Способ и устройство (варианты) для электролитической полировки межсоединений в полупроводниковых устройствах

Реферат

 

Использование: технология полупроводниковых приборов. Сущность изобретения: устройство электролитической полировки для полировки металлического слоя, сформированного на полупроводниковой пластине, содержит электролит, гнездо для полировки, патрон для полупроводниковых пластин, впускные отверстия для текучей среды и по меньшей мере один катод. Патрон для полупроводниковых пластин удерживает и позиционирует полупроводниковую пластину в гнезде для полировки. Электролит подают через впускные отверстия для текучей среды в гнездо для полировки. Затем подают ток в электролит для осуществления электролитической полировки полупроводниковой пластины. В соответствии с одним из аспектов данного изобретения отдельные части полупроводниковой пластины можно подвергать электролитической полировке для повышения единообразия электролитической полировки полупроводниковой пластины. Техническим результатом изобретения является повышение единообразия электролитически отполированной полупроводниковой пластины. 4 с. и 126 з.п. ф-лы, 108 ил., 4 табл.

Данная заявка является продолжением заявки на патент США серийный 09/346699, поданной 2 июля 1999, которая включает в себя ранее поданную заявку серийный 60/092316 на "Способ и устройство для электроосаждения и планаризации полупроводниковой пластины", поданной 09 июля 1998 г.

Данное изобретение в общем относится к способам и устройствам для электролитической полировки металлических слоев на полупроводниковых пластинах. Конкретнее, данное изобретение относится к системе для электролитической полировки межсоединений в полупроводниковых устройствах, выполненных на полупроводниковых пластинах.

Как правило, полупроводниковые устройства изготавливают на дисках полупроводниковых материалов, называемых полупроводниковыми пластинами. В частности, полупроводниковые пластины первоначально нарезают из кремниевого слитка. Затем полупроводниковые пластины проходят неоднократные процессы маскирования, травления и осаждения для формирования электронных схем полупроводниковых устройств.

За последние десятилетия полупроводниковая промышленность повысила мощность полупроводниковых устройств согласно закону Мура, который прогнозирует, что мощность полупроводниковых устройств будет удваиваться каждые 18 месяцев. Этот рост мощности полупроводниковых устройств отчасти осуществлен за счет уменьшения топологического размера элемента (т.е. наименьший размер, имеющийся в данном устройстве) этих полупроводниковых устройств. Фактически топологический размер полупроводниковых устройств быстро прошел путь от 0,35 мкм до 0,25 мкм и сейчас достиг 0,18 мкм. Эта тенденция в сторону уменьшения размеров полупроводниковых устройств, несомненно, будет продолжаться до этапа, меньшего 0,18 мкм.

Но один потенциальный ограничивающий фактор разработки более мощных полупроводниковых устройств заключается в возрастании задержек сигнала в межсоединениях (линии проводников, которые соединяют элементы одного полупроводникового устройства и/или соединяют какое-либо число полупроводниковых устройств вместе). Поскольку топологический размер полупроводниковых устройств уменьшился, плотность межсоединений в устройствах возросла. Но более тесная близость межсоединений повышает межлинейную емкость межсоединений, в результате чего растет задержка сигнала в межсоединениях. Как правило, задержки в межсоединениях возрастают с квадратом уменьшения топологического размера. Напротив, задержки сигнала на логический элемент (т.е. задержки в логических элементах или мезаструктурах полупроводниковых устройств) возрастают линейно при уменьшении топологического размера.

Один из обычных способов компенсирования этого роста задержек в межсоединениях заключался в увеличении числа слоев металла. Но это решение имеет недостаток, заключающийся в увеличении производственных издержек, связанных с формированием дополнительных слоев металла. Помимо этого, эти дополнительные слои металла вырабатывают дополнительное тепло, которое может отрицательно сказываться и на рабочих характеристиках, и на надежности кристалла интегральной схемы.

Поэтому полупроводниковая промышленность начала использовать медь вместо алюминия для формирования металлических межсоединений. Одно из преимуществ меди заключается в большей электрической проводимости по сравнению с алюминием. Медь также обладает меньшей стойкостью к электромиграции (в том смысле, что выполненная из меди линия будет иметь меньшую тенденцию к утончению под нагрузкой тока), чем алюминий. Но один значительный недостаток использования меди заключается в ее тенденции к просачиванию в кремниевую подложку, тем самым загрязняя полупроводниковое устройство.

Кроме этого, до того, как медь можно будет широко использовать для межсоединений, потребуется новая методика обработки. В частности, в обычном процессе узорной инкрустации на металл наносят рисунок в виде каналообразных канавок и/или сквозных отверстий. Затем осажденный металл снова полируют методом химико-механической полировки (ХМП). В общем, в зависимости от конструкции структуры межсоединений требуется полировать от половины микрона до 1,5 мм металла. Полировка такого большого количества металла с помощью ХМП требует длительного времени полировки и расходует большое количество абразивной суспензии, в результате чего возрастают производственные затраты.

В приводимом в качестве примера варианте реализации данного изобретения устройство электролитической полировки для полировки металлического слоя, сформированного на полупроводниковой пластине, содержит электролит, гнездо для полировки, патрон для полупроводниковой пластины, впускное отверстие для текучей среды и по меньшей мере один катод. Патрон для полупроводниковой пластины удерживает и позиционирует полупроводниковую пластину в гнезде для полировки. Электролит подают через впускное отверстие для текучей среды в гнездо для полировки. Затем катод подает ток электролитической полировки в электролит для осуществления электролитической полировки полупроводниковой пластины. В соответствии с одним из аспектов данного изобретения отдельные части полупроводниковой пластины можно подвергать электролитической полировке в целях повышения единообразности полупроводниковой пластины, обрабатываемой электролитической полировкой.

Предмет данного изобретения конкретно указан и сформулирован в заключительной части описания. Но данное изобретение как в отношении организации, так и способа действия можно наилучшим образом понять из следующего ниже описания в совокупности с формулой изобретения и прилагаемыми чертежами, на которых аналогичные позиции могут иметь аналогичные ссылочные обозначения.

Фиг. 1A-1D - сечения полупроводниковой пластины в соответствии с различными аспектами данного изобретения; Фиг. 2 - блок-схема обработки полупроводниковых пластин в соответствии с различными аспектами данного изобретения; Фиг. 3А-3С - схематические изображения горизонтальной проекции, поперечного сечения и боковых проекций соответственно установки обработки полупроводниковых пластин в соответствии с различными аспектами данного изобретения; Фиг. 4А-4D - изображения поперечных сечений другой полупроводниковой пластины в соответствии с различными аспектами данного изобретения; Фиг. 5 - еще одна блок-схема обработки полупроводниковых пластин в соответствии с различными аспектами данного изобретения; Фиг. 6А-6С - схематические изображения горизонтальной проекции, поперечного сечения и боковых проекций соответственно еще одной установки обработки полупроводниковых пластин в соответствии с различными аспектами данного изобретения; Фиг.7А - горизонтальная проекция части устройства электролитической полировки в соответствии с различными аспектами данного изобретения; Фиг. 7В - частичное сечение по линии 7В-7В в Фиг.7А и частично в виде блок-схемы устройства электролитической полировки, изображаемого в Фиг.7А; Фиг.8 - график различных форм волны, которые можно использовать в устройстве электролитической полировки согласно Фиг.7А; Фиг. 9А-9D - горизонтальная проекция части альтернативных вариантов реализации устройства электролитической полировки в соответствии с различными аспектами данного изобретения; Фиг. 10 - график различных форм волны, иллюстрирующий некоторую часть способа электролитической полировки в соответствии с различными аспектами данного изобретения; Фиг. 11А - горизонтальная проекция части еще одного альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг.11В - вид частичного сечения по линии 11В-11В в Фиг.11А и частично в виде блок-схемы альтернативного варианта реализации, изображаемого в Фиг. 11А; Фиг.12А - горизонтальная проекция части второго альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг.12В - вид частичного сечения по линии 12В-12В в Фиг.12А и частично в виде блок-схемы альтернативного варианта реализации, изображаемого в Фиг. 12А; Фиг. 13А - горизонтальная проекция части третьего альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг.13В - частичное сечение по линии 13В-13В в Фиг.13А и частично в виде блок-схемы альтернативного варианта реализации, изображаемого в Фиг.13А; Фиг. 14А - горизонтальная проекция четвертого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг.14В - частичное сечение по линии 14В-14В в Фиг.14А и частично в виде блок-схемы альтернативного варианта реализации, изображаемого в Фиг.14А; Фиг. 15 - сечение пятого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг.16А - горизонтальная проекция части шестого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг.16В - частичное сечение по линии 16В-16В в Фиг.16А и частично в виде блок-схемы альтернативного варианта реализации, изображаемого в Фиг.16А; Фиг. 17А - горизонтальная проекция седьмого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг.17В - частичное сечение по линии 17В-17В в Фиг.17А и частично в виде блок-схемы альтернативного варианта реализации, изображаемого в Фиг.17А; Фиг. 18А - сечение восьмого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг. 18В - сечение девятого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг. 19А - сечение десятого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг. 19В - сечение одиннадцатого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг. 20А - горизонтальное сечение части двенадцатого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг.20В - частичное сечение по линии 20В-20В в Фиг.20А и частично в виде блок-схемы альтернативного варианта реализации, изображаемого в Фиг.20А; Фиг. 21А - горизонтальное сечение части тринадцатого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг. 21В - горизонтальное сечение части четырнадцатого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг. 22А - горизонтальное сечение части пятнадцатого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг.22В - частичное сечение по линии 22В-22В в Фиг.22А и частично в виде блок-схемы альтернативного варианта реализации, изображаемого в Фиг.22А; Фиг.23А - горизонтальное сечение части шестнадцатого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг. 23В - горизонтальное сечение части семнадцатого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг. 23С - горизонтальное сечение части восемнадцатого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг. 24А - горизонтальное сечение части девятнадцатого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг.24В - частичное сечение по линии 24В-24В в Фиг.24А и частично в виде блок-схемы альтернативного варианта реализации, изображаемого в Фиг.24А; Фиг.25 - горизонтальное сечение части двадцатого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг. 26 - горизонтальное сечение части двадцать первого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг. 27А - горизонтальное сечение части двадцать второго альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг.27В - горизонтальное сечение части двадцать третьего альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг. 27С - горизонтальное сечение части двадцать четвертого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг. 28А - горизонтальное сечение части двадцать пятого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг.28В - частичное сечение по линии 28В-28В в Фиг.28А и частично в виде блок-схемы альтернативного варианта реализации, изображаемого в Фиг.28А; Фиг. 29А - горизонтальное сечение части двадцать шестого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг.29В - частичное сечение по линии 29В-29В в Фиг.29А и частично в виде блок-схемы альтернативного варианта реализации, изображаемого в Фиг.29А; Фиг.30А - горизонтальное сечение части двадцать седьмого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг.30В - частичное сечение по линии 30В-30В в Фиг.30А и частично в виде блок-схемы альтернативного варианта реализации, изображаемого в Фиг.30А; Фиг.31А - горизонтальное сечение части двадцать восьмого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг.31В - частичное сечение по линии 31В-31В в Фиг.31А и частично в виде блок-схемы альтернативного варианта реализации, изображаемого в Фиг.31А; Фиг.32А - сечение части двадцать девятого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг.32В - сечение части тридцатого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг. 32С - сечение части тридцать первого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг. 32D - сечение части тридцать второго альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг. 33 - горизонтальное сечение полупроводниковой пластины, повергаемой электролитической полировке в соответствии с различными аспектами данного изобретения; Фиг.34А - горизонтальное сечение части тридцать третьего альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг. 34В - горизонтальное сечение части тридцать четвертого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг. 34С - горизонтальное сечение части тридцать пятого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг. 34D - горизонтальное сечение части тридцать шестого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг.35А - сечение части тридцать седьмого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг.35В - сечение части тридцать восьмого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг.36А - горизонтальное сечение части тридцать девятого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг.36В - частичное сечение по линии 36В-36В в Фиг.36А и частично в виде блок-схемы альтернативного варианта реализации, изображаемого в Фиг.36А; Фиг. 37 - совокупность форм волны, изображающая часть способа электролитической полировки в соответствии с различными аспектами данного изобретения; Фиг. 38А - горизонтальное сечение части сорокового альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг.38В - частичное сечение по линии 38В-38В в Фиг.38А и частично в виде блок-схемы альтернативного варианта реализации, изображаемого в Фиг.38А; Фиг. 39А - горизонтальное сечение части сорок первого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг.39В - частичное сечение по линии 39В-39В в Фиг.39А и частично в виде блок-схемы альтернативного варианта реализации, изображаемого в Фиг.39А; Фиг.40А - горизонтальное сечение части сорок второго альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг.40В - частичное сечение по линии 40В-40В в Фиг.40А и частично в виде блок-схемы альтернативного варианта реализации, изображаемого в Фиг.40А; Фиг. 41 - совокупность форм волны, изображающая часть способа электролитической полировки в соответствии с различными аспектами данного изобретения; Фиг.42 - дополнительные совокупности форм волны, которые можно использовать применительно к данному изобретению; Фиг. 43А - горизонтальное сечение части сорок третьего альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг.43В - частичное сечение по линии 43В-43В в Фиг.43А и частично в виде блок-схемы альтернативного варианта реализации, изображаемого в Фиг.43А; Фиг. 44А - горизонтальное сечение части сорок пятого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг.44В - частичное сечение по линии 44В-44В в Фиг.44А и частично в виде блок-схемы альтернативного варианта реализации, изображаемого в Фиг.44А; Фиг. 45 - частичное сечение, частично в виде блок-схемы, сорок пятого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг. 46 - частичное сечение, частично в виде блок-схемы, сорок шестого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг.47А-47С - схематические изображения горизонтальной проекции, поперечного сечения и боковых проекций соответственно еще одного варианта реализации установки обработки полупроводниковых пластин в соответствии с различными аспектами данного изобретения; Фиг. 48 - блок-схема, иллюстрирующая работу части программного обеспечения для управления установкой обработки полупроводниковой пластины в соответствии с различными аспектами данного изобретения; Фиг.49А-49С - схематические изображения горизонтальной проекции, поперечного сечения и боковых проекций соответственно еще одного варианта реализации установки обработки полупроводниковых пластин в соответствии с различными аспектами данного изобретения; Фиг. 50 - схематическое изображение горизонтальной проекции еще одного варианта реализации установки обработки полупроводниковых пластин в соответствии с различными аспектами данного изобретения; Фиг. 51 - схематическое изображение горизонтальной проекции части еще одного варианта реализации установки обработки полупроводниковых пластин в соответствии с различными аспектами данного изобретения; Фиг.52А-52С - схематическое изображение горизонтальной проекции, сечения и боковых проекций соответственно еще одного варианта реализации установки обработки полупроводниковых пластин в соответствии с различными аспектами данного изобретения; Фиг. 53 - форма волны, иллюстрирующая часть операции обработки полупроводниковой пластины в соответствии с различными аспектами данного изобретения; Фиг. 54А - горизонтальная проекция части сорок седьмого альтернативного варианта реализации в соответствии с различными аспектами данного изобретения; Фиг.54В - частичное сечение по линии 54В-54В в Фиг.54А и частично в виде блок-схемы альтернативного варианта реализации, изображаемого в Фиг.54А.

Для более глубокого понимания данного изобретения следующее ниже описание раскрывает многочисленные конкретные подробности, такие как определенные материалы, параметры и пр. Необходимо отметить, что данное описание не ограничивает диапазон данного изобретения, но приводится для полного описания приводимых в качестве примера вариантов реализации данного изобретения.

Обращаясь к Фиг. 1, полупроводниковая пластина 31 согласно одному из аспектов данного изобретения содержит слой 124 подложки. В частности, в приводимом в качестве примера варианте реализации данного изобретения слой 124 подложки предпочтительно содержит кремний. Необходимо отметить, что слой 124 подложки может содержать различные полупроводниковые материалы, такие как арсенид галлия и т.п., в зависимости от конкретного применения.

Полупроводниковая пластина 31 согласно еще одному аспекту данного изобретения содержит диэлектрический слой 123, сформированный на слое 124 подложки. В данном приводимом в качестве примера варианте реализации диэлектрический слой 123 предпочтительно содержит двуокись кремния (SiO2). Диэлектрический слой 123 может быть сформирован на слое 124 подложки любым целесообразным способом осаждения, таким как осаждение из паровой фазы, испарение, ионное распыление и т.п.

Помимо этого, диэлектрический слой 123 может содержать различные материалы со значениями диэлектрической проницаемости ("К") ниже этих значений у SiО2; при этом эти различные материалы в общем имеют название материалов низкого К, например силсесквиоксан водорода (ГСК), Ксерогель, полимеры, аэрогель и т.п. По сравнению с SiO2 с диэлектрической проницаемостью около 4,2 ХСК имеет диэлектрическую проницаемость около 3,0-2,5; Ксерогель имеет диэлектрическую проницаемость около 2,0. Материал с низким К обычно обеспечивает более лучшую диэлектрическую изоляцию. Поэтому использование материала с низким К в качестве диэлектрического слоя 123 может содействовать формированию полупроводниковых устройств с меньшим топологическим размером.

После соответствующего формирования диэлектрического слоя 123 на слое 124 подложки формируют схемы для полупроводниковых устройств соответствующим образом с помощью любого удобного способа. В данном приводимом в качестве примера варианте реализации предпочтительно используют способ узорной инкрустации. Соответственно, канавки (также называемые зазорами) 125 и логические элементы (также называемые мезаструктурами) 126 формируют в диэлектрическом слое 123 с помощью целесообразного способа структурирования, такого как фотомаскирование, фотолитография, микролитография и т.п.

Затем на диэлектрическом слое 123 соответствующим образом формируют барьерный слой 122 согласно еще одному аспекту данного изобретения. Согласно Фиг.1А барьерный слой 122 также целесообразным образом покрывает стенки канавок 125. В соответствии с излагаемым ниже описанием, когда металлический слой 121, содержащий медь, сформирован на диэлектрическом слое 123, барьерный слой 122 соответствующим образом не дает меди в металлическом слое 121 диффундировать в диэлектрический слой 123. Соответственно, в данном приводимом в качестве примера варианте реализации барьерный слой 122 предпочтительно содержит материал, стойкий к диффундированию меди, например титан, тантал, вольфрам, нитрид титана, нитрит тантала, нитрид вольфрама и т.п. Барьерный слой 122 можно осадить с помощью любого целесообразного способа осаждения, такого как физическое осаждение из паровой фазы (ФОПФ), химическое осаждение из паровой фазы (ХОПФ) и т.п. Необходимо отметить, что в некоторых применениях барьерный слой 122 может быть исключен. Например, если диэлектрический слой 123 выполнен из материала, стойкого к диффундированию меди, или если диффузия меди в диэлектрический слой 123 не будет отрицательно сказываться на рабочих показателях полупроводникового устройства.

Как упоминалось выше, в зависимости от конкретного применения металлический слой 121 согласно еще одному аспекту данного изобретения можно соответствующим образом сформировать на барьерном слое 122 или на диэлектрическом слое 123. Кроме этого, металлический слой 121 соответствующим образом осаждают в канавке 125. В данном приводимом в качестве примера варианте реализации металлический слой 121 предпочтительно содержит медь. Соответственно, металлический слой 121 формируют на барьерном слое 122, чтобы предотвращать диффундирование меди из металлического слоя 121 в диэлектрический слой 123. Несмотря на то что данное изобретение особо целесообразно для его применения с металлическим слоем 121, содержащим медь, необходимо отметить, что металлический слой 121 может содержать различные электропроводные материалы, такие как никель, хром, цинк, кадмий, серебро, золото, родий, палладий, платину, олово, свинец, железо, индий и т.п.

Металлический слой 121 можно сформировать на барьерном слое 122 или на диэлектрическом слое 123 с помощью обычного способа, такого как ПОФП, ХОФП и т. п. Также металлический слой 121 можно сформировать с помощью способа электролитического осаждения, описываемого в совместно поданной заявке 09/232864 на "Устройство и способ осаждения" 15 января 1999 г., содержание которой полностью включено в данный документ в качестве ссылки.

Обращаясь к Фиг.1В, металлический слой 121, сформированный на мезаструктурах 126 согласно еще одному аспекту данного изобретения, соответствующим образом подвергают электролитической полировке. Данное изобретение можно целесообразно использовать в способе инкрустации, согласно которому схемы полупроводникового устройства наносят в канавки или зазоры. Необходимо отметить, что данное изобретение можно также применить с различными прочими способами в рамках концепции данного изобретения.

Обращаясь к Фиг.7А и 7В, изображено устройство 50 электролитической полировки полупроводниковых пластин согласно различным аспектам данного изобретения. В приводимом в качестве примера варианте реализации устройство 50 электролитической полировки полупроводниковых пластин содержит гнездо 100 для полировки, разделяемое на шесть секций 111, 112, 113, 114, 115 и 116 секционными стенками 109, 107, 105, 103 и 101. Согласно более подробному приводимому ниже описанию, необходимо отметить, что гнездо 100 для полировки можно разделить на любое число секций соответствующим числом секционных стенок.

Гнездо 100 для полировки и секционные стенки 109, 107, 105, 103 и 101 соответствующим образом формируют из любого целесообразного материала, электрически изолированного и стойкого к воздействию кислот и коррозии, такого как политетрафторэтилен (известный под названием тефлон), поливинилхлорид (ПВХ), поливинилиденфторид (ПВДФ), полипропилен и т.п. В приводимом в качестве примера варианте реализации гнездо 100 для полировки и секционные стенки 109, 107, 105, 103 и 101 предпочтительно формируют из ПВДФ. Необходимо отметить, что гнездо для полировки и каждая секционная стенка 109, 107, 105, 103 и 101 могут быть сформированы из различных материалов в зависимости от конкретного применения.

Согласно Фиг.7В, в данном приводимом в качестве примера варианте реализации электролит 34 втекает в гнездо 100 для полировки через впускные отверстия 4, 6 и 8, соответствующим образом выполненные в секциях 111, 113 и 115 соответственно. В частности, насос 33 закачивает электролит 34 из емкости 36 для электролита в пропускной фильтр 32 и в жидкостные регуляторы массового расхода (ЖРМР) 21, 22 и 23. Пропускной фильтр 32 отфильтровывает загрязнители из электролита 34. Таким образом загрязнители не могут попасть в гнездо 100 для полировки и забить ЖРМР 21, 22 и 23. В приводимом в качестве примера варианте реализации пропускной фильтр 32 удаляет частицы, крупнее 0,05 мкм, но меньшие, чем 0,1 мкм. Необходимо отметить, что в зависимости от конкретного применения можно использовать различные фильтрующие системы. Кроме этого, хотя фильтрация загрязнителей целесообразна, пропускной фильтр 32 можно исключить из устройства 50 электролитической полировки полупроводниковых пластин, не выходя из рамок данного изобретения.

Электролит 34 может содержать любую соответствующую жидкость электролитического осаждения, такую как фосфорная кислота и пр. В приводимом в качестве примера варианте реализации электролит 34 предпочтительно содержит ортофосфорную кислоту (Н3РO4) с приблизительной концентрацией между 60 мас.% и 85 мас.% и предпочтительно 76 мас.%. Электролит 34 также предпочтительно содержит ортофосфорную кислоту с содержанием металлического алюминия около 1% (от массы кислоты). Необходимо отметить, что концентрация и состав электролита 34 могут изменяться в зависимости от конкретного применения.

Насос 33 может содержать любой целесообразный гидравлический насос, такой как центробежный насос, диафрагменный насос, сильфонный насос и пр. При этом насос 33 является стойким к воздействию кислоты, коррозии и загрязнению. В приводимом в качестве примера варианте реализации насос 33 содержит диафрагменный насос. Необходимо отметить, что согласно излагаемому ниже описанию альтернативных вариантов реализации можно использовать два или более насоса 33 в рамках данного изобретения. Также необходимо отметить, что электролит 34 можно подавать в гнездо 100 для полировки через впускные отверстия 4, 6 и 8 без насоса 33. Например, электролит 34 может находиться под давлением в емкости 36 для электролита. Либо под давлением могут находиться линии подачи между емкостью 36 для электролита и впускными отверстиями 4, 6 и 8.

ЖРМР 21, 22 и 23 могут содержать любой соответствующий регулятор массового расхода, который предпочтительно является стойким к воздействию кислоты, коррозии и загрязнению. При этом ЖРМР 21, 22 и 23 подают электролит 34 с заданным его расходом в секции 115, 113 и 111 соответственно. При этом ЖРМР 21, 22 и 23 могут подавать электролит 34 при расходах, пропорциональных объемам секций 115, 113 и 111. Например, если секция 115 по объему крупнее секции 113, то тогда будет целесообразно, чтобы ЖРМР 21 подавал электролит 34 с большим расходом, чем ЖРМР 22. В приводимом в качестве примера варианте реализации ЖРМР 21, 22 и 23 предпочтительно выполнены с возможностью подачи электролита 34 с приблизительным расходом между 0,5 и 40 л/мин.

В приводимом в качестве примера варианте реализации отдельный ЖРМР подает электролит в каждую секцию 115, 113 и 111. В соответствии с излагаемым ниже более подробным описанием эта конфигурация облегчает электролитическую полировку отдельных частей полупроводниковой пластины 31. Необходимо отметить, что в зависимости от конкретного применения может быть использовано любое число ЖРМР. Согласно излагаемому ниже описанию альтернативных вариантов реализации электролит 34 можно подавать в гнездо 100 для полировки из насоса 33 без помощи ЖРМР 21, 22 и 23.

В соответствии с различными аспектами данного изобретения устройство 50 полировки полупроводниковых пластин содержит катоды 1, 2 и 3 в секциях 111, 113 и 115 соответственно. В соответствии с излагаемым ниже подробным описанием, хотя данный приводимый в качестве примера вариант реализации содержит три катода, в рамках данного изобретения можно использовать меньше или больше трех катодов. Как правило, чем больше катодов применяют, тем более единообразной является получаемая пленка. Но с увеличением числа катодов увеличивается стоимость. Соответственно, с учетом компромисса между рабочими показателями и себестоимостью предпочтительное число катодов может составлять примерно от 7 до 20 для электролитической полировки 200 мм полупроводниковых пластин и примерно от 10 до 30 для электролитической полировки 300-мм полупроводниковых пластин.

При этом катоды 1, 2 и 3 могут содержать любой целесообразный электропроводный материал, такой как медь, свинец, платина и пр. Во время электролитической полировки некоторые ионы металла, которые выходят из металлического слоя 121, могут скапливаться на катодах 1, 2 и 3. Соответственно, катоды 1, 2 и 3 можно в любое нужное время заменять. Например, катоды 1, 2 и 3 можно заменять после обработки около 100 полупроводниковых пластин.

В альтернативном варианте для катодов 1, 2 и 3 целесообразно выполнять процесс снятия покрытия (анодного растворения). Например, согласно излагаемому ниже более подробному описанию, в соответствии с различными аспектами данного изобретения, когда катоды 1, 2 и 3 заряжены положительно, а полупроводниковая пластина 31 заряжена отрицательно, тогда более целесообразно, чтобы полупроводниковая пластина 31 вместо электролитической полировки была подвергнута электролитическому осаждению. Таким образом полупроводниковую пластину 31 можно соответствующим образом подвергнуть электролитическому осаждению металла, накопленного на катодах 1, 2 и 3, с соответствующим снятием покрытия с катодов 1, 2 и 3. Хотя в упоминаемых выше условиях катоды 1, 2 и 3 будут функционировать как аноды, но для последовательности и удобства они будут по-прежнему называться катодами.

В приводимом в качестве примера варианте реализации металлический слой 121 содержит медь. Соответственно, как указывалось выше, во время электролитической полировки некоторые ионы меди из металлического слоя 121 перемещаются и осуществляют электролитическое осаждение на катодах 1, 2 и 3. В упоминаемом выше процессе снятия покрытия полупроводниковую пластину 31 можно соответствующим образом подвергнуть процессу электролитического осаждения меди, накопленной на катодах 1, 2 и 3. Но если катоды 1, 2 и 3 выполнены из меди, то катоды 1, 2 и 3 могут раствориться во время процесса снятия покрытия. При этом катоды 1, 2 и 3 во время процесса снятия покрытия могут деформироваться. Соответственно, в соответствии с различными аспектами данного изобретения катоды 1, 2 и 3 можно выполнить из материалов, стойких к растворению во время процесса снятия покрытия. Например, катоды 1, 2 и 3 можно выполнить из платины. Либо катоды 1, 2 и 3 можно выполнить из титана, покрытого слоем платины, предпочтительно с покрытием с приблизительной толщиной от около 50 мкм до 400 мкм.

В приводимом в качестве примера варианте реализации патрон 29 для полупроводниковой пластины удерживает и позиционирует полупроводниковую пластину 31 в гнезде 100 для полировки. В частности, полупроводниковую пластину 31 соответствующим образом позиционируют сверху секционных стенок 101, 103, 105, 107 и 109, чтобы образовать зазор для протекания электролита 34 между нижней поверхностью полупроводниковой пластины 31 и верхом секционных стенок 101, 103, 105, 107 и 109. В приводимом в качестве примера варианте реализации полупроводниковую пластину 31 позиционируют сверху секционных стенок 101, 103, 105, 107 и 109 с образованием зазора приблизительно от 2 до 20 мм.

После позиционирования полупроводниковой пластины 31 в гнезде 100 для полировки катоды 1, 2 и 3 электрически соединяют с источниками 13, 12 и 11 питания соответственно. Также полупроводниковую пластину 31 электрически соединяют с источниками 13, 12 и 11 питания. При этом, когда электролит 34 протекает между нижней поверхностью полупроводниковой пластины 31 и верхом секционных стенок 101, 103, 105, 107 и 109, образуется электрический ток. При этом катоды 1, 2 и 3 электрически заряжаются с получением отрицательного электрического потенциала по сравнению с полупроводниковой пластиной 31. В ответ на этот отрицательный электрический потенциал на катодах 1, 2 и 3 ионы металла покидают полупроводниковую пластину 31, тем самым осуществляя электролитическую полировку полупроводниковой пластины 31. При изменении полярности этой схемы на обратную (т.е. катоды 1, 2 и 3 становятся анодами) ионы металла перемещаются на полупроводниковую пластину 31, тем самым осуществляя электролитическую полировку полупроводниковой пластины 31.

Таким образом, выборочные части полупроводниковой пластины 31 можно соответствующим образом подвергать электролитической полировке и электролитичес