Способ извлечения ароматических компонентов кофе и ароматизированный порошковый растворимый кофе, содержащий ароматические компоненты кофе (варианты)
Предложен способ извлечения ароматических компонентов из размолотого кофе, при котором размолотый кофе помещают в смеситель, увлажняют, нагревают и подвергают воздействию пониженного давления для получения газа, содержащего ароматические компоненты. В процессе нагревания кофе перемешивают. Из газа, содержащего ароматические компоненты, можно собрать от 40% до 95% ароматических компонентов, содержащихся в размолотом кофе. Полученные ароматические компоненты можно добавить к концентрированному кофейному экстракту перед сушкой экстракта. Полученный порошковый кофе имеет значительно усиленный и улучшенный аромат и вкус и, в частности, имеет повышенное содержание бета-мирцена и лимонена в приготовленном кофейном напитке. 5 н. и 15 з.п.ф-лы, 4 табл.
Реферат
Область техники, к которой относится изобретение
Настоящее изобретение относится к области пищевой промышленности и, в частности, к способу извлечения ароматических компонентов из обжаренных и размолотых кофейных зерен. Извлеченные ароматические компоненты могут быть использованы для ароматизации порошкового растворимого кофе. Изобретение касается также новых ароматизированных порошков растворимого кофе.
Уровень техники
Ароматические вещества являются важной частью многих продуктов, поскольку потребители связывают определенные ароматы с определенными продуктами. Если продукт не имеет характерного для него аромата, то это отрицательно влияет на восприятие потребителем такого продукта. В частности, эта проблема стоит в области производства порошкового растворимого кофе, хотя она также существует и в других областях производства. Растворимый порошковый кофе, который получают с помощью технологических процессов, включающих экстрагирование, концентрирование и сушку, обычно, по существу, не имеет аромата. По этой причине обычной практикой является извлечение ароматических веществ, которые выделяются во время технологических процессов, связанных с получением растворимого порошкового кофе, и включение этих ароматических веществ в концентрированный кофейный экстракт перед сушкой, в результате которой получают порошковый растворимый кофе.
Ароматические вещества кофе извлекают на разных стадиях технологического процесса получения растворимого порошкового кофе, и обычно это делают во время размола обжаренных зерен с помощью отгонки кофейного экстракта с паром перед концентрированном и сушкой твердых веществ растворимого кофе.
Извлечение ароматических веществ из размолотого кофе описано в патенте США №3535118. В этом патенте описывается способ, при котором обжаренные и размолотые кофейные зерна помещают в колонку и выдерживают при температуре примерно 40°С. Затем слой кофе увлажняют путем опрыскивания его водой, что способствует выделению ароматических веществ из частиц кофе. Инертный газ, обычно азот, нагревают до температуры приблизительно 44°С и вводят в колонку под слой кофе. Когда инертный газ проходит через слой кофе, он захватывает ароматические вещества из частиц кофе. Затем инертный газ подают в конденсатор, работающий при температуре около 5°С, чтобы сконденсировать содержащуюся в инертном газе воду. И, наконец, обезвоженный инертный газ подают в криогенный конденсатор, чтобы сконденсировать ароматические вещества в виде инея. Затем полученный иней собирают.
Другой способ извлечения ароматических веществ из обжаренного и размолотого кофе описан в заявке на международный патент WO 97/10721. При этом способе размолотый кофе транспортируют через зону длительного перемешивания при одновременном перемешивании. Одновременно в зоне длительного перемешивания разбрызгивают водную текучую среду, чтобы увлажнять молотый кофе во время его транспортировки и перемешивания. Газообразные ароматические вещества, высвобождающиеся из увлажненного молотого кофе в зоне длительного перемешивания, откачивают и собирают.
Один из недостатков этих способов состоит в том, что они приводят к предварительному увлажнению молотого кофе вне экстракционной камеры или колонки. Согласно Sivetz М. и Desrosier N.W., 1979, Coffee Technology, AVI Publishing Company, Inc., стр.334, этот метод плох тем, что он "приводит к возникновению затхлости молотого кофе менее чем за один час, что сопровождается тяжелым нежелательным запахом и потерей натуральных летучих веществ кофе". Sivetz и Desrosier настойчиво отстаивают мысль, что первое увлажнение размолотого кофе должно происходить в экстракционной камере или колонке. Вследствие этого извлечение ароматических веществ из размолотого кофе путем его предварительного увлажнения не является общепринятым способом, несмотря на то, что размолотый кофе является хорошим источником ароматических веществ.
Кроме того, не все компоненты аромата, присутствующие в чашке свежезаваренного кофе, улавливаются во время предварительного увлажнения. Вследствие этого, если дополнительные ароматические вещества не улавливаются позже при этом способе, некоторые компоненты аромата оказываются утерянными, причем такие компоненты, будучи включенными в порошковый растворимый кофе, улучшили бы аромат напитка, приготовленного из него. Кроме того, многие из обычных способов извлечения ароматических веществ ведут к повреждению или изменению ароматических компонентов.
Вследствие этого, все еще существует необходимость в способе извлечения ароматических веществ из размолотого кофе.
Сущность изобретения
Настоящее изобретение предлагает способ извлечения ароматических компонентов из свежеразмолотого кофе, включающий:
увлажнение размолотого кофе,
нагревание размолотого кофе,
выдержку размолотого кофе при пониженном давлении для получения газа, содержащего ароматические вещества, и
улавливание газа, содержащего ароматические вещества.
Преимущество данного способа состоит в получении значительно больших количеств ароматических компонентов из размолотого кофе по сравнению с обычными способами. Кроме того, поскольку ароматические компоненты получают из размолотого кофе до экстрагирования, то термическое разложение ароматических веществ сведено к минимуму. Помимо этого, поскольку эти ароматические компоненты удаляют из размолотого кофе, можно уменьшить затхлость кофе перед экстрагированием. Ароматические компоненты легко можно включить в конечный продукт, чтобы получить растворимый кофе, имеющий усиленный и улучшенный аромат и вкус. Кроме того, летучие соединения, которые появляются во время экстрагирования и которые ответственны за аромат и вкус, не удаляются.
Способ может также включать повторяющуюся выдержку размолотого кофе при пониженном давлении с последующим нагреванием. Размолотый кофе подвергают этому циклу от 2 до 10 раз.
Способ может также включать нагревание размолотого кофе в то время, когда он подвергается воздействию пониженного давления. Например, размолотый кофе может находиться, по существу, при постоянной температуре в то время, когда он находится при пониженном давлении.
Разработанный способ позволяет собрать в содержащем ароматические вещества газе от примерно 40% до примерно 95% летучих ароматических компонентов размолотого кофе. В настоящем изобретении содержание летучих ароматических веществ измеряют путем отбора образцов из статического свободного пространства над суспензией обжаренного размолотого кофе с последующей газовой хроматографией.
Выход ароматических веществ в процентах определяют путем сравнения концентрации ароматических веществ в обжаренном размолотом кофе и после осуществления способа по настоящему изобретению.
Предложенный способ позволяет получить газ с содержанием не менее 700 частей на миллион углерода ароматических веществ в расчете на свежеразмолотый кофе.
Изобретение также предусматривает продукт, представляющий собой растворимый кофе, содержащий ароматические компоненты, извлеченные, как описано выше.
Изобретение также предусматривает продукт, представляющий собой новый ароматизированный порошковый растворимый кофе, полученный с помощью распылительной сушки, который после добавления воды до содержания сухих веществ 3,3 мас.% от восстановленного напитка обеспечивает концентрацию летучих ароматических веществ, составляющую, по меньшей мере, 50 частей на миллион для суммы ароматических соединений, имеющих индекс сохранения вкусоароматического комплекса RIDBWAX<1130, и, по меньшей мере, 4 части на миллион для суммы ароматических соединений, имеющих индекс сохранения вкусоароматического комплекса, составляющий 1130≤RIDBWAX≤1430.
Изобретение также предусматривает продукт, представляющий собой новый ароматизированный порошковый растворимый кофе, полученный с помощью сублимационной сушки, который после добавления воды до содержания сухих 3,3 мас.% от восстановленного напитка обеспечивает концентрацию летучих ароматических веществ, составляющую, по меньшей мере, 100 частей на миллион для суммы ароматических соединений, имеющих индекс сохранения вкусоароматического комплекса RIDBWAX<1130, и, по меньшей мере, 7 частей на миллион для суммы ароматических соединений, имеющих индекс сохранения вкусоароматического комплекса, составляющий 1130≤RIDBWAX≤1430.
В настоящем описании концентрацию летучих ароматических веществ определяют путем отбора образцов из статистического свободного пространства над восстановленным напитком с последующим анализом с помощью газовой хроматографии. К растворимым кофейным порошкам добавляют воду до содержания сухих веществ 3,3 мас.% от объема напитка. Образцы объемом в 5 мл анализируют при 60°С. Отбор образцов из свободного пространства над продуктом производят, подвергая 22-миллиллитровые пробирки давлению в 10 фунтов на квадратный дюйм (70 кПа). Элюирование осуществляют на полярной капиллярной колонке, покрытой полиэтиленгликолевой фазой и соединенной с атомарным эмиссионным детектором. Детектор калибруют с помощью внешнего стандарта, представляющего собой раствор 4-метилтиазола в воде с концентрацией 50 частей на миллион, анализируемого в таких же условиях. Летучие ароматические соединения распределяют по зонам в соответствии с их индексом сохранения вкусоароматического комплекса, а именно: зона 1: RIDBWAX<1130, зона 2: 1130≤RIDBWAX≤1430.
Заявителем было установлено, что способ согласно настоящему изобретению весьма эффективен для извлечения высоколетучих соединений из обжаренного размолотого кофе. Также было установлено, что напиток, полученный в соответствии с настоящим изобретением, имеет значительно более высокую концентрацию летучих соединений, чем напиток, полученный из коммерчески доступного растворимого кофе, а именно соединений, имеющих индекс сохранения вкусоароматического комплекса (RI) ниже 1430, который определяют с помощью газовой хроматографии на колонках Carbowax (зона 1: RIDBWAX<1130 и зона 2: 1130≤RIDBWAX≤1430). Среди таких летучих компонентов были обнаружены ароматические компоненты, для которых известно, что они влияют на баланс кофейного аромата (например, альдегиды, дикетоны, пиразины, серосодержащие соединения).
В своем дополнительном аспекте настоящее изобретение предусматривает продукт, представляющий собой новый ароматизированный порошковый растворимый кофе, полученный с помощью распылительной сушки, который после добавления воды до содержания сухих веществ 3 мас.% от объема напитка включает бета-мирцен в количестве, по меньшей мере, 0,09 частей на миллион в расчете на сухое вещество и лимонен в количестве, по меньшей мере, 0,07 частей на миллион в расчете на сухое вещество. Более предпочтительно, чтобы полученный с помощью сублимационной сушки порошок, в соответствии с настоящим изобретением, имел концентрацию бета-мирцена, в соответствии со стандартом, составляющую от 0,10 до 0,26 частей на миллион в расчете на сухое вещество, и концентрацию лимонена, в соответствии со стандартом, составляющую более предпочтительно от 0,10 до 0,20 частей на миллион в расчете на сухое вещество.
Данное изобретение также предусматривает продукт, представляющий собой новый ароматизированный порошковый растворимый кофе, полученный с помощью сублимационной сушки, который после добавления воды до содержания сухих веществ 3 мас.% от объема напитка включает бета-мирцен в количестве, по меньшей мере, 0,07 частей на миллион в расчете на сухое вещество и лимонен в количестве, по меньшей мере, 0,05 частей на миллион в расчете на сухое вещество. Более предпочтительно, чтобы полученный с помощью сублимационной сушки порошок, в соответствии с настоящим изобретением, имел концентрацию бета-мирцена, в соответствии со стандартом, составляющую от 0,10 до 0,25 частей на миллион в расчете на сухое вещество, и концентрацию лимонена, в соответствии со стандартом, составляющую более предпочтительно от 0,10 до 0,3 частей на миллион в расчете на сухое вещество.
В контексте данного изобретения содержание летучих соединений бета-мирцена и лимонена определяют путем измерения обогащения свободного пространства (твердофазное микроэкстрагирование, волокно, покрытое полидиметилсилоксан-дивенилбензолом слоем 65 мкм) над напитком растворимого кофе. Элюирование осуществляют на полярной капиллярной колонке DBWAX, соединенной с масс-детектором (режим полного сканирования, модель MD800, из фирмы Fisons). Результаты выражают в количестве частей на миллион в расчете на сухое вещество с использованием в качестве стандарта этилбутират в количестве 0,5 мкг на образец. Для количественного определения используют фрагменты 93 для бета-мирцена и лимонена и фрагмент 77 для стандарта. К растворимому кофе добавляют воду до содержания сухих веществ 3 мас.% от объема напитка. Свободное пространство образцов, содержащих 5 мл раствора, и стандартные образцы в пробирках объемом 22 мл обогащают в течение 30 минут при 30°С, а затем анализируют, как описано выше.
Дальнейшие исследования показали, что суммарный повышенный выход соединений широкого диапазона улучшает качество продукта. Кроме того, полагают, что высокий выход бета-мирцена и лимонена является индикатором высокой эффективности способа извлечения липофильных и чувствительных к условиям внешней среды соединений. Эти соединения очень чувствительны к условиям технологической обработки; если порошок кофе подвергают воздействию жестких условий, то, как правило, в конечном продукте бета-мирцена обнаружить не удается, а количество лимонена оказывается значительно сниженным. Высокое содержание этих соединений в порошковом растворимом кофе может быть желательным, поскольку полагают, что такое содержание указывает на высокую степень извлечения высококачественных ароматических соединений. При традиционной технологии изготовления растворимого кофе такие соединения, как правило, не сохраняются. Было установлено, что продукт, представляющий собой растворимый кофе, в соответствии с настоящим изобретением, имеет высокое качество. Также было установлено, что наиболее высокое содержание этих соединений удается получить при криогенной конденсации ароматического газа.
Описываемые ниже варианты осуществления изобретения приводятся только в качестве примеров. Настоящее изобретение основано на улавливании больших количеств ароматических компонентов из свежеразмолотого кофе перед обычной технологической обработкой размолотого кофе. Это дает то преимущество, что во время технологической обработки теряются или разлагаются лишь минимальные количества ароматических компонентов.
Способ требует свежеобжаренного и свежеразмолотого кофе. Размолотый кофе можно получать обычным способом. Свежеразмолотый кофе подают в смесительный танк, в котором экстрагируют ароматические вещества. Смесительный танк может представлять собой любой подходящий смесительный танк, такой как конусный смеситель со шнеком или ленточный смеситель. Для предотвращения потерь ароматических веществ смесительный танк должен быть герметичен. Однако, если некоторое количество ароматических компонентов выходит из смесителя, их необходимо собрать, например, направляя эти ароматические компоненты в конденсатор.
Размолотый кофе перемешивают и разбрызгивают на него водную жидкость, чтобы увлажнить молотый кофе. Эта водная жидкость, например, может представлять собой воду, или кофейный экстракт, или любую другую подходящую жидкость. Количество водной жидкости не имеет решающего значения, но содержание влаги во влажном размолотом кофе предпочтительно должно составлять от 10% до 100 мас.%, более предпочтительно - от 10% до около 50 мас.% Например, содержание влаги во влажном размолотом кофе может составлять от 20% до 40 мас. %. Увлажнение размолотого кофе улучшает высвобождение из него содержащего ароматические вещества газа.
Затем влажный молотый кофе нагревают в смесительном танке; предпочтительно нагревание молотого кофе осуществляют равномерно. Можно использовать любые подходящие способы для нагревания влажного молотого кофе. Например, для нагревания влажного молотого кофе можно использовать водяной пар. Влажный молотый кофе можно нагревать до температуры 50°С до 95°С. Полагают, что нагревание влажного молотого кофе до температур, которые ниже обычных температур заваривания кофе, помогает предотвратить наступление реакций разложения ароматических веществ. Полагают, что нагревание влажного молотого кофе усиливает дальнейшее высвобождение содержащего ароматические вещества газа.
После нагревания влажного молотого кофе его подвергают воздействию пониженного давления, чтобы индуцировать превращение ароматических компонентов в пар. Если система не герметизирована, то пониженное давление можно создать с помощью вакуум-насоса. Если же система герметизирована, то пониженное давление можно создать с помощью устройств для отведения воздуха или тому подобных устройств. В случае использования вакуум-насоса давление можно понизить от 75 мбар (7,5 кПа) до 900 мбар (90 кПа). Однако во всех случаях давление следует понижать до значения, которое ниже давления водяного пара при температуре, существующей внутри смесительного танка.
Нагретый молотый кофе можно подвергать воздействию пониженного давления с помощью периодического (циклического) или непрерывного способа. Периодический или циклический способ включает прекращение или уменьшение нагрева размолотого кофе с последующим воздействием на него пониженного давления. Предпочтительно давление в системе понижают быстро. Например, давление может упасть примерно на 250 мбар (25 кПа) за одну минуту. Когда размолотый кофе подвергают воздействию пониженного давления, то вызванное этим превращение ароматических веществ в пар приводит к охлаждению кофе. Если требуются дополнительные циклы, то воздействие пониженного давления прекращают и вновь нагревают размолотый кофе. Затем размолотый кофе может быть снова подвергнут воздействию пониженного давления. Воздействие пониженного давления может продолжаться в течение от 0,5 до 3 минут в течение цикла. Циклический процесс можно повторять от 2 до 10 раз. Предпочтительное общее время нагревания размолотого кофе и воздействия на него пониженного давления составляет от 5 до 15 минут.
Непрерывный способ включает нагревание размолотого кофе с последующим воздействием на него пониженного давления при одновременном сохранении нагревания. Нагрев и давление можно отрегулировать так, чтобы размолотый кофе оставался при относительно постоянной температуре и относительно постоянном давлении. В этом случае температура предпочтительно составляет от 70°С до 95°С, в альтернативном варианте температура составляет от 70°С до 90°С. Давление предпочтительно составляет от 300 мбар (30 кПа) до 900 мбар (90 кПа). В альтернативном варианте давление составляет от 350 мбар (35 кПа) до 700 мбар (70 кПа). Например, давление может составлять от 350 мбар (35 кПа) до 550 мбар (55 кПа). Конечно, нет необходимости, чтобы температура и давление оставались постоянными, и допустимо, чтобы со временем их значения несколько менялись. Предпочтительно общее время нагревания размолотого кофе и воздействия на него пониженного давления составляет от 4 до 12 минут.
Нагревание размолотого кофе и воздействие на него пониженного давления приводит к высвобождению газа, содержащего ароматические вещества. Этот газ откачивают и собирают, после чего собранный газ из размолотого кофе подвергают технологической обработке с целью улавливания ароматических компонентов. Это можно осуществить с помощью обычных способов. Например, поток газа можно подвести к системе конденсирования. Система конденсирования работает при температуре, достаточно низкой для того, чтобы сконденсировать большинство ароматических компонентов из потока газа. Подходящей является температура ниже 50°С, хотя охлаждение до температуры ниже 30°С, а особенно ниже 20°С, является предпочтительным. Можно использовать более одного конденсатора, причем каждый последующий конденсатор работает при более низкой температуре, чем предшествующий конденсатор. Предпочтительно, чтобы конденсатор, расположенный в самом конце этой цепочки, работал при температуре от -10°С до 10°С; например, при температуре 0°С.
Желательно концентрировать ароматические компоненты с помощью частичного конденсирования, при этом поток газа может проходить первую стадию конденсирования при высокой температуре, например, при температуре от 40°С до 80°С. Это приведет к конденсации, в первую очередь, воды. Затем несконденсированные и концентрированные ароматические компоненты можно подвергнуть второй стадии конденсирования при более низкой температуре, например, при температуре от 0°С до 40°С, чтобы получить ароматическую жидкость.
Ароматическая жидкость, удаляемая из системы конденсирования, содержит ароматические компоненты, которые можно использовать для ароматизации кофейного экстракта, как описано ниже, или может использоваться для ароматизации порошкового растворимого кофе.
Ароматические компоненты, которые не конденсируются в системе конденсирования, можно направить для их сбора в криогенный конденсатор ароматических веществ. Известны многие подходящие криогенные конденсаторы ароматических веществ, и о них сообщается в литературе. Однако наиболее подходящий криогенный конденсатор ароматических веществ описан в патентах США №№5182926 и 5323623, описания которых включены в данное изобретение в качестве ссылок. Подробности работы такого криогенного конденсатора ароматических веществ можно найти в описаниях, приведенных в этих патентах. Безусловно, могут использоваться и другие криогенные конденсаторы ароматических веществ, например такой, как описанный в патенте США №5030473. Ароматические вещества, собранные в криогенном конденсаторе ароматических веществ, находятся в форме инея. Этот иней можно использовать для ароматизации кофейного экстракта, как описано ниже. В качестве альтернативы иней можно соединить с подходящим субстратом, используемым в качестве носителя, таким как кофейное масло или эмульсия, содержащая кофейное масло. Этот ароматизированный носитель удобно добавлять в растворимый порошковый кофе для получения конечного продукта.
После того как газ, содержащий ароматические вещества, экстрагирован из размолотого кофе, влажный деароматизированный размолотый кофе подвергают дальнейшей технологической обработке. Например, влажный деароматизированный размолотый кофе транспортируют в систему экстрагирования. Система экстрагирования может представлять собой любую подходящую систему, поскольку этот аспект не имеет решающего значения для настоящего изобретения. Походящие системы экстрагирования включают батареи элементов с неподвижным слоем, реакторы с поршневым потоком, реакторы с движущимся слоем и т.п. Во время процесса экстрагирования размолотый кофе может быть подвергнут одной или более стадиям термической солюбилизации.
После того как кофейный экстракт покинет систему экстрагирования, его концентрируют, как обычно. Некоторая часть кофейного экстракта может использоваться в качестве водной жидкости для увлажнения размолотого кофе вместо концентрирования. Ароматическую жидкость, удаляемую из системы конденсирования, можно после этого добавить к концентрированному экстракту. По желанию, ароматические компоненты в ароматической жидкости можно подвергнуть концентрированию перед добавлением их к концентрированному экстракту. Концентрирование можно осуществлять с помощью обычных способов, таких как частичное конденсирование, ректификация, мембранное концентрирование и концентрирование вымораживанием. Кроме того, к концентрированному экстракту можно добавить иней, полученный из криогенного коллектора ароматических веществ.
Затем ароматизированный экстракт сушат обычным способом, чтобы получить ароматизированный растворимый порошковый кофе, например, с помощью распылительной или сублимационной сушки. Конечно, ароматическую жидкость или ароматический иней можно использовать для ароматизации и в других целях.
С помощью хроматографического анализа суспензии частиц кофе было установлено, что способ по изобретению позволяет извлечь от 40% до 95% летучих ароматических соединений из размолотого кофе. В целом определение количества водных конденсатов ароматических веществ в расчете на общее содержание органических соединений показало, что способ по изобретению обеспечивает примерно в два раза больше собираемых ароматических веществ по сравнению с традиционно применяемым способом, заключающимся в отгонке водяным паром из свежего экстракта. Таким образом, способ согласно изобретению обеспечивает общее количество ароматических веществ, экстрагированных из кофе, в размере не менее 700 частей углерода на миллион в расчете на свежеразмолотый кофе.
Ароматизированный порошковый растворимый кофе можно восстановить, как обычно, путем добавления воды с получением кофейного напитка. Дегустация этого кофейного напитка по сравнению с эталонным кофейным напитком показывает, что растворимый кофе, полученный с помощью данного способа, имеет значительно более выраженный общий вкус и вкус жареных кофейных зерен, а карамельный привкус, типичный для растворимого кофе, уменьшен.
Установлено, что ароматические характеристики кофейного продукта по настоящему изобретению обеспечивают придание получаемому из него напитку желательного кофейного аромата.
Ароматизированный растворимый порошковый кофе с этим типом ароматического профиля можно получить с помощью вышеописанного способа.
Сведения, подтверждающие возможность осуществления изобретения
Для дальнейшей иллюстрации настоящего изобретения ниже приводятся конкретные примеры его осуществления.
Пример 1
Свежеразмолотый кофе помещают в конусный смеситель и включают смеситель. Для уменьшения давления в смесителе до величины примерно 150 мбар (около 15 кПа) используют вакуум-насос, который затем выключают. На поверхность размолотого кофе разбрызгивают воду до тех пор, пока вода не будет составлять примерно 30% от общей массы. В нижнюю часть смесителя подают пар, и размолотый кофе равномерно нагревают до температуры примерно 80°С, в то время как давление в смесителе поднимается до примерно 500 мбар (около 50 кПа). Включают вакуум-насос и одновременно прекращают подачу пара. Давление уменьшают до величины примерно 150 мбар (около 15 кПа), а температуру понижают до примерно 60°С. Примерно через минуту вакуум-насос выключают, а подачу пара включают до тех пор, пока температура размолотого кофе снова не составит примерно 80°С. Этот процесс повторяют еще три раза. Общее время процесса, начиная от включения вакуум-насоса и до выключения вакуум-насоса в конце последнего цикла, составляет около 12 минут.
Полученный в смесителе ароматизированный газ отводят и сгущают в конденсаторе, работающем при температуре около 0°С. Сконденсированную жидкость собирают и анализируют на содержание ароматических компонентов. Несконденсированный газ транспортируют в криогенный сборник ароматических веществ, предпочтительно работающий при температуре -140°С или выше, более предпочтительно - при -130°С. Ароматический иней собирают в криогенном коллекторе ароматических веществ.
Было установлено, что водные ароматические вещества содержат 735 частей углерода на миллион в расчете на свежеразмолотый кофе. Также было установлено, что криогенные ароматические вещества содержат 74 части углерода на миллион в расчете на свежеразмолотый кофе. Следовательно, общее количество ароматических веществ составляет 809 частей углерода ароматических соединений на миллион в расчете на свежеразмолотый кофе.
Влажный молотый кофе, поступающий из смесителя, подвергают экстрагированию в системе экстрагирования и концентрации, как обычно.
Конденсированную жидкость из конденсатора добавляют к концентрированному экстракту, а затем экстракт сушат до получения растворимого порошка в башне для распылительной сушки. Ароматический иней из криогенного коллектора ароматических веществ также добавляют к растворимому порошку обычным способом.
Чайную ложку растворимого порошка растворяли в 150 мл горячей воды с температурой 85°С. Напиток оценивала квалифицированная комиссия, которая установила, что он имеет вкус и аромат, похожий на вкус и аромат свежесваренного кофе, с хорошим кофейным ароматом, хорошей кислотностью, экстрактивностью, привкусом жареного кофе и уменьшенным карамельным привкусом.
Пример 2
Свежеразмолотый кофе помещают в конусный смеситель и запускают смеситель. Для уменьшения давления в смесителе до величины примерно 150 мбар (примерно 15 кПа) используют вакуум-насос. На поверхность размолотого кофе разбрызгивают воду до тех пор, пока вода не будет составлять примерно 30% от общей массы. Затем вакуум-насос отключают. В нижнюю часть смесителя подают пар, и размолотый кофе равномерно нагревают до температуры примерно 80°С, в то время, как давление в смесителе поднимается до примерно 450 мбар (примерно 45 кПа). Затем размолотый кофе подвергают воздействию пониженного давления, а нагревание продолжают. Температуру поддерживают на уровне примерно 80°С, а давление - на уровне примерно 450 мбар (около 45 кПа). Общее время процесса, начиная от включения нагрева и вакуум-насоса и до отключения нагрева и вакуум-насоса, составляет примерно 8 минут. Затем обработку ароматизированного газа проводят так, как описано в примере 1.
Было установлено, что водные ароматические вещества содержат 738 частей углерода на миллион, в расчете на свежеразмолотый кофе. Также было установлено, что криогенные ароматические вещества содержат 87 частей углерода на миллион в расчете на свежеразмолотый кофе. Таким образом, общее содержание ароматических веществ составляет 825 частей углерода ароматических соединений на миллион в расчете на свежеразмолотый кофе.
Чайную ложку растворимого порошка растворяли в 150 мл горячей воды с температурой 85°С. Напиток оценивала квалифицированная комиссия, которая установила, что он имеет вкус и аромат, похожие на вкус и аромат свежесваренного кофе, с хорошим кофейным ароматом, хорошей кислотностью, экстрактивностью, вкусом жареного кофе и уменьшенным карамельным привкусом.
Пример 3
Растворимый кофе, высушенный с помощью распылительной сушки, получают, как описано в примере 2. Растворимый кофе, высушенный с помощью сублимационной сушки, получают, как описано в этих примерах, но стадию распылительной сушки заменяют на сублимационную сушку. Эти образцы сравнивают с имеющимися в продаже образцами растворимого кофе, полученными с помощью распылительной и сублимационной сушки. Далее определяют концентрацию ароматических летучих веществ над растворимым кофе, восстановленным водой.
Ароматические компоненты характеризуют путем определения концентрации летучих ароматических соединений над восстановленным напитком. Концентрацию летучих ароматических соединений над восстановленным напитком определяют путем отбора образцов из статического свободного пространства над продуктом с последующим анализом с помощью газовой хроматографии. Для анализа используют стандартное коммерчески доступное оборудование, например, фирмы Hewlett Packard. Подходящими моделями являются прибор для автоматического отбора образцов из свободного пространства над продуктами модели 7694, газовый хроматограф 6890 и атомарный эмиссионный детектор 2350А.
Отбор образцов из свободного пространства над продуктом производят, помещая пробирки объемом в 22 мл в условия давления в 10 фунтов на квадратный дюйм (70 кПа). Элюирование осуществляют на полярных капиллярных колонках, покрытых полиэтиленгликолевой фазой и соединенных с атомарным эмиссионным детектором. Летучие ароматические соединения распределяют по зонам, в соответствии с их индексом сохранения вкусоароматического комплекса, а именно, зона 1: RIDBWAX<1130, зона 2: 1130≤RIDBWAX≤1430. Детектор калибруют с помощью внешнего стандарта, представляющего собой 4-метилтиазола в концентрации 50 частей на миллион в воде, анализируемого в таких же условиях.
Среди летучих ароматических соединений, измеренных в зоне 1, обнаружены фураны, альдегиды, кетоны, сложные эфиры и серосодержащие соединения. Среди летучих ароматических соединений, измеренных в зоне 2, обнаружены в основном азотсодержащие ароматические компоненты.
Образцы растворимого кофе восстанавливали путем разведения в воде до содержания твердых веществ 3,3 мас.% от восстановленного напитка. Измерения проводили для образцов объемом 5 мл при температуре 60°С, как описано выше.
Образцы растворимого кофе, имеющиеся на японском рынке, сравнивали с продуктом по настоящему изобретению:
Табл.1 | ||
Частей на миллион*, зона 1 | Частей на миллион*, зона 2 | |
Aroma in™ ACF (FD) | 34 | 3,7 |
Maxim™ ACF (FD) | 48 | 5,3 |
Nescafe Gold Blend™ (FD) | 38 (100%) | 4,6(100%) |
Filter Drip Brew** (заваренный и отфильтрованный кофе) | 85 | 6,9 |
Суспензия обжаренного и размолотого кофе** | 124 | 10,5 |
Продукт по настоящему изобретению, высушенный с помощью сублимационной сушки** | 109(287%) | 8,0(174%) |
* Частей на миллион: Реакцию обнаружения атомарной эмиссии для углеродной линии при 193 нм выражали в частях на миллион с использованием в качестве внешнего стандарта 4-метилтиазола, определенного в тех же условиях, что и восстановленные растворы кофе. | ||
** Образцы, для которых использован такой же обжаренный и размолотый кофе, что и в коммерческом образце Nescafe Gold Blend, и которые проанализированы стехиометрически по отношению к соответствующему образцу растворимого кофе. Аббревиатуры: FD - высушенный с помощью сублимационной сушки, SD -высушенный с помощью распылительной сушки, AGF - Ajinomoto general Foods Inc., KJS - Kraft Jacobs Suchard. |
Образцы растворимого кофе, имеющиеся на британском рынке, сравнивали с продуктами по настоящему изобретению:
Табл.2 | ||
Частей на миллион*, зона 1 | Частей на миллион*, зона 2 | |
Kenco Carte Noire™KJS (FD) | 42 | 4.4 |
Kenco Really Rich™ KJS (FD) | 30 | 3.6 |
Maxwell™ KJS (FD) | 35 | 3,0 |
Nescafe Original™ | 30(100%) | 3,5 (100%) |
Продукт по настоящему изобретению, высушенный с помощью распылительной сушки | 67 (223%) | 7,6(217%) |
Было установлено, что способ по настоящему изобретению весьма эффективен для извлечения высоколетучих соединений из обжаренного и размолотого кофе. Вследствие этого, приготовленный напиток, в соответствии с настоящим изобретением, имеет значительно более высокую концентрацию летучих соединений, элюирующихся в зонах 1 и 2, по сравнению с напитком, приготовленным из коммерчески доступного растворимого кофе. Среди этих летучих соединений обнаружены ароматические компоненты, которые, как известно, влияют на баланс кофейного аромата (например, альдегиды, дикетоны, пиразины, серосодержащие соединения).
По сравнению с коммерчески доступным растворимым кофе Nescafe™, общая концентрация летучих соединений в растворимом кофе по настоящему изобретению, элюирующихся в зоне 1, увеличена, по меньшей мере, на 50-300%. В некоторых случаях наблюдалось увеличение на 200-300%. Самые высокие значения соответствуют исчерпывающему извлечению высоколетучих соединений из соответствующего образца обжаренного и размолотого кофе (аромат суспензии обжаренного и размолотого кофе принят за 100% в зоне 1).
По сравнению с имеющимися на рынке сортами растворимого кофе, общая концентрация соединений в растворимом кофе по настоящему изобретению, элюирующихся в зоне 2, увеличена, по меньшей мере, на 100-300%. В некоторых случаях наблюдали увеличение на 150-250%. Самые высокие значения соответствуют извлечению от 70% до 80% концентрации ароматических соединений, измеренной в суспензии соответствующего образца обжаренного и размолот