Способ получения отличного от человека животного с мутированным нокин-геном, способ тестирования вещества на применимость для лечения болезни альцгеймера (варианты), плазмида (варианты), способ получения первичной культуры клеток или субкультивируемой клетки
Иллюстрации
Показать всеИзобретение относится к области генетической инженерии. Предложен способ получения отличного от человека животного с мутированным нокин-геном пресенилина-1. Способ предусматривает перенос мутантного гена путем гомологичной рекомбинации в эмбрион животного. Полученное животное характеризуется способностью экспрессировать мутантный белок пресенилина-1 и индукцией продукции β-амилоидного белка, что приводит к развитию прогрессирующего нервного заболевания в гиппокампе или периферическом отделе коры головного мозга. Предложено также несколько плазмид, несущих мутированный ген. Раскрыт также способ получения первичной культуры клеток или субкультивируемой клетки из полученных мутированных животных. Кроме того, предложены также несколько способов тестирования веществ на применимость для терапевтического и/или профилактического лечения болезни Альцгеймера. Способы предусматривают введение тестируемого вещества мутированному животному и оценку полученных результатов. Полученные мутированные животные могут быть использованы как модельные животные при исследовании болезни Альцгеймера. 9 н. и 16 з.п. ф-лы, 8 ил.
Реферат
Изобретение касается трансгенных животных. Более конкретно, настоящее изобретение касается животного, трансгенного по пресенилину, содержащего внесенный мутантный ген пресенилина, обусловливающий болезнь Альцгеймера у человека.
Предпосылки изобретения
Симптомом болезни Альцгеймера является прогрессирующее слабоумие. Ее патогистология характеризуется возникновением огромного количества сенильных бляшек в головном мозге и нарастающей дегенерацией нейрофибрилл в нейронах. Данное заболевание является нейродегенеративным, при котором нейроны постепенно гибнут. Как правило, болезнь Альцгеймера развивается в пожилом возрасте, а ее встречаемость растет со старением. В настоящее время надежное лечение болезни Альцгеймера невозможно. Следовательно, с точки зрения подготовки к резкому возрастанию пожилого населения в будущем желательной является как можно скорейшая разработка способов терапевтического и профилактического лечения болезни Альцгеймера и разработка эффективного лекарственного средства, предназначенных для профилактического и терапевтического лечения данного заболевания.
Сенильная бляшка является отложением вещества вне нейронов, состоящим из различных компонентов, а их основным компонентом является пептид, состоящий из 39-42 аминокислотных остатков, называемый β-амилоидным белком (Аβ). Амилоидный белок-предшественник (АРР) расщепляется с участием протеаз, которые предположительно называют β-секретазой и γ-секретазой, в результате чего образуется зрелый β-амилоидный белок. В сенильной бляшке β-амилоид откладывается в виде регидного образования, обладающего β-складчатой структурой. Такая сенильная бляшка вначале образуется в виде пятноподобного отложения, называемого диффузной сенильной бляшкой. На этом этапе нейродегенеративные процессы еще не происходят. Считается, что по мере того, как диффузная сенильная бляшка превращается в более жесткое отложение, происходит и дегенерация или гибель нейронов, в результате чего проявляются такие симптомы болезни Альцгеймера, как деменция. Существуют Аβ40, состоящий из 40 аминокислотных остатков, и Аβ42, состоящий из 42 аминокислотных остатков, такой как амилоид β. Большая часть амилоида-β, вырабатываемого клетками, представлена изоформой Аβ40, и при этом присутствует лишь небольшое количество Аβ42. Однако Аβ42 характеризуется свойствами более интенсивной агрегируемости, и, таким образом, Аβ42 играет более выраженную роль в образовании сенильной бляшки по сравнению с Аβ40 (Tamaoka, Naika, Intern. Med., vol. 77, P843, 1996).
При болезни Альцгеймера имеет место семейное развитие по аутосомно-доминантному типу наследования. Ген, который был в 1991 году первым идентифицирован в качестве гена, обусловливающего семейную манифестацию болезни Альцгеймера, - это мутантный ген АРР: этот ген локализован в 21 хромосоме, а в аминокислотной последовательности мутация обусловливала замену валина на изолейцин в 717-м положении (A.Goate et al., 1991, Nature, vol. 349, p.704).
В качестве причины, как причины болезни Альцгеймера, были идентифицированы и другие мутанты АРР такие как обусловливающие замену указанного аминокислотного остатка в положении 717 на фенилаланин (J.Murrell et al., 1991, Science, vol. 254, р.97); обусловливающие замену аминокислотного остатка в том же положении на глицин (Chartier, Harlin et al., 1991, Nature, vol. 353, p.844); обусловливающие замену двух аминокислотных остатков - лизин - метионин на аспарагин-лейцин (M.Mullan et al., 1992, Nature Genet., vol. 1, p.345); и обусловливающие замену аланина на глицин в 692-м положении (L.Hendrisk et al., 1992, Nature Genet., vol. 1, p.218), и подобные.
В 1993 году сообщалось что аполипопротеин-Е (аро Е), является этиологическим фактором или фактором риска развития семейной болезни Альцгеймера. У пациентов с болезнью Альцгеймера аллель ароЕ4, в котором аминокислотный остаток в положении 112 представляет собой аргинин, и аминокислотный остаток в положении 158 представляет собой аргинин, идентифицируется с существенно большей частотой по сравнению со здоровыми лицами среди других аллелей ароЕ, гены которых локализованы в 19 хромосоме (E.H.Corder et al., 1993, Science, vol. 261, p.921).
После этого мутация в гене «пресенилина-1» (PS1, исходно обозначавшегося как S182), картированном в 14 хромосоме (R.Sherrington et al., 1995, vol. 375, р. 754), и мутация в гене «пресенилина-2» (PS2, исходно обозначавшегося как Е5-1 или STM-2), картированном в 1 хромосоме (B.Sherrington et al.. Nature, 1995, vol. 375, р. 754), были в 1995 году идентифицированы как новые гены, вызывающие болезнь Альцгеймера (в данной заявке каждый из этих генов определен как «ген пресенилина-1» и «ген пресенилина-2», соответственно, а каждый из продуктов этих генов обозначается как «белок пресенилин-1» и «белок пресенилин-2», или «PS1» и «PS2», соответственно).
Белок пресенилин-1 и белок пресенилин-2, состоящие, соответственно, из 467 и 448 аминокислотных остатков, включают семи- или восьмискладчатую трансмембранную структуру: следовательно, они предположительно являются мембранными белками. Гомология этих двух белков на уровне аминокислотных последовательностей существенна - 67% общей и 84% только по трансмембранным доменам. Что касается функций пресенилин-1, существует предположение, что функции данного белка схожи с таковыми белка sel-12 нематоды или с белка SPE-4, на что указывает высокая гомология данных белков. Белок SPE-4 участвует в процессах сперматогенеза у нематоды, и предполагается, что он вовлечен в транспортировку и запасание белков.
Соответственно, считается, что пресенилин-1, по-видимому, участвует в процессинге мембранных белков, таких как АРР, аксоплазматическом транспорте и слиянии мембранных пузырьков с мембранами. Для гена sel-12 было установлено, что он устраняет эмбриональную аномалию, вызванную мутацией lin-12, которая подавляет развитие нематоды. Считается, что lin-12 вовлечен в межклеточную передачу сигнала, следовательно, также существует предположение, что белок пресенилин-1 участвует в определенной стадии внутриклеточной передачи сигналов.
В первом же описании белка пресенилин-1 было указано на то, что мутации, обусловливающие проявление семейной болезни Альцгеймера, являются заменами аминокислотных остатков по пяти положениям. После этого сообщения гены, мутантные по различным их участкам, были идентифицированы во многих семьях с диагнозом семейной болезни Альцгеймера, включая OS-2 (замена изолейцина на треонин в 213-м положении) и OS-3 (замена валина на фенилаланин в 96-м положении), причем обе эти мутации описаны авторами настоящего изобретения (K.Kamino et al., 1996, Neurosci. Lett., vol. 208, р.195), а к настоящему времени известно более 40 различных вариантов аминокислотных замен более чем по 30 положениям (Hardy, 1997, TINS, vol. 20, р.154).
В настоящее время 70-80%. случаев семейной болезни Альцгеймера, как считается, обусловливается мутациями в белке пресенилин-1. Сообщалось о мутациях мутации по двум сайтам белка пресенилин-2. Как объяснялось выше, генетический анализ подтвердил, что мутации пресенилин-1 и пресенилин-2 самым непосредственным образом вовлечены в этиологию семейной болезни Альцгеймера.
Механизмы, по которым мутантные белки пресенилин-1 и пресенилин-2 вызывают начало болезни Альцгеймера, в настоящее время интенсивно изучаются. Было сообщено, что белок AJ340 находится на том же уровне, что и уровни белков пресенилин-1 и пресенилин-2, в то время как количество Аβ42 в существенной степени увеличивается по сравнению с нормальными уровнями пресенилин-1 и пресенилин-2 в сыворотке или в культуральной среде культуры фибробластов кожи, взятых у пациента с болезнью Альцгеймера, при наличии указывавшихся выше мутаций (D.Scheuner et al., 1996, Nature Med., vol. 2, p.864), в культуральной среде клеточной линии, трансформированной мутантными вариантами белков пресенилин-1 и пресенилин-2 (W.Xia et al., 1997, J. Biol. Chem., vol. 272, p.7977; D.R.Borchelt et al., 1996, Neuron, vol. 17, p.1005; M. Citron et al., 1997, Nature Med., vol. 3, p.67) и в ткани головного мозга у пациента с диагнозом семейной болезни Альцгеймера, несущего мутантный белок пресенилин-1 (C.A.Lemere et al., 1996, Nature Med., vol. 2, p.1146).
В этих сообщениях было показано, что мутации белков пресенилин-1 и пресенилин-2, которые обусловливают семейную болезнь Альцгеймера, по-видимому, обеспечивают манифестацию болезни Альцгеймера за счет обусловливания повышения количества белка Аβ42, что, как считается, играет существенную роль в образовании сенильных бляшек. Трансгенная мышь, несущая ген, который кодирует мутантный белок пресенилин-1, была ранее создана (К.Duff et al., 1996, Nature, vol. 383, р.710; D.R.Borchelt et al., 1996, Neuron, vol. 17, p.1005; M.Citron et al., 1997, Nature Med., vol, 3, p.67). Было сообщено, что содержание Аβ42 в головном мозге такой трансгенной мыши селективно возрастало. Эти данные несомненно подтвердили вероятность того, что мутации в белках пресенилин-1 и пресенилин-2 обусловливают проявление семейной болезни Альцгеймера вследствие обусловливания увеличения количества Aβ42, который предположительно играет важную роль в образовании сенильных бляшек, тем самым инициируя болезнь Альцгеймера. Однако не было опубликовано данных о гистологических параметрах головного мозга упоминавшихся выше трансгенных мышей: считается, что причиной этого является отсутствие существенных гистологических изменений в головном мозге таких трансгенных мышей.
В целом, трансгенные животные применимы в качестве моделей анализа функций гена-мишени in vivo. Однако технически весьма затруднительно проконтролировать экспрессию перенесенного гена на количественном уровне, оценить тканеспецифичность и специфичность в ходе индивидуального развития. Также существует проблема в том, что два генных продукта присутствуют в смеси в организме трансгенных животных, потому что ген, наследуемый этими животными, сохраняет нормальную экспрессию, а функции переносимого гена не могут быть достоверно проанализированы. Более того, когда переносимый ген подвергается избыточному экспрессированию, то функции, в норме не наследуемые in vivo, могут возникать у трансгенного животного, в результате чего образовавшийся дефект может привести к недостоверности в анализе животных, несущих мутантный ген.
Помимо трансгенных животных нокаут-животные также могут быть использованы в качестве модели для изучения функций гена-мишени. У нокаут-животных ген-мишень, в норме наследуемый данным животным, искусственным путем выводится из строя таким образом, чтобы стать полностью нефункциональным (т.е. «выключается»). Подробный анализ нокаут-животных может помочь установить функции гена-мишени in vivo. Однако конкретные изменения у нокаут-животных, являющихся гомозиготами, иногда не проявляются, поскольку функции других генных продуктов у нокаут-животных могут заменять функции «выключенных» разрушенных генных продуктов. Более того, также существует проблема в том, что гомозиготное животное может иногда оказываться летальным из-за того, что генный продукт существен с точки зрения индивидуального развития и роста данного животного, в результате чего анализ функций гена у животного являющегося жизнеспособной гетерозиготой, практически невозможен.
Описание настоящего изобретения
Объектом настоящего изобретения является получение (с точки зрения создания животной патогенетической модели болезни Альцгеймера) животного, являющегося патогенетической моделью, патологические свойства которой близки к таковым у пациента с болезнью Альцгеймера, вместо трансгенного животного, для которого свойственны указанные выше недостатки. Более конкретно объектом настоящего изобретения является получение генетически мутированного животного, способного экспрессировать мутантный белок пресенилин в их головном мозге, путем переноса мутантного гена пресенилина, который, как считается, является причиной болезни Альцгеймера (мутантный пресенилиновый ген) с использованием процесса гомологичной рекомбинации. Другим объектом настоящего изобретения является представление способа получения указанного генетически мутированного животного, несущего мутантный ген, плазмиды, применимой для упомянутого выше способа получения, и способа оценки субстанции или агента, эффективного с точки зрения профилактики и (или) лечения болезни Альцгеймера с использованием указанного выше генетически мутированного животного.
С целью установления роли пресенилин-1 и выяснения механизма манифестации болезни Альцгеймера в ответ на мутацию гена пресенилина-1 заявители настоящего изобретения создали нокин-мышь, у которой нормально наследуемый ген пресенилина-1 заменен на указанный выше ген пресенилина-1, включающий мутацию OS-2. В результате заявителями было установлено, что мышь, несущая мутантный ген, успешно избегает дефектов, характерных для трансгенной мыши и нокаут-мыши, а также то, что животное применимо для исследований причин и патологии болезни Альцгеймера, обусловливаемой мутацией в гене пресенилина-1. Далее заявители продолжили исследования и пришли к описываемому далее изобретению.
Таким образом настоящее изобретение относится к отличному от человека генетически мутированному животному, несущему мутантный ген пресенилина-1, а более предпочтительно настоящее изобретение относится к генетически мутированному животному, несущему мутантный ген пресенилина-1, который включает ДНК, характеризующуюся последовательностью, кодирующей белок пресенилин-1, в последовательности которого одна аминокислота заменена на другую аминокислоту.
Также настоящее изобретение относится к
отличному от человека генетически мутированному животному, несущему мутантный ген пресенилина-1, который включает последовательность ДНК, характеризующуюся последовательностью, кодирующей мутантный белок пресенилин-1, характеризующийся аминокислотной последовательностью, в составе которой одна или большее число аминокислот по положениям, которые выбирают из группы, включающей следующие аминокислотные положения - 79, 82, 96, 115, 120, 135, 139, 143, 146, 163, 209, 213, 231, 235, 246, 250, 260, 263, 264, 267, 269, 280, 285, 286, 290, 318, 384, 392, 410, 426 и 436, - заменены на другую(ие) аминокислоту(ы) в последовательностях пресенилин-1, предпочтительно являющегося белком пресенилин-1 мыши; и
отличному от человека генетически мутированному животному, несущему мутантный ген пресенилина-1, который включает последовательность ДНК, характеризующуюся последовательностью, кодирующей мутантный белок пресенилин-1, в составе которого имеется одна или несколько мутаций, выбираемых из группы, включающей A79V, V82L, V96F, У115Н, У115С, Е120К, E120D, N135D, M139V, М139Т, M139I, I143F, I143T, M146L, M146V, Н163У, H163R, G209V, I213T, А231Т, A231V, L235P, А246Е, L250S, A260V, C263R, P264L, P267S, R269G, R269H, Е280А, E280G, A285V, L286V, S290C, E318G, G384A, L392V, С410У, А426Р и P436S, в аминокислотной последовательности белка пресенилин-1, более предпочтительно являющегося белком пресенилин-1 мыши (каждая буква алфавита соответствует аминокислоте, обозначаемой однобуквенным символом, а каждый номер соответствует номеру положения аминокислоты, считая от N-конца полипептида пресенилин-1, а применяемое описание указывает на то, что аминокислота дикого типа, отмеченная слева от цифры, заменяется на аминокислоту, обозначенную справа от номера. В данной заявке мутантный белок пресенилин-1 и мутантный белок пресенилин-2 охарактеризованы одинаковым образом).
Далее настоящее изобретение относится к отличному от человека генетически мутированному животному, несущему, мутантный ген пресенилина-1, который включает ДНК, характеризующуюся последовательностью, кодирующей мутантный белок пресенилин-1, в составе которого изолейцин по положению 213 белка пресенилин-1 заменен на отличную от изолейцина аминокислоту, а также отличное от человека генетически мутированное животное, несущее мутантный ген пресенилина-1, включающий ДНК, характеризующуюся последовательностью, кодирующей мутантный белок пресенилин-1, в составе которого изолейцин по 213-му положению в аминокислотной последовательности пресенилин-1 заменен на треонин.
Предпочтительные варианты указанных выше вариантов изобретения относятся к:
указанному выше генетически мутированному животному, несущему мутантный ген пресенилина-1, причем последовательность ДНК, кодирующая участок вокруг 213-й аминокислоты в аминокислотной последовательности пресенилин-1, мутирована с образованием такой последовательности - 5'-TGTGGTCGGGATGATMGCCANCCACTGGAAAGGCCC-3', причем N соответствует любому нуклеотиду кроме Т, М соответствует Т или С, а подчеркнутые нуклеотиды кодируют аминокислоту, находящуюся в 213-м положении, указанное выше генетически мутированное животное, несущее мутантный ген пресенилина-1, причем последовательность ДНК, кодирующая участок вокруг 213-й аминокислоты в аминокислотной последовательности пресенилин-1, мутирована с образованием такой последовательности - 5'-TGTGGTCGGGATGATMGCCANCCACTGGAAAGGCCC-3', причем N соответствует С, М соответствуют Т или С, а подчеркнутые нуклеотиды кодируют аминокислоту, находящуюся в 213-м положении, и
указанному выше генетически мутированному животному, несущему мутантный ген пресенилина-1, причем последовательность ДНК, кодирующая участок вокруг 213-й аминокислоты в аминокислотной последовательности пресенилин-1, мутирована с образованием такой последовательности - 5'-TGTGGTCGGGATGATMGCCXYZCACTGGAAAGGCCC-3', причем XYZ представляет триплет (кодон), кодирующий отличную от изолейцина, аминокислоту, М соответствует Т или С, а подчеркнутые нуклеотиды кодируют аминокислоту, находящуюся в 213-м положении.
В другом своем аспекте настоящее изобретение относится к отличному от человека генетически мутированному животному, несущему мутантный ген пресенелина-2, который включает ДНК, характеризующуюся последовательностью, кодирующей белок, в котором аминокислоты по положениям 141 и (или) 436 заменены иными аминокислотами в составе аминокислотной последовательности белка пресенилин-2. Предпочтительный вариант настоящего изобретения относится к указанному выше отличному от человека генетически мутированному животному, причем мутантный ген пресенелина-2, включает ДНК, характеризующуюся последовательностью, кодирующей мутантный белок пресенилин-2, который включает мутацию N141I и (или) M239V в аминокислотной последовательности белка пресенилин-2.
Предпочтительные варианты настоящего изобретения относятся к указанному выше генетически мутированному животному, несущему мутантный ген причем сверхэкспрессия β-амилоидного белка обусловливается мутантным геном пресенилина-1 и (или) мутантным геном пресенилина-2; указанное выше генетически мутированное животное, несущее мутантный ген которое способно экспрессировать мутантный белок пресенилин, причем экспрессия упомянутого белка индуцирует выработку β-амилоидного белка в количестве, достаточном для развития прогрессирующей нейропатии в периферических отделах коры головного мозга данного животного; указанное выше генетически мутированное животное, несущее мутантный ген причем животное является грызуном, предпочтительно мышью; указанное выше генетически мутированное животное, несущее мутантный ген, причем, указанный выше мутантный ген преселин-1 и (или) указанный выше мутантный ген преселин-2 переносят с применением гомологичной рекомбинации; указанное выше генетически мутированное животное, несущее мутантный ген, причем количество амилоидного белка, экспрессируемого в ткани головного мозга под влиянием указанного выше гена пресенилина-1, достаточно для того, чтобы обусловить снижение ответа в тесте на тренировку памяти по сравнению с нормальным животным с индукцией нейропатии в периферических отделах коры головного мозга и гиппокампа головного мозга данного животного; и указанному выше генетически мутированному животному, несущему ДНК, которая включает мутантный ген пресенилина-1, кодирующий мутантный белок пресенилин-1, в составе которого одна или несколько аминокислот заменены на отличающиеся аминокислоты в составе аминокислотной последовательности белка пресенилин-1, наряду с ДНК, характеризующейся нуклеотидной последовательностью, кодирующей маркерный белок.
В другом своем аспекте настоящее изобретение относится к плазмиде, включающей ДНК характеризующуюся последовательностью мутантного гена пресенилина-1, причем последовательность ДНК, кодирующая участок вокруг 213-го аминокислотного положения пресенилин-1 следующая - 5'-TGTGGTCGGGATGATMGCCANCCACTGGAAAGGCCC-3', причем N соответствует A, G или С, М соответствуют Т или С, а подчеркнутые нуклеотиды кодируют аминокислоту, находящуюся в 213-м положении; и
плазмиде, включающей ДНК, характеризующуюся последовательностью мутантного гена пресенилина-1, который кодирует мутантный белок пресенилин-1, причем, аминокислота в 213-м положении заменена на отличную от изолейцина аминокислоту в аминокислотной последовательности белка пресенилин -1, а последовательность ДНК, кодирующая участок вокруг 213-го аминокислотного положения в составе пресенилин -1 такова - 5'-TGTGGTCGGGATGATMGCCXYZCACTGGAAAGGCCC-3', причем М соответствует Т или С, XYZ представляет триплет (кодон), кодирующий отличную от изолейцина аминокислоту, а подчеркнутые нуклеотиды кодируют аминокислоту, находящуюся в 213-м положении. Кроме того, настоящее изобретение относится к геномной (хромосомной) ДНК, включающей 8-й экзон мутантного гена пресенилина-1, кодирующий мутантный белок пресенилин-1, причем аминокислота в 213-м положении заменена на отличную от изолейцина аминокислоту в составе аминокислотной последовательности белка пресенилин-1.
Далее настоящее изобретение относиться к плазмиде, включающей ДНК, в состав которой Sau2АI-сайт внесен в нуклеотидную последовательность, включающую полную или мутировавшую часть кДНК или геномной ДНК мутантного гена пресенилина-1, кодирующего мутантный белок пресенилин-1, в аминокислотной последовательности которого аминокислота по 213-му положению заменена на отличную от изолейцина аминокислоту. Также изобретение относится к указанной выше плазмиде, причем замена аминокислоты по 213-му положению является заменой изолейцина на треонин, а также плазмиде, включающей ДНК, представленную следующей нуклеотидной последовательностью - 5'-TGTGGTCGGGATGATMGCCACCCACTGGAAAGGCCC-3', - в которой М соответствует Т или С.
В дополнение к указанным выше вариантам настоящее, изобретение относится к гену, кодирующему мышиный мутантный белок пресенилин-1, причем изолейцин в 213-м положении заменен на отличную от изолейцина аминокислоту в аминокислотной последовательности пресенилин-1 мыши, а также указанный выше ген, причем такой заменой является замена изолейцина на треонин. Также относится к плазмиде, включающей: (1) ген, кодирующий мышиный мутантный белок пресенилин-1 в котором изолейцин по 213-му положению заменен на отличную от изолейцина аминокислоту в аминокислотной последовательности пресенелин-1 мыши и (2) неомициновую экспрессионную кассету, фланкированную последовательностями loxPs; а также указанную выше плазмиду, причем заменой является замена изолейцина на треонин (loxPs представляются открытой японской патентной публикацией N4-501501, стр.4).
В соответствии с другим аспектом настоящее изобретение относится к эмбриону, несущему плазмиду, включающую ДНК, представленную нуклеотидной последовательностью 5'- TGTGGTCGGGATGATMGCCACCCACTGGAAAGGCCC-3', в которой М соответствует Т или С; эмбрион, полученный путем гомологичной рекомбинации с использованием каждой из упоминавшихся выше плазмид; и указанный выше эмбрион, представляющий вид грызунов, предпочтительно эмбрион мыши. Также настоящее изобретение относится к первичной клеточной культуре или пересеваемой клетке, полученным путем выделения клетки от указанного генетически мутированного животного, несущего мутантный ген, и культивированию клетки по типу тканевой культуры; способу получения отличного от человека генетически мутированного животного, несущего мутантный ген, причем такой способ включает этап внесения мутантного гена пресенилина-1 с помощью гомологичной рекомбинации в эмбрион животного, причем мутантный ген пресенилина-1 способен экспрессировать мутантный белок пресенилин-1, индуцируя тем самым выработку β-амилоидного белка в количестве, достаточном для развития прогрессирующей нейропатии в периферических отделах коры головного мозга; и указанный выше метод получения, причем мутантный белок пресенилин-1, который может быть экспрессирован, включает замену изолейцина в 213-м положении на отличную от изолейцина аминокислоту.
Кроме того, настоящее изобретение относится к способу оценки средства, применяемого для лечения и (или) профилактики болезни Альцгеймера, который включает этап обработки указанного генетически мутированного животного, несущего мутантный ген, которому вводят тест-средство с целью сравнения с генетически мутированным животным, несущим мутантный ген, которому такое тест-соединение не вводили. Типичным примером способа оценки является тест-скрининг. Предпочтительные варианты настоящего изобретения относятся к указанному выше способу оценки, в котором для сравнения используется тест на тренировку памяти, указанному выше способу оценки, причем сравнение осуществляется в патогенетическом тесте; указанному выше способу оценки, в котором для сравнения применяется патогенетический тест, основанный на параметрах невропатологии периферических отделов коры головного мозга; указанному выше способу оценки, причем для сравнения используется невропатологический тест при сравнении с одним или несколькими такими тестами, выбираемыми из группы, которая включает подавление снижения интенсивности глиоза (разрастания астроглии) в периферических отделах коры головного мозга, подавление снижения поглощения 2-дезоксиглюкозы в периферических отделах коры головного мозга и подавление снижения доступности 2-дезоксиглюкозы в периферических отделах коры головного мозга; а также указанному выше способу оценки, в котором сравнение осуществляется по ряду параметров, выбираемых из группы, которая включает продолжительность выживания, параметры поискового и двигательного поведения.
Еще, кроме того, настоящее изобретение относится к способу оценки лекарственного средства, предназначенного для лечения болезни Альцгеймера, который включает этап культивирования первичной клеточной культуры или пересеваемой клетки in vitro в присутствии тестируемого соединения; способу диагностики болезни Альцгеймера или риска развития болезни Альцгеймера, который включает использование частичной нуклеотидной последовательности мутантного гена пресенилина-1, кодирующего мутантный пресенилин-1, вариант OS-2; субстанцию, применяемую для лечения и (или) профилактики болезни Альцгеймера, выбираемую с применением любого из указанных выше способов; и лекарственное средство, предназначенное для лечения и (или) профилактики болезни Альцгеймера, включающее указанную выше субстанцию в качестве активного компонента.
Также настоящее изобретение относится к генетически мутированному животному, несущему мутантный ген пресенилина-1, причем это животное является гибридным животным или его потомством, получаемыми в результате скрещивания указанного выше генетически мутированного животного, несущего мутантный ген с животным, несущим ген, который кодирует мутантный амилоидный белок-предшественник, характеризующимся высоким уровнем выработки β-амилоидного белка, а более предпочтительно это животное является гибридом мыши или его потомством, которое получают в результате скрещивания или которое рождается в результате указанного скрещивания. Предпочтительный вариант настоящего изобретения относится к указанному выше генетически мутированному животному, причем животное несет ген, кодирующий мутантный амилоидный белок-предшественник, характеризуется высоким уровнем выработки β-амилоидного белка и является PS1-мутантной мышью.
Краткое описание чертежей
На фиг.1 показана рестрикционная карта Pα-фрагмента геномной ДНК, включающего 8-й экзон гена пресенилина-1 мыши, который был получен путем клонирования геномной клонотеки мыши.
На фиг.2 показана схема способа конструирования плазмиды ртХ-1, включающей сегмент 8-го экзона гена пресенилина-1 мыши, в составе которого находится участок, в который с применением методов направленного мутагенеза была внесена мутация OS-2.
На фиг.3 показан способ конструирования направляющего вектора.
На фиг.4 показан способ конструирования направляющего вектора.
На фиг.5 показан способ конструирования направляющего вектора.
На фиг.6 показан способ конструирования направляющего вектора.
На фиг.7 показан способ конструирования направляющего вектора и структура направляющего вектора pOS-2 neoloxP.
На фиг.8 показаны результаты применения электрофореза в 1%-ном агарозном геле в отношении продукта ПЦР, полученного после скрещивания мыши №2 (самец), несущей мутантный по OS-2 ген пресенилина-1, с мышью CAG-cre, №13 в F4 (самка), отрезания кусочка ткани хвоста у полученного потомка, выделения ДНК из этого образца и проведения ПЦР в соответствии с описанным в примере 10. Как видно, у мышей, которым соответствуют 2-я и 4-я дорожки, считая справа, не проявляют экспрессии гена neo с их геномной ДНК. На этой фигуре крайняя левая дорожка соответствует маркеру молекулярной массы. [А] отмечены бэнды, характерные для дефицита neo в составе геномной ДНК. [В] отмечены бэнды, соответствующие ДНК дикого типа. И [С] показывает бэнды, соответствующие присутствию гена neo в составе хромосомной (геномной) ДНК.
Наилучший способ осуществления настоящего изобретения
Мутантным геном пресенилина, используемым для получения генетически мутированного животного по настоящему изобретению, является ген, кодирующий мутантный белок пресенилин, а по использованию в данном тексте термин «мутантный ген пресенилина» обозначает как мутантный ген пресенилина-1 и мутантный ген пресенилина-2 в отдельности, так и их оба вместе, а термин «мутантный белок пресенилин» обозначает как мутантный белок пресенилин-1 и мутантный белок пресенилин-2 в отдельности, так и их оба вместе. Свойством мутантного гена пресенилина является обеспечение повышенного уровня выработки β-амилоидного белка. Генетически мутированным животным по настоящему изобретению является млекопитающее, трансформированное с использованием указанного выше мутантного гена пресенилина, для чего используется, например, гомологичная рекомбинация. Мутацией, происходящей в составе мутантного белка, предпочтительно является замена аминокислотных остатков. Число таких мутаций не ограничивается, а предпочтительно оно равно 1.
Полноразмерная последовательность пресенилина-1 млекопитающего описана, например, у Е.Levy-Lahad et al., 1995, Science, 269, pp.973-977. Полноразмерные последовательности белков пресенилин-1 человека и мыши и примеры последовательностей ДНК, которые кодируют эти белки, показаны в SEQ ID NO 1-4. Например, сайтом для мутирования пресенилина-1 мыши предпочтительно может быть сайт, выбираемый из положений №№79, 82, 96, 115, 120, 135, 139, 143, 146, 163, 209, 213, 231, 235, 246, 250, 260, 263, 264, 267, 269. 280, 285, 286, 290, 318, 384, 392, 410, 426 и 436.
Более предпочтительными мутациями являются одна или большее число мутаций, выбираемых из группы, которая включает мутации A79V, V82L, V96F, Y115H, Y115C, Е120К, E120D, N135D, M139V, М139Т, M139I, I143F, I143T, M146L, M146V, H163Y, H163R, G209V, I213T, А231Т, A231V, L235P, А246Е, L250S, A260V, C263R, P264L, P267S, R269G, R269H, Е280А, E280G, A285V, L286V, S290C, E318G, G384A, L392V, C410Y, А426Р и P436S в аминокислотной последовательности белка пресенилина-1, а более предпочтительно - аминокислотной последовательности белка пресенилин-1 мыши. Среди этих мутаций, в частности, предпочтительными являются замены 213-й аминокислоты на другую аминокислоту (в ряде разделов настоящего текста они обозначаются как «мутации типа OS-2»). Например, наиболее предпочтительной является мутация, в результате которой изолейцин в 213-м положении заменяется на какую-либо иную аминокислоту, кроме изолейцина, или мутация, в результате которой изолейцин-213 заменяется на треонин.
Полноразмерная последовательность белка пресенилин-2 млекопитающего описана, например, в Science, 1995, 269, pp.973-977. Предпочтительными сайтами мутирования являются 141-я и (или) 436-я аминокислоты, а в последовательности мыши более предпочтительными являются мутации N141I и M239V. Одна или большее число мутаций могут иметь место либо в одном из белков пресенилин (-1 или -2), или в обоих этих белках.
Генетически мутированное животное по настоящему изобретению характеризуется наличием одной из вышеуказанных мутаций гена пресенилина-1 и (или) гена пресенилина-2 в составе его геномной ДНК. Генетически мутированное животное не ограничено ни чем иным, кроме того, что оно является млекопитающим, а вид животного при этом специально не ограничивается. Например, пригодным для использования является вид грызунов. В частности, предпочтительным видом является мышь. Генетически мутированное животное по настоящему изобретению может быть получено путем конструирования плазмиды с использованием ДНК, характеризующейся последовательностью длиной примерно 10 тысяч пар нуклеотидов, включающей мутантный пресенилиновый ген, с последующим внесением этой плазмиды в эмбриональную стволовую клетку, что тем самым обусловливает прохождение внутриклеточной гомологичной рекомбинации.
Генетически мутированное животное по настоящему изобретению характеризуется тем, что аминокислотная мутация имеет место в основном в единственном сайте в результате внесения указанных выше мутантных генов пресенилина-1 и (или) пресенилина-2 с применением гомологичной рекомбинации. В случае так называемого «трансгенного животного» последовательность ДНК, включающая мутантный сегмент, вносится в состав геномной ДНК случайным образом, а по множеству различных сайтов оказываются внесенными десятки копий повторяющейся последовательности. Генетически мутированное животное по настоящему изобретению позволяет избежать такой проблемы: возможным является точный анализ патогенеза болезни Альцгеймера на генетическом уровне. Когда ДНК, включающая маркер или подобное, вносится в организм генетически мутированного животного по настоящему изобретению, такое животное может иметь маркерный сайт и последовательность для внесения такого маркера. Например, для внесения по сайту, распознаваемому рестриктазой Sau3AI, может быть заменен один нуклеотид, а такая замена может быть проверена путем расщепления ПЦР-продукта рестриктазой Sau3AI с последующим анализом полученных фрагментов электрофоретически и подобным образом.
Генетически мутированное животное по настоящему изобретению характеризуется своеобразным свойством вырабатывать β-амилоидный белок в большом количестве по сравнению с животным дикого типа в результате генетической мутации. Увеличенное количество β-амилоидного белка, достигаемое у генетически мутированного животного по настоящему изобретению, ни чем специально не ограничивается: предпочтительно это количество должно быть достаточным для установления отчетливой разницы в оценках степени нарушения памяти, патологических параметров и различных невропатологии по сравнению с нормальными животными.
ДНК, плазмиды, клеточные культуры и эмбрионы млекопитающих, представляемые настоящим изобретением, характеризуются наличием мутантного гена пресенилина-1 и (или) мутантного гена пресенилина-2. Например, в объем настоящего изобретения попадают кДНК или полноразмерная геномная ДНК мутантного гена пресенилина-1, кодирующего мутантный белок пресенилин-1, предпочтительно мутантный по мутации OS-2 белок пресенилин-1, или последовательность ДНК, включающая один или несколько мутантных сайтов; плазмида, включающая ДНК, которая является указанной выше кДНК или полноразмерной геномной ДНК, или указанной выше ДНК, включающей один или несколько мутантных сайтов, в которую дополнительно встроен рестрикционный Sаu3АI-сайт; геномная ДНК, включающая 8-й экзон мутантного гена пресенилина-1, кодирующей мутантный белок пресенилин-1 с мутацией OS-2. Далее настоящее изобретение охватывает указанный выше ген или ДНК, которые дополнительно включают один или больше, а предпочтительно от 1 до 20, а более предпочтительно от 1 до нескольких нуклеотидных замен.
Примерами ДНК и плазмид по настоящему изобретению являются:
1) ДНК, включающая мутантный ген пресенилина-1, кодирующий мутантный белок пресенилин-1, причем изолейцин в 213-м положении пресенилин-1 заменен на треонин, или плазмида, включающая упомянутую ДНК;
2) ДНК, включающая мут