Производные бензотиазола

Иллюстрации

Показать все

Изобретение относится к области медицины и органической химии и касается новых производных бензотиазола и содержащего их лекарственного средства для лечения заболеваний, опосредованных аденозиновым рецептором А. Изобретение обеспечивает эффективное лечение указанных заболеваний. 2 н. и 12 з.п. ф-лы, 1 табл.

Реферат

Настоящее изобретение относится к новым производным бензотиазола общей формулы I-A

где R1 означает водород, (низш.)алкил, (низш.)алкокси, бензилокси, циклоалкилокси, галоген, гидрокси или трифторметилокси,

R2 означает водород, (низш.)алкил или (низш.)алкилокси,

R3 означает водород, галоген или (низш.)алкил,

R4 означает водород, (низш.)алкил, (низш.)алкенил, галоген, -С(O)-(низш.)алкил, -С(O)-галоген(низш.)алкил, -СН(ОН)-галоген(низш.)алкил, -С(O)O-(низш.)алкил, -NНС(O)-(низш.)алкил, -(СН2)n-ОН или

означает фенил, который необязательно присоединен к бензогруппе через линкер -(O)m-(CH2)n- и необязательно замещен группой N(R5)(R6), галогеном или нитро, или

означает 2,3-дигидро-1Н-индолил, азепан-1-ил, [1,4]оксазепан-4-ил, или означает пяти- или шестичленный ароматический или неароматический гетероцикл, который может быть присоединен к бензогруппе через линкер -(O)m(СН2)n- или -N=С(СН3)- и необязательно замещен одной или двумя группами R7, где R7 имеет значения, указанные ниже;

R' означает

а) фенил, необязательно замещенный галоген(низш.)алкилом, -С(O)Н или следующими группами:

-(CH2)n-С(О)-N(R5)-(CH2)n(низш.)алкокси,

-(СН2)nО-галоген(низш.)алкил,

-(СН2)nО-(СН2)n+1O-(низш.)алкил,

-S(O2)-N(R5)-(СH2)nO-(низш.)алкил,

-(CH2)n-OR5,

-(CH2)nN(R5)-(CH2)o-(низш.)aлкoкcи,

-(CH2)nN[(CH2)o-(низш.)алкокси]2,

-(CH2)nN[S(O)2CH3]2,

-(CH2)nN[R5][S(O)2CH3],

-(CH2)nN(R5)-(низш.)aлкeнил,

-(CH2)nN(R5)-(CH2)o-циклoaлкил,

-(CH2)nN(R5)-C(O)O-(низш.)aлкил,

-(CH2)nN(R5)-(CH2)o-S-(низш.)алкил,

-(CH2)nN(R5)-S(O)2CH3,

-(CH2)nN(R5)-(CH2)o-фeнил,

-(CH2)nN(R5)-(CH2)oOH,

-(СH2)nN(R5)-(CH2)оСH(ОH)-СF3,

-(СH2)n(R5)-(СH2)о-СF3,

-(CH2)nN(R5)-(CH2)o-O-CH(OH)-C6H3(OCH3)2,

-(CH2)nN(R5)-(CH2)o-O-C(O)-C6H3(OCH3)2,

-N(R5)-С(О)-морфолин,

-N(R5)-C(O)-N(R5)-фенил, замещенный алкокси,

-S(O)2-морфолин,

или означает фенил, который необязательно замещен

-(CR5R6)n-пяти-семичленным ароматическим или неароматическим гетероциклом, причем гетероцикл дополнительно может быть замещен группой гидрокси, -N(R5)(R6) или (низш.)алкилом, или замещен -CH2-N(R5)(СН2)о-пяти- или шестичленным ароматическим или неароматическим гетероциклом, причем гетероцикл дополнительно может быть замещен группой гидрокси, -N(R5)(R6) или (низш.)алкилом,

или означает -N(R5)-фенил, необязательно замещенный (низш.)алкокси,

или означает

б) -(СН2)n-пяти- или шестичленный ароматический или неароматический гетероцикл, за исключением пиперазинильной и тиазолильной группы в том случае, если n=0, причем указанные циклы необязательно могут быть замещены группой

2-оксопирролидин, пиперидинил, фенил, -(СН2)nОН, галоген, СF3, =O, (низш.)алкил, циклоалкил, -(СН2)n-O-(низш.)алкил, -(CH2)nNH2, -(CH2)nCN, -С(O)O-(низш.)алкил, -СН2-O-S(O)2СН3, -С(O)-(низш.)алкил, -С(O)-(СН2)n-(низш.)алкокси, -CH2-N(R6)C6H4F, -CH2-N(R6)C(O)O-(низш.)aлкил, -N(R6)-C(О)-N(R5)-(СH2)n-О-(низш.)алкил или замещены тетрагидрофураном, замещенным 4-Сl-фенилом, или замещены группой пиперазин-1-ил, морфолинил, тиоморфолинил, тиоморфолин-1-оксо, пирролидин-1-ил, или замещены пиперидин-1-илом, или означает бензопиперидин-1-ил или бензотиен-2-ил,

или означает

в) -N(R5)(CH2)n+1-фенил, необязательно замещенный группой (низш.)алкокси, или -N(R5)С(O)-фенил,

или означает

г) -N(R5)(CH2)n-5- или 6-членный ароматический или неароматический гетероцикл, необязательно замещенный группой (низш.)алкил, -(СН2)n-5- или 6-членный ароматический или неароматический гетероцикл,

или означает

д) -O-(СН2)n-(низш.)алкокси, (низш.)алкил(низш.)алкокси, -N(R5)(CH2)nN(R5)(R6), -(СН2)nОН, -(НС=СН)1-4-С(O)O-(низш.)алкил, октагидрохинолин, 3,4-дигидро-1 Н-изохинолин, 2,3-бензо-1,4-диокса-8-азаспиро[4,5]декан или 1,4-диокса-8-азаспиро[4,5]декан;

Х означает О или S,

R5 и R6 каждый независимо друг от друга означает водород или (низш.)алкил,

R7 означает (низш.)алкил, (низш.)алкокси, -С(O)-(низш.)алкил, -С(O)O-бензил, -С(O)O-(низш.)алкил, -(CH2)nNR5R6, пиридинил, необязательно замещенный (низш.)алкилом, или означает -CH2N(R5)-С(O)O-(низш.)алкил, -NН-С(фенил)3, пирролидинил, пиперидинил, морфолинил, пиперазинил, необязательно замещенный (низш.)алкилом;

n равно 0, 1, 2, 3 или 4,

m равно 0 или 1,

о равно 0, 1, 2, 3 или 4;

и их фармацевтически приемлемым солям за исключением их гидробромидных солей, а также за исключением N-(4-метоксибензотиазол-2-ил)бензамида и при условии, что R1-R4 одновременно не означают водород, если R' представляет собой необязательно замещенный фенил.

Неожиданно было установлено, что соединения общей формулы I являются лигандами аденозинового рецептора.

Аденозин модулирует широкий спектр физиологических функций благодаря взаимодействию со специфическими рецепторами клеточной поверхности. Эффективность аденозиновых рецепторов в качестве мишеней лекарственных средств впервые описана в 1982 г. В структурном и метаболическом отношении аденозин близок биоактивным нуклеотидам, таким, как аденозинтрифосфат (АТФ), аденозиндифосфат (АДФ), аденозинмонофосфат (АМФ) и циклоаденозинмонофосфат (цАМФ), биохимический метилирующий агент S-аденозин-L-метионин (SAM), в структурном отношении близок к коферментам НАД, ФАД и коферменту А, а также РНК. Аденозин и перечисленные родственные соединения играют важную роль в регуляции многих сторон клеточного метаболизма и в модуляции разнообразных функций центральной нервной системы.

Рецепторы аденозина подразделяются на A1, A2A, А2B и А3 рецепторы, принадлежащие к семейству рецепторов, сопряженных с G-белками. Активация аденозиновых рецепторов аденозином инициирует механизм передачи сигнала. Эти механизмы опосредованы G-белком, ассоциированным с рецептором. Установлено, что каждый подтип аденозинового рецептора характеризуется аденилатциклазной эффекторной системой, которая в качестве вторичного мессенджера использует цАМФ. A1 и A3 рецепторы в сочетании с Gi-белками ингибируют аденилатциклазу, что приводит к снижению уровня клеточного цАМФ, в то время как A2A и А2B рецепторы сопряжены с Gs-белками и активируют аденилатциклазу, вызывая повышение уровня клеточного цАМФ. Известно, что система рецептора A1 включает активацию фосфолипазы С и модуляцию ионных каналов калия и кальция. Подтип рецептора А3 кроме ассоциации с аденилатциклазой также стимулирует фосфолипазу С и тем самым активирует кальциевые каналы.

Клонирован рецептор A1 (326-328 аминокислот) различных видов (псовых, человека, крысы, собаки, цыпленка, КРС, морской свинки), при этом у всех млекопитающих наблюдается идентичность 90-95% последовательности. Клонирован рецептор A2A (409-412 аминокислот) псовых, крысы, человека, морской свинки и мыши. Клонирован рецептор А2B (332 аминокислоты) человека и мыши, при этом наблюдается гомологичность на 45% рецептора А2B с рецепторами человека A1 и A2A. Клонирован рецептор А3 (317-320 аминокислот) человека, крысы, собаки, кролика и овцы.

Предполагается, что подтипы рецептора A1 и A2A дополняют друг друга в регуляции аденозином обеспечения (клетки) энергией. Аденозин, который является продуктом метаболической трансформации АТФ, диффундирует из клетки и на местном уровне активирует аденозиновые рецепторы, снижая потребность в кислороде (A1) или увеличивая снабжение кислородом (А2A) и таким образом поддерживая равновесие между обеспечением энергией и ее потреблением в тканях. Функция обоих подтипов состоит в увеличении количества доступного для тканей кислорода и защите клеток от повреждения, вызванного кратковременным нарушением в поступлении кислорода. Одной из важных функций эндогенного аденозина является предупреждение повреждения при травмах, таких, как гипоксия, ишемия, гипотензия и эпилептические припадки.

Кроме того, известно, что связывание агониста аденозинового рецептора с тучными клетками, экспрессирующими рецептор А3 крысы, приводит к увеличению уровня инозиттрифосфата и концентрации внутриклеточного кальция, что инициирует антиген-индуцируемую секрецию медиаторов воспалительной реакции. Следовательно, рецептор А3 играет важную роль в опосредовании приступов астмы и других аллергических реакций.

Аденозин является также нейромодулятором, выполняющим ключевые функции в модуляции молекулярных механизмов, лежащих в основе многих аспектов физиологической функции мозга, причем аденозин опосредует основные ингибиторные процессы. Увеличение скорости высвобождения нейромедиатора происходит при травме, такой, как гипоксия, ишемия и эпилептические припадки. Эти нейромедиаторы в конечном счете отвечают за дегенерацию и гибель нейронов, что влечет за собой повреждение мозга и смерть организма. Следовательно, агонисты аденозинового рецептора A1, имитирующие ингибиторные процессы в ЦНС, вызываемые аденозином, могут найти применение в качестве нейропротективных агентов. Аденозин предполагается использовать в качестве эндогенного противосудорожного агента, ингибирующего высвобождение глутамата из возбужденных нейронов и ингибирующего возбуждение нейронов. Следовательно, агонисты аденозина могут быть использованы в качестве противоэпилептических агентов. Антагонисты аденозина стимулируют активность ЦНС и оказались эффективными как стимуляторы познавательных способностей. Селективные антагонисты A2A обладают лечебным действием при терапии различных форм деменции, например болезни Альцгеймера, и используются как нейропротективные агенты. Антагонисты аденозинового рецептора A2A ингибируют высвобождение дофамина из нервных синаптических окончаний ЦНС, стимулируют двигательную активность и, соответственно, ослабляют симптомы болезни Паркинсона. Активность аденозина в ЦНС также проявляется в молекулярном механизме, лежащем в основе седативного эффекта, гипноза, шизофрении, тревоге, боли, дыхании, депрессии и наркомании. Следовательно, лекарственные средства, воздействующие на аденозиновые рецепторы, обладают терапевтическим действием в качестве седативных агентов, мышечных релаксантов, антипсихотических средств, транквилизаторов, анальгетиков, стимуляторов дыхания и антидепрессантов и могут быть использованы для лечения ADHD (расстройство в форме повышенной активности при недостатке внимания).

В сердечно-сосудистой системе аденозин выполняет важную функцию в качестве кардиопротективного агента. Уровень эндогенного аденозина увеличивается в ответ на ишемию и гипоксию и защищает сердечные ткани при травме и после нее (профилактические меры). Таким образом, агонисты аденозина действуют в качестве кардиопротективных агентов.

Аденозин модулирует многие аспекты функции почек, включая высвобождение ренина, скорость гломерулярной фильтрации и кровоток в почках. Соединения, которые противодействуют воздействию аденозина на почки, являются почечными защитными агентами. Кроме того, антагонисты аденозиновых рецепторов А3 и/или А2B могут быть использованы при лечении астмы и других аллергических реакций, и/или при лечении сахарного диабета и ожирения.

Последние данные по аденозиновым рецепторам приведены в многочисленных работах, например, в следующих публикациях:

Bioorganic & Medicinal Chemistry, 6, 619-641 (1998),

Bioorganic & Medicinal Chemistry, 6, 707-719 (1998),

J.Med.Chem., 41, 2835-2845 (1998),

J.Med.Chem., 41, 3186-3201 (1998),

J.Med.Chem., 41, 2126-2133 (1998),

J.Med.Chem., 42, 706-721 (1999),

J.Med.Chem., 39, 1164-1171 (1996),

Arch. Pharm. Med.Chem., 332, 39-41 (1999).

Объектом настоящего изобретения являются соединения формулы I-A и их фармацевтически приемлемые соли, предназначенные для лечения заболеваний, опосредованных аденозиновым рецептором А2, способы их получения, лекарственные средства на основе соединения по изобретению и их изготовление, а также применение соединений формулы I при лечении и профилактике заболеваний, основанных на модуляции аденозиновой системы, таких, как болезнь Альцгеймера, болезнь Паркинсона, нейропротекция, шизофрения, тревога, боль, нарушение дыхания, депрессия, астма, аллергические реакции, гипоксия, ишемия, эпилептические припадки и наркомания. Кроме того, соединения по настоящему изобретению могут быть использованы как седативные агенты, мышечные релаксанты, противопсихотические средства, противоэпилептические агенты, противосудорожные агенты и кардиопротективные агенты. Наиболее предпочтительными показаниями по настоящему изобретению являются те, которые основаны на антагонистической активности в отношении рецептора A2A и которые включают расстройства центральной нервной системы, например, терапия или профилактика некоторых депрессивных состояний, нейропротекция и болезнь Паркинсона, а также ADHD и сахарный диабет.

Термин (низш.)алкил, используемый в тексте заявки, означает насыщенную алкильную группу с прямой или разветвленной цепью, содержащей от 1 до 6 атомов углерода, например метил, этил, пропил, изопропил, н-бутил, изобутил, 2-бутил, трет-бутил и т.п. Предпочтительны (низш.)алкильные группы, содержащие 1-4 атома углерода.

Термин (низш.)алкенил, используемый в тексте заявки, означает ненасыщенную алкильную группу с прямой или разветвленной цепью, содержащей от 2 до 6 атомов углерода, например этилен, пропилен, изопропилен, н-бутилен, изобутилен, 2-бутилен, трет-бутилен и т.п. Предпочтительны (низш.)алкенильные группы, содержащие 2-4 атома углерода.

Термин циклоалкил означает насыщенную карбоциклическую группу, содержащую 3-6 атомов углерода.

Термин галоген означает хлор, иод, фтор и бром.

Термин (низш.)алкокси означает группу, где алкил имеет значения, указанные выше, и присоединен через атом кислорода.

Термин пяти- или шестичленный ароматический или неароматический гетероцикл означает следующую группу: ароматические гетероциклические группы, например пиррол-1-ил, тетразолил, имидазол-1- или 2-ил, пиразол-1-ил, пиридин-1,2,3- или 4-ил, пиразинил, пиримидинил, пиридазинил, изотиазолил, изоксазолил, тиазолил, тиенил или фурил; неароматические гетероциклические группы, например пирролидинил, имидазолидинил, пиразолидинил, пиперидинил, пиперазинил, морфолинил, тиоморфолинил, тиоморфолин-1,1-диоксо или тиоморфолин-1-оксо.

Термин фармацевтически приемлемые кислотно-аддитивные соли означает соли неорганических и органических кислот, таких, как хлористоводородная кислота, азотная кислота, серная кислота, фосфорная кислота, лимонная кислота, муравьиная кислота, фумаровая кислота, малеиновая кислота, уксусная кислота, янтарная кислота, винная кислота, метансульфоновая кислота, пара-толуолсульфоновая кислота и т.п.

Прежде всего предпочтительны соединения формулы IA, где R1 означает метокси, Х означает кислород, а R2/R3 означает водород.

Примерами предпочтительных соединений формулы IA, где R' означает незамещенный или замещенный пяти- или шестичленный ароматический гетероцикл, являются следующие соединения:

N-(4-метокси-7-морфолин-4-илбензотиазол-2-ил)-2-метилизоникотинамид,

(4-метокси-7-фенилбензотиазол-2-ил)амид 5-метилтиофен-2-карбоновой кислоты,

(4-метокси-7-фенилбензотиазол-2-ил)амид 5-метилфуран-2-карбоновой кислоты,

N-(4-метокси-7-фенилбензотиазол-2-ил)изоникотинамид,

(4-метокси-7-пиридин-4-илбензотиазол-2-ил)амид 5-метилтиофен-2-карбоновой кислоты,

(4-метокси-7-пиридин-3-илбензотиазол-2-ил)амид 5-метилтиофен-2-карбоновой кислоты,

[4-метокси-7-(2-метилпиридин-4-ил)бензотиазол-2-ил]амид 5-метилтиофен-2-карбоновой кислоты,

[7-(3-аминофенил)-4-метоксибензотиазол-2-ил]амид 5-метилтиофен-2-карбоновой кислоты,

N-(4-мeтoкcи-7-тиoфeн-2-илбeнзoтиaзoл-2-ил)-2-мeтилизoникoтинaмид,

N-[4-метокси-7-(2-пиридин-2-илтиазол-4-ил)бензотиазол-2-ил]-2-метилизоникотинамид,

N-[4-метокси-7-(2-пирролидин-1-илтиазол-4-ил)бензотиазол-2-ил]-2-метилизоникотинамид,

N-{4-метокси-7-[2-(4-метилпиперазин-1-ил)тиазол-4-ил]бензотиазол-2-ил}-2-метилизоникотинамид и

N-[4-мeтoкcи-7-(5-мeтилтиoфeн-2-ил)бeнзoтиaзoл-2-ил]-2-метилизоникотинамид.

Кроме того, предпочтительными соединениями формулы IA являются соединения, где R означает незамещенный или замещенный пяти- или шестичленный неароматический гетероцикл, например следующие соединения:

(4-метокси-7-фенилбензотиазол-2-ил)амид морфолин-4-карбоновой кислоты,

(4-метокси-7-фенилбензотиазол-2-ил)амид тиоморфолин-4-карбоновой кислоты,

(4-метокси-7-фенилбензотиазол-2-ил)амид 1-оксо-1λ 4-тиоморфолин-4-карбоновой кислоты,

{4-метокси-7-[2-(6-метилпиридин-3-ил)тиазол-4-ил]бензотиазол-2-ил}амид морфолин-4-карбоновой кислоты,

[4-метокси-7-(2-пиридин-2-илтиазол-4-ил)бензотиазол-2-ил]амид морфолин-4-карбоновой кислоты,

{4-метокси-7-[2-(4-метилпиперазин-1-ил)тиазол-4-ил]бензотиазол-2-ил}амид морфолин-4-карбоновой кислоты,

[4-метокси-7-(2-пиперидин-1-илтиазол-4-ил)бензотиазол-2-ил]амид морфолин-4-карбоновой кислоты,

[4-метокси-7-(5-метилтиофен-2-ил)бензотиазол-2-ил]амид морфолин-4-карбоновой кислоты,

трет-бутиловый эфир 4-(4-метокси-7-морфолин-4-илбензотиазол-2-илкарбамоил)пиперидин-1-карбоновой кислоты,

(4-метокси-7-морфолин-4-илбензотиазол-2-ил)амид 1-ацетилпиперидин-4-карбоновой кислоты,

(4-метокси-7-морфолин-4-илбензотиазол-2-ил)амид 4-оксопиперидин-1-карбоновой кислоты и

(4-метокси-7-пиперидин-1-илбензотиазол-2-ил)амид 1-оксо-1λ 4-тиоморфолин-4-карбоновой кислоты.

Предпочтительными соединениями формулы IA являются соединения, где R' означает фенил, необязательно замещенный -СН2ОН, -СН2NНСН2СН2ОСН3, -CH2NHCH2CH2OH, -СН2NНСН2-пиридинил, -CH2NHCH2CH2SCH3, -CH2N(CH3)CH2CH2SCH3,-CH2N(CH3)CH2CH2OCH3, -СН2N(СН2СН3)СН2СН2OСН3, -СН2OСН3, -СН2OСН2СН2OСН3 или -СН2N(СН3)С(O)ОСН3, например следующие соединения:

4-гидроксиметил-N-(4-метокси-7-фенилбензотиазол-2-ил)бензамид,

4-[(2-метоксиэтиламино)метил]-N-(4-метокси-7-фенилбензотиазол-2-ил)бензамид,

4-[(2-гидроксиэтиламино)метил]-N-(4-метокси-7-фенилбензотиазол-2-ил)бензамид,

N-(4-мeтoкcи-7-фeнилбeнзoтиaзoл-2-ил)-4-{[(пиpидин-4-илмeтил)aминo]метил}бензамид,

N-(4-метокси-7-фенилбензотиазол-2-ил)-4-{[(пиридин-3-илметил)амино]метил}бензамид,

N-(4-метокси-7-фенилбензотиазол-2-ил)-4-[(2-метилсульфанилэтиламино)метил]бензамид,

4-{[(2-метоксиэтил)метиламино]метил}-N-(4-метокси-7-морфолин-4-илбензотиазол-2-ил)бензамид,

N-[7-(2-aминoтиaзoл-4-ил)-4-мeтoкcибeнзoтиaзoл-2-ил]-4-фтopбeнзaмид,

4-фтop-N-{4-мeтoкcи-7-[2-(6-мeтилпиpидин-3-ил)тиaзoл-4-ил]бeнзoтиaзoл-2-ил}бензамид,

4-{[(2-метоксиэтил)метиламино]метил}-N-{4-метокси-7-[2-(6-метилпиридин-3-ил)тиазол-4-ил]бензотиазол-2-ил}бензамид,

4-{[(2-метоксиэтил)метиламино]метил}-N-(4-метокси-7-тиофен-2-илбензотиазол-2-ил)бензамид,

4-{[(2-метоксиэтил)метиламино]метил}-N-[4-метокси-7-(2-пиридин-2-илтиазол-4-ил)бензотиазол-2-ил]бензамид,

N-(4-метокси-7-морфолин-4-илбензотиазол-2-ил)-4-трифторметилбензамид,

N-(4-метокси-7-морфолин-4-илбензотиазол-2-ил)бензамид,

4-хлор-3-{[этил(2-метоксиэтил)амино]метил}-N-(4-метокси-7-морфолин-4-илбензотиазол-2-ил)бензамид,

4-хлор-3-{[(2-метоксиэтил)метиламино]метил}-N-(4-метокси-7-морфолин-4-илбензотиазол-2-ил)бензамид,

4-хлор-3-[(2-метоксиэтиламино)метил]-N-(4-метокси-7-морфолин-4-илбензотиазол-2-ил)бензамид,

3-[(2-метоксиэтиламино)метил]-N-(4-метокси-7-морфолин-4-илбензотиазол-2-ил)бензамид,

3-{[(2-метоксиэтил)метиламино]метил}-N-(4-метокси-7-морфолин-4-илбензотиазол-2-ил)бензамид,

4-[(2-этоксиэтиламино)метил]-N-(4-метокси-7-морфолин-4-илбензотиазол-2-ил)бензамид,

N-(4-метокси-7-морфолин-4-илбензотиазол-2-ил)-4-метиламинометилбензамид,

4-{[(2-этоксиэтил)этиламино]метил}-N-(4-метокси-7-морфолин-4-илбензотиазол-2-ил)бензамид,

4-{[(2-этоксиэтил)метиламино]метил}-N-(4-метокси-7-морфолин-4-илбензотиазол-2-ил)бензамид,

4-(2-метоксиэтоксиметил)-N-(4-метокси-7-морфолин-4-илбензотиазол-2-ил)бензамид,

4-метоксиметил-N-(4-метокси-7-морфолин-4-илбензотиазол-2-ил)бензамид,

N-(4-мeтoкcи-7-тиoмopфoлин-4-илбeнзoтиaзoл-2-ил)бeнзaмид и

метиловый эфир [4-(4-метокси-7-морфолин-4-илбензотиазол-2-илкарбамоил)бензил]метилкарбаминовой кислоты.

Кроме того, предпочтительными соединениями формулы IA являются соединения, где R' означает фенил, замещенный необязательно замещенным -(CR5R6)n-пяти-семичленным ароматическим или неароматическим гетероциклом, например следующие соединения:

4-имидазол-1-илметил-N-(4-метокси-7-фенилбензотиазол-2-ил)бензамид,

4-(4-гидроксипиперидин-1-илметил)-N-(4-метокси-7-фенилбензотиазол-2-ил)бензамид,

4-[1,4]-диазепан-1-илметил-N-(4-метокси-7-фенилбензотиазол-2-ил)бензамид,

4-(3(S)-диметиламинопирролидин-1-илметил)-N-(4-метокси-7-фенилбензотиазол-2-ил)бензамид,

N-{4-мeтoкcи-7-[2-(6-мeтилпиpидин-3-ил)тиaзoл-4-ил]бeнзoтиaзoл-2-ил}-4-пирролидин-1-илметилбензамид,

N-(4-мeтoкcи-7-тиoфeн-2-илбeнзoтиaзoл-2-ил)-4-пиppoлидин-1-илметилбензамид,

N-[4-мeтoкcи-7-(2-пиpидин-2-илтиaзoл-4-ил)бeнзoтиaзoл-2-ил]-4-пирролидин-1-илметилбензамид,

4-хлор-N-(4-метокси-7-морфолин-4-илбензотиазол-2-ил)-3-пирролидин-1-илметилбензамид,

N-(4-метокси-7-морфолин-4-илбензотиазол-2-ил)-3-пирролидин-1-илметилбензамид,

N-(4-метокси-7-морфолин-4-илбензотиазол-2-ил)-4-(2-метилимидазол-1-илметил)бензамид и

N-(4-мeтoкcи-7-мopфoлин-4-илбeнзoтиaзoл-2-ил)-4-(4-мeтилпипepaзин-1-илметил)бензамид.

Прежде всего предпочтительны соединения формулы IA, где R4 означает необязательно замещенный пяти-семичленный ароматический или неароматический гетероцикл, который означает, например, морфолин или пиперазин.

Соединения по настоящему изобретению формулы I-A и их фармацвтически приемлемые соли могут быть получены по известным в данной области методам, например по способам, описанным ниже, причем способ включает

а) взаимодействие соединения формулы

с соединением формулы

и с соответствующим циклическим амином с образованием соединения формулы I-1

в которых группа -NR5R6 представляет собой циклический амин, где R1-R6 и Х имеют значения, указанные выше, или

б) взаимодействие соединения формулы

с соединением формулы

с образованием соединения формулы I-A, где R1-R4, R' и Х имеют значения, указанные выше, или

в) модификацию одного или более заместителей R1-R6 в соответствии со значениями, указанными выше, и,

если необходимо, превращение полученных соединений в фармацевтически приемлемые кислотно-аддитивные соли.

Все стадии реакций, описанные выше, проводятся обычными способами и более подробно описаны в примерах.

По варианту способа а) соединение формулы II, например 2-амино-7-фенил-4-метоксибензотиазол, в пиридине растворяют в тетрагидрофуране, а затем обрабатывают фосгеном в толуоле. Реакционную смесь концентрируют вдвое при пониженном давлении и добавляют соответствующий амин, например циклический амин, такой, как морфолин или тиоморфолин. Полученный продукт выделяют экспресс-хроматографией.

В варианте способа б) описан способ получения соединения формулы I, где соединение формулы II взаимодействует с соединением формулы IV. Реакцию проводят в течение приблизительно 10 мин обычным способом. Полученный продукт выделяют экспресс-хроматографией.

Получение соли проводят при комнатной температуре известными способами, в том числе специалисту в данной области техники. Имеются ввиду не только соли неорганических кислот, но и соли органических кислот. Примерами таких солей являются гидрохлориды, гидробромиды, сульфаты, нитраты, цитраты, ацетаты, малеаты, сукцинаты, метансульфонаты, пара-толуолсульфонаты и т.п.

Получение соединений формулы I-A более подробно описано в примерах 1-292 и показано на следующих схемах 1 и 2.

Исходные соединения известны или могут быть получены известными в данной области техники способами.

Схема 1

где 1-6 имеют следующие значения:

1 - МеО(СО)Сl, основание,

2 - ICl,

3 - R4-B(OR5)2 или R4-Sn(CH3)3, Pd-катализатор,

4 - КОН,

5 - C(X)Cl2, R5R6NH или R5CX,

6 - RC(X)Cl, основание.

Заместители имеют значения, указанные выше.

Схема 2

где 1-6 имеют следующие значения:

1 - R4-B(OR5)2 или R4-Sn(CH3)3, Pd-катализатор,

2 - H2, Pd-C,

3 - Ph(CO)NCS,

4 - NaOMe,

5 - Вr2,

6 - RC(X)Cl, основание.

Заместители R1-R4, R5, X и R имеют значения, указанные выше.

Схема 3

Заместители R1-R5 имеют значения, указанные выше, a NBS означает N-бромсукцинимид.

Схема 4

Заместители R1-R5 и R7 имеют значения, указанные выше.

Схема 5

Заместители R1 -R6 имеют значения, указанные выше.

Схема 6

Заместители R1-R5 имеют значения, указанные выше.

Реакции, показанные на схемах 1-6, проводят в обычных условиях.

Соединения формулы I-A и их фармацевтически приемлемые кислотно-аддитивные соли обладают ценными фармакологическими свойствами. Прежде всего, установлено, что соединения по настоящему изобретению являются лигандами аденозинового рецептора и обладают высоким сродством к аденозиновому рецептору A2A.

Соединения анализировали по следующей методике.

Аденозиновый рецептор A2A человека

Аденозиновый рецептор A2A человека рекомбинантно экспрессировали в клетках яичника китайского хомячка (СНО) с использованием системы экспрессии вируса леса Семлики. Клетки собирали, дважды промывали центрифугированием, гомогенизировали и снова промывали центрифугированием. Промытый осадок мембранной фракции суспендировали в трис-буферном растворе (50 мМ, рН 7,4), содержащем 120 мМ NaCl, 5 мМ КСl, 2 мМ СаСl2 и 10 мМ MgCl2 (буфер А). Анализ по связыванию [3H]-SCH-58261 (1 нМ) (см. статью Dionisotti и др., Br. J.Pharmacol., 121, 353 (1997)) проводили в 96-луночных планшетах в присутствии 2,5 мкг мембранного белка, 0,5 мг гранул Ysi-поли-L-лизин-SРА и 0,1 ед. аденозиндиаминазы в конечном объеме 200 мкл буфера А. Неспецифическое связывание определяли с использованием близкого ему ксантинамина (ХАС, 2 мкМ). Соединения анализировали при 10 концентрациях в интервале 10 мкМ - 0,3 нМ. Все анализы проводили дважды и повторяли по меньшей мере два раза. Аналитические планшеты инкубировали при комнатной температуре в течение 1 ч, центрифугировали и определяли связывание лиганда на сцинтилляционном счетчике Packard Topcount. Значения IC50 рассчитывали с использованием аппроксимации нелинейной кривой, и величины Кi рассчитывали по уравнению Cheng-Prussoff.

Установлено, что соединения формулы I по изобретению обладают высоким сродством к рецептору A2A. Наиболее предпочтительные соединения обладают сродством к рецептору A2A человека в интервале значений pKi 8,5-9,3.

Примеры таких соединений включены в таблицу

Соединения формулы I и фармацевтически приемлемые соли соединений формулы I могут быть использованы в качестве лекарственных средств, например, в форме фармацевтических препаратов. Фармацевтические препараты можно вводить перорально, например, в форме таблеток, таблеток с покрытием, драже, твердых и мягких желатиновых капсул, растворов, эмульсий или суспензий. Однако введение может быть проведено ректальным способом, например, в форме суппозиториев и парентеральным способом, например, в форме растворов для инъекции.

При получении лекарственных препаратов соединения формулы I могут быть переработаны в смеси с фармацевтически инертными, неорганическими или органическими носителями. При получении таблеток, таблеток с покрытием, драже и твердых желатиновых капсул в качестве таких носителей могут быть использованы лактоза, кукурузный крахмал или его производные, тальк, стеариновая кислота или ее соли и т.п. Пригодными носителями для мягких желатиновых капсул являются, например, растительные масла, воски, жиры, полутвердые и жидкие полиолы и т.п. Однако в зависимости от свойств активного вещества в случае мягких желатиновых капсул обычно не требуется никаких носителей. Пригодными носителями для растворов и сиропов являются, например, вода, полиолы, глицерин, растительные масла и т.п. Пригодными носителями для суппозиториев являются, например, природные или отврежденные масла, воски, жиры, полужидкие или жидкие полиолы и т.п.

Кроме того, фармацевтические препараты могут содержать консерванты, солюбилизирующие агенты, стабилизаторы, смачивающие агенты, эмульгаторы, подсластители, красители, ароматизаторы, соли для регуляции осмотического давления, буферные вещества, маскирующие агенты или антиоксиданты. Кроме того, они могут содержать другие терапевтически ценные вещества.

Лекарственные средства, содержащие соединения формулы I или их фармацевтически приемлемые соли и терапевтически инертный носитель, являются объектом настоящего изобретения также, как и способ их получения, который включает переработку одного или более соединения формулы I и/или его фармацевтически приемлемой кислотно-аддитивной соли, если необходимо, с одним или более терапевтически ценными веществами в галеновую готовую форму в смеси с одним или более терапевтически инертными носителями.

По настоящему изобретению соединения формулы I, а также их фармацевтически приемлемые соли могут найти приенение для лечения или профилактики заболеваний, вызванных антагонистической активностью в отношении аденозинового рецептора, таких, как болезнь Альцгеймера, болезнь Паркинсона, нейропротекция, шизофрения, тревога, боль, нарушение дыхания, депрессия, астма, аллергические рекции, гипоксия, ишемия, эпилептические припадки и наркомания. Кроме того, соединения по настоящему изобретению могут быть использованы в качестве седативных агентов, мышечных релаксантов, противопсихотических средств, противоэпилептических агентов, противосудорожных агентов, кардиопротективных агентов и для изготовления соответствующих лекарственных средств.

Наиболее предпочтительными показаниями по настоящему изобретению являются те, которые включают расстройства центральной нервной системы, например терапия или профилактика некоторых депрессивных состояний, нейропротекция и болезнь Паркинсона.

Дозировки могут варьировать в широком интервале и должны соответствовать индивидуальным требованиям в каждом конкретном случае. При пероральном введении взрослым дозы соединения формулы I или соответствующего количества его фармацевтически приемлемой соли могут варьировать в интервале от приблизительно 0,01 мг до приблизительно 1000 мг в сутки. Суточную дозу можно вводить в виде разовой дозы или по частям и, кроме того, верхний предел может быть также превышен в соответствии с показаниями.

Пример 1

N-(4-Метокси-7-фенилбензотиазол-2-ил)бензамид

К раствору 2-амино-4-метокси-7-фенилбензотиазола (100 мг, 0,4 ммоля) в пиридине (2 мл) добавляли бензоилхлорид (55 мг, 0,4 ммоля) и смесь перемешивали при 20° С в течение ночи. Затем к смеси добавляли 2 н. НСl (20 мл) до рН 1 и дважды экстрагировали EtOAc (20 мл), экстракт промывали насыщенным раствором NaHCO3, сушили над Na2SO4 и выпаривали растворитель. Неочищенный продукт очищали хроматографией на SiO2 (230-400 меш, фирма Merck) при элюировании СН2Сl2/МеОН (98:2). Фракции, содержащие продукт, объединяли и растворитель выпаривали, при этом получали указанное в заголовке соединение в виде твердого вещества белого цвета (97 мг, выход 69%), МС: m/е 360 (М+).

Соединения, описанные в примерах 2-49, получали по общему методу, описанному в примере 1.

Пример 2

(4-Метокси-7-фенилбензотиазол-2-ил)амид фуран-2-карбоновой кислоты

Указанное в заголовке соединение получали в виде твердого вещества бежевого цвета (выход 41%), МС: m/е 251,3 (М+Н+), с использованием хлорангидрида фуран-2-карбоновой кислоты.

Пример 3

(4-Метокси-7-фенилбензотиазол-2-ил)амид 5-метилтиофен-2-карбоновой кислоты

Указанное в заголовке соединение получали в виде твердого вещества бежевого цвета (выход 36%), МС: m/е 381,3 (М+Н+), с использованием хлорангидрида 5-метилтиофенкарбоновой кислоты.

Пример 4

(4,6-Дифторбензотиазол-2-ил)амид фуран-2-карбоновой кислоты

Указанное в заголовке соединение получали в виде твердого вещества серого цвета (выход 81%), МС: m/е 280 (М+), из 2-амино-4,6-дифторбензотиазола и хлорангидрида фуран-2-карбоновой кислоты.

Пример 5

(4,6-Дифторбензотиазол-2-ил)амид 5-метилтиофен-2-карбоновой кислоты

Указанное в заголовке соединение получали в виде твердого вещества желтого цвета (выход 74%), МС: m/е 310 (М+), из 2-амино-4,6-дифторбензотиазола и хлорангидрида 5-метилтиофенкарбоновой кислоты.

Пример 6

N-(4,6-Дифторбензотиазол-2-ил)бензамид

Указанное в заголовке соединение получали в виде твердого вещества бежевого цвета (выход 82%), МС: m/е 290 (М+), из 2-амино-4,6-дифторбензотиазола и бензоилхлорида.

Пример 7

(4-Метоксибензотиазол-2-ил)амид 5-метилтиофен-2-карбоновой кислоты

Указанное в заголовке соединение получали в виде твердого вещества бежевого цвета (выход 95%), МС: m/е 304,1 (М+), при взаимодействии 2-амино-4-метоксибензотиазола и хлорангидрида 5-метилтиофенкарбоновой кислоты в пиридине.

Пример 8

(4-Метокси-7-фенилбензотиазол-2-ил)амид 5-метилфуран-2-карбоновой кислоты

Неочищенный продукт получали из 2-амино-4-метокси-7-фенилбензотиазола и свежеприготовленного хлорангидрида 5-метилфуран-2-карбоновой кислоты. Полученный продукт очищали хроматографией SiO2 (230-400 меш, фирма Merck) при элюировании н-гексаном/ЕtOАс (4:1), при этом получали указанное в заголовке очищенное соединение в виде твердого вещества светло-желтого цвета (выход 67%), МС: m/е 364,0 (М+).

Пример 9

(4-Метоксибензотиазол-2-ил)амид фуран-2-карбоновой кислоты

Указанное в заголовке соединение получали в виде твердого вещества светло-коричневого цвета (выход 100%), МС: m/е 274,1 (М+), при взаимодействии 2-амино-4-метоксибензотиазола и хлорангидрида фуран-2-карбоновой кислоты в пиридине.

Пример 10

Бензотиазол-2-иламид бензо[b]тиофен-2-карбоновой кислоты

Указанное в заголовке соединение получали в виде твердого вещества светло-желтого цвета (выход 86%), МС: m/е 311,1 (М+Н+), при взаимодействии 2-аминобензотиазола и хлорангидрида бензо[b]тиофен-2-карбоновой кислоты в пиридине.

Пример 11

Бензотиазол-2-иламид 3-метилтиофен-2-карбоновой кислоты

Указанное в заголовке соединение получали в виде твердого вещества желтого цвета (выход 69%), МС: m/е 275,1 (М+Н+), при взаимодействии 2-аминобензотиазола и хлорангидрида 3-метилтиофен-2-карбоновой кислоты в пиридине.

Пример 12

Бензотиазол-2-иламид 5-метилтиофен-2-карбоновой кислоты

Указанное в заголовке соединение получали в виде твердого вещества желтого цвета (выход 87%), МС: m/е 275,1 (М+Н+), при взаимодействии 2-аминобензотиазола и хлорангидрида 5-метилтиофен-2-карбоновой кислоты в пиридине.

Пример 13

N-Бензотиазол-2-ил-6-хлорникотинамид

Указанное в заголовке соединение получали в виде твердого вещества белого цвета (выход 97%), МС: m/е 290,1 (М+Н+), при взаимодействии 2-аминобензотиазола и хлорангидрида 2-хлорпиридин-5-карбоновой кислоты в пири