Способ микролегирования стали азотом
Изобретение относится к области металлургии, а именно к микролегированию стали азотом. Способ включает выплавку металла в сталеплавильном агрегате, выпуск металла в ковш, раскисление, отбор пробы на содержание азота и последующую его разливку. Микролегирование стали азотом при регламентированном содержании алюминия 0,005-0,03% осуществляют в две стадии: во время выпуска металла и его раскисления предварительно насыщают азотом за счет присадки азотированного ферросплава, а окончательную корректировку химического состава металла по содержанию азота производят продувкой газообразным азотом с расходом, определяемым из соотношения: τN=390,63 QN тр. - 2272,29 QN пром. + 134,06 QAL + 13, 52, где τN - время продувки азотом, мин.; QN тр. - требуемое содержание азота в стали, %; QN пром. - содержание азота в пробе перед продувкой, %; QAL - содержание алюминия в готовой стали, %. Изобретение позволяет снизить количество неметаллических включений, получить однородную мелкодисперсную структуру и требуемое качество поверхности непрерывнолитой заготовки.
Реферат
Изобретение относится к области черной металлургии, а именно к микролегированию стали азотом.
Известен способ легирования стали азотом, включающий насыщение расплава газообразным азотом, когда одновременно с продувкой стали азотом в зону всплывающих пузырей вводят алюминий (А.с. СССР №918315, С 21 С 7/00, опубл. 07.04.82, бюл. №13).
К недостаткам известного способа следует отнести сложность определения усвоения азота за время обработки металла в ковше, время растворения алюминия в жидком металле зависит от многих факторов (температура, окисленность металла), невозможность получения требуемого содержания азота в узких пределах.
Наиболее близким аналогом заявляемого изобретения является способ микролегирования стали азотом, включающий выплавку металла в сталеплавильном агрегате, раскисление, продувку металла в ковше азотом и последующую разливку его в изложницы, струю металла в процессе разливки дополнительно обдувают азотом с интенсивностью 0.005-0.020 нм3/т мин, подаваемым непрерывным коаксиально струе металла потоком с внутренним диаметром, равным 2,0-3,5 диаметра струи металла, причем отношение расхода азота для продувки в ковше к расходу азота на обдув струи равно 1:(0,15-0,75) (А.с. СССР №1731826, С 21 С 7/00, опубл. 07.05.92, бюл. №17).
Признаки ближайшего аналога, совпадающие с существенными признаками заявляемого изобретения: выплавка металла в сталеплавильном агрегате, раскисление, продувка металла в ковше азотом, последующая разливка.
Известный способ не обеспечивает получение требуемого технического результата по следующим причинам.
Найденные в известном способе технологические приемы введения азота, в особенности в изложницу, направлены прежде всего на получение азота в стали в широком диапазоне концентраций.
Данный прием не обеспечивает получение равномерного распределения азота по объему металла и требуемого качества поверхности готового проката.
Кроме того, азот легче воздуха, следовательно, в полости изложницы находится воздух, кислород которого будет окислять металл. Это приводит к увеличению количества неметаллических включений, которые за время наполнения изложницы не успевают всплывать, и увеличению запороченности металла поверхностными дефектами и соответственно снижению выхода годного.
В основу изобретения поставлена задача усовершенствования способа микролегирования стали азотом при регламентированном содержании алюминия 0,005-0,030%, в котором азот вводят в две стадии: на первой стадии - за счет присадки в ковш азотсодержащего ферросплава во время выпуска металла и его раскисления, а на второй стадии - за счет продувки газообразным азотом, снижения количества неметаллических включений и получения однородной мелкодисперсной структуры обеспечивается требуемое качество поверхности непрерывнолитой заготовки, увеличивается производительность МНЛЗ.
Поставленная задача решается тем, что в способе микролегирования стали азотом, включающем выплавку металла в сталеплавильном агрегате, раскисление, продувку металла в ковше азотом и его последующую разливку, согласно изобретению азот вводят в две стадии: на первой стадии - за счет присадки в ковш азотсодержащего ферросплава во время выпуска металла и его раскисления, а на второй стадии - за счет продувки газообразным азотом с расходом, определяемым из соотношения:
τN=390,63×QN тр.-2272,29×QNпром.+134,06×QAL+13,52,
где τN - время продувки азотом, мин;
QN тр. - требуемое содержания азота в стали, %;
QN пром - содержание азота в пробе перед продувкой, %;
QAL - содержание алюминия в готовой стали, %;
390,63; 2272,29; 134,06; 13,52 - эмпирические коэффициенты, полученные опытным путем.
Сущность заявляемого технического решения заключается в регламентации технологического процесса производства стали с содержанием алюминия 0,005-0,030%, когда азот вводится в две стадии. На первой стадии за счет присадки в ковш азотсодержащего ферросплава во время выпуска металла и его раскисления, а на второй стадии - за счет продувки газообразным азотом на агрегате доводки стали.
Выбор продолжительности продувки газообразным азотом позволяет получить требуемое содержание азота в готовой стали.
Данный способ иллюстрируется следующим примером.
Выплавлялась сталь марки 0401 по ТП 14-101-382-01. В кислородный конвертор завалили 98 тонн металлолома, 1,7 тонны меди и залили 299 тонн жидкого чугуна, содержащего 4,2% углерода, 0,42% кремния, 0,13% марганца, 0,014% серы и 0,042% фосфора.
Плавка продувалась в 370-т кислородном конверторе.
Выпуск металла производился в сталеразливочный ковш, на дно которого присадили азотированный феррохром в количестве 350 кг (1 кг/т).
Во время выпуска в сталеразливочный ковш присадили 17,38 т ферросилиция, который был предварительно прогрет в печах прокаливания ферросплавов. После отдачи ферросилиция в ковш присадили 2,4 т извести.
Температура металла в сталеразливочном ковше составила 1677°С.
Далее ковш с металлом передан на установку усреднительной продувки стали аргоном (УУПС). По приходу металла на УУПС осуществили усреднительную продувку металла аргоном в течение 7 минут. После окончания продувки температура металла составила 1634°С, и была отобрана проба металла, которая содержала 0,029% углерода, 2,977% кремния, 0,115% марганца, 0,012% серы, 0,010% фосфора, 0,386% меди, 0,008% алюминия и 0,0045% азота.
После получения результатов химического анализа провели корректировку химического состава по содержанию кремния, марганца, меди и алюминия. Для этого в сталеразливочный ковш присадили: силикомарганца СМn17 - 140 кг, ферросилиция ФС65 - 480 кг, меди - 150 кг и алюминиевой катанки - 100 кг.
Корректировку химического состава металла по содержанию азота производили продувкой металла газообразным азотом из соотношения:
τN=390,63×0,0057-2272,29×0,0045+134,06×0,019+13,52=8 мин.
После продувки металла отобрали пробу металла. Содержание азота в пробе составило 0,059%.
После этого плавку передали на комбинированную установку вакуумирования стали (КУВС), где металл вакуумировался в течение 11 минут с коэффициентом циркуляции 2,5, после чего плавку передали на разливку.
Применение предлагаемого способа микролегирования стали азотом позволяет получить требуемое содержание азота в стали, обеспечить минимальную отсортировку непрерывнолитой заготовки по поверхностным дефектам, увеличить производительность МНЛЗ, производство.
Способ микролегирования стали азотом, включающий выплавку металла в сталеплавильном агрегате, выпуск металла в ковш, раскисление, отбор пробы на содержание азота и последующую его разливку, отличающийся тем, что микролегирование стали азотом при регламентированном содержании алюминия 0,005-0,03% осуществляют в две стадии: во время выпуска металла и его раскисления предварительно насыщают азотом за счет присадки азотированного ферросплава, а окончательную корректировку химического состава металла по содержанию азота производят продувкой газообразным азотом с расходом, определяемым из соотношения:
τN=390,63 QN тр. - 2272,29 QN пром + 134,06 QAL + 13,52,
где τN - время продувки азотом, мин.;
QN тр. - требуемое содержание азота в стали, %;
QN пром. - содержание азота в пробе перед продувкой, %;
QAL - содержание алюминия в готовой стали, %;
390,63, 2272,29, 134,06, 13,52 - эмпирические коэффициенты, полученные опытным путем.