших отверстий 2а, 2а..., имеющих одинаковый диаметр (например, 0,5 мм). Возможность вытекания расплава 5m сырья из указанных отверстий позволяет эффективно использовать целиком нижнюю грань тигля 2, и расплав 5mа сырья удерживается между этой нижней гранью и верхней гранью растущего кристалла 18, обеспечивая рост кристалла.

Поэтому кристалл можно вырастить, выдерживая существенно постоянным количество расплава 5m сырья, вытекающего из небольших отверстий 2а в дне тигля 2, путем регулирования количества сырья 5р, загруженного на расположенную до зоны расплава пластину 3, и непрерывной загрузки расплава 5m сырья, поддерживая количество потока сырья 5m, стекающего с пластины 3, расположенной до зоны расплава, в часть тигля 2, собирающую расплав.

Толщину расплава 5mа сырья, находящегося между тиглем 2 и верхней гранью кристалла 18 (границей кристалла), предлагается довести до оптимальной, регулируя температуру внутри печи, скорость вращения и скорость опускания вращающегося стержня 15 с учетом в числе главных факторов количества расплава 5m сырья, загружаемого с пластины 3, расположенной до зоны расплава, вязкости расплава 5m сырья, температуры тигля 2, скорости роста кристалла, температуры кристалла 18 и т.п. Другими словами, с учетом естественного конвекционного переноса расплава 5mа сырья, т.е. конвекционного переноса на основе разности между температурой тигля 2 и температурой кристалла 18, путем возбуждения принудительного конвекционного переноса, возникающего из центростремительной силы, вызванной вращением вращающегося стержня