Замещенные глутаримиды, способы получения и лекарственное средство на их основе

Изобретение относится к замещенным глутаримидам общей формулы I

в которой Х обозначает группу формулы (CH2)n-(CR8R9)p-Z-(CR8R9)m, Z обозначает атом серы или кислорода, SO- или SO2-группу, остаток NR8 (необязательно в виде N-оксида) или CR8R9-группу, m и p обозначают 0 или 1, n обозначает 0, 1, 2 или 3, при этом m, n и р не могут одновременно обозначать 0.

R1 и R2 обозначают карбоксильную, сложноэфирную или ацильную группу и др.;

R3 обозначает водород, гидроксиксильную группу и др.;

R4 обозначает водород, C13алкильную группу, фтор, трифторметил,

R8 и R9 обозначают водород, алкил, бензил и др., а также к их физиологически приемлемым солям.

Соединения формулы I обладают иммуномодуляторным действием и могут быть использованы для лечения ангиопатий и/или онконематологических заболеваний. 3 н. и 12 з.п. ф-лы, 1 табл.

Реферат

Настоящее изобретение относится к замещенным глутаримидам общей формулы I

к их получению, а также к их применению в лекарственных средствах.

В основе аутоиммунных заболеваний лежит реакция иммунной системы по отношению к гомологичным структурам. При этом исчезает обычно существующая толерантность по отношению к гомологичной ткани. При патогенезе различных аутоиммунных заболеваний наряду с антителами решающую роль играют прежде всего Т-лимфоциты и моноциты/макрофаги. Активированные моноциты/макрофаги выделяют множество различных способствующих воспалительным процессам медиаторов, прямо либо косвенно ответственных за разрушение пораженной аутоиммунным заболеванием ткани. Активация моноцитов/макрофагов происходит либо во взаимодействии с Т-лимфоцитами, либо через бактериальные продукты, такие как липополисахарид (ЛПС).

IL-12 представляет собой гетеродимерную молекулу, состоящую из ковалентно связанной р35 и р40-цепи. Эта молекула образуется антигенпредставляющими клетками (моноцитами/макрофагами, дендритными клетками, В-лимфоцитами). Образование IL-12 моноцитами/макрофагами инициируется либо различными микробными продуктами, такими как ЛПС, липопептиды, бактериальная ДНК, либо во взаимодействии с активированными Т-лимфоцитами (Trinchieri, Ann. Rev. Immunol. 13, с.251 (1995)). IL-12 играет ключевую роль в иммунорегуляции и ответственен за возникновение способствующих воспалительным процессам ТН1-иммунных реакций. Такая ТН1-иммунная реакция по отношению к собственным антигенам является причиной целого ряда тяжелых заболеваний.

Значение способствующих воспалениям цитокинов, таких как IL-12, для возникновения и течения воспалительных процессов и аутоиммунных заболеваний однозначно подтверждается результатами проведенных на животных экспериментов и первых клинических испытаний. В проводившихся на моделях животных исследованиях таких заболеваний, как ревматоидный артрит, множественный склероз, сахарный диабет, а также воспалительные заболевания кишечника, кожи и слизистых оболочек, была выявлена роль IL-12 в патофизиологии (Trembleau и др., Immunol. Today 16, с.383 (1995); Müller и др., J. Immunol. 155, с.4661 (1995); Neurath и др., J. Exp. Med. 182, стр.1281 (1995); Segal и др., J. Exp. Med. 187, с.537 (1998); Powrie и др., Immunity 3, с.171 (1995); Rudolphi и др., Eur. J. Immunol. 26, с.1156 (1996); Bregenholt и др., Eur. J. Immunol. 28, с.379 (1998)). Введением IL-12 удавалось инициировать соответствующую болезнь, а в случае нейтрализации эндогенного IL-12 наблюдалось ослабленное течение болезни вплоть до полного выздоровления животных. Что касается применения антител к IL-12 на человеке, то такие исследования предстоит еще проводить.

Резюмируя вышесказанное, можно отметить, что избыток IL-12 обусловливает патофизиологию многих воспалительных заболеваний. Поэтому работы по нормализации уровня IL-12 представляют большой терапевтический потенциал.

Кроме того, IL-12 участвует также в регуляции выживаемости клеток. Неконтролируемый рост клеток регулируется, в частности, апоптозом (запрограммированная гибель клеток). На Т-лимфоцитах было выявлено, что IL-12 обладает антиапоптозным действием и способствует выживаемости Т-клеток (Clerici и др., Ргос.Natl. Acad. Sci. USA 91, с.11811 (1994); Estaquier и др., Journ. Exp. Med. 182, с.1759 (1995)). Локальное сверхпродуцирование IL-12 может поэтому способствовать выживаемости раковых клеток. Следовательно, ингибиторы образования IL-12 обладают высоким терапевтическим потенциалом.

В заявке DE 19843793.5 описаны замещенные бензамиды с иммуномодуляторными свойствами, в которых циклосодержащие структурные фрагменты молекулы связаны между собой амидной связью. Недостаток амидной связи состоит в подверженности гидролизу при одновременной утрате соединением его активности.

С учетом вышеизложенного в основу настоящего изобретения была положена задача получить новые иммуномодуляторы, которые могли бы применяться для лечения и/или профилактики заболеваний, обусловленных образованием способствующего воспалительным процессам цитокина IL-12, и которые вместе с тем обладали бы повышенной устойчивостью к гидролизу.

Этим предъявляемым к создаваемым веществам требованиям отвечают определенные замещенные глутаримиды.

Объектом настоящего изобретения в соответствии с этим являются замещенные глутаримиды формулы I

в которой

Х обозначает группу формулы (CH2)n-(CR8R9)p-Z-(CR8R9)m, где

Z обозначает атом серы или кислорода, SO или SO2-группу, остаток NR8 (необязательно в виде N-оксида) или CR8R9-группу,

m и р обозначают 0 или 1,

n обозначает 0, 1, 2 или 3, при этом

m, n и р не могут одновременно обозначать 0,

R1 и R2 имеют идентичные либо разные значения и обозначают карбоксильную группу, сложноэфирную группу формулы COOR5 или ацильную группу формулы COR5, в которых R5 обозначает соответственно алкильную группу (прямоцепочечную либо разветвленную) с 1-6 С-атомами (необязательно замещенную COOR5 -группой и/или фенильной группой), С37циклоалкильную группу или фенил либо бензил, или обозначают амидную группу формулы CONR6R7, в которой R6 и R7 имеют идентичные либо разные значения и представляют собой водород, алкильную группу (прямоцепочечную либо разветвленную) с 1-6 С-атомами (необязательно замещенную COOR5 -группой и/или фенильной группой), аллил, фенил или вместе с N-атомом образуют гидразидную группу, пирролидиновое, пиперидиновое, гексаметилениминовое, морфолиновое, тиоморфолиновое, пиперазиновое или N-метилпиперазиновое кольцо, или обозначают водород, бром, хлор, фтор, моно-, ди- либо трифторметильную, тритильную, гидрокси-, гидроксиметильную, трифторметокси-, нитро-, амино- (необязательно замещенную СН(=O)- или COR5- либо алкилсульфонильной группой) или диметиламиногруппу, алкильную или алкоксигруппу (прямоцепочечную либо разветвленную) с 1-6 С-атомами, амидиновую группу формулы NH-CH(=NH) или NH-C(=NH)R5, фенильную группу или сконденсированное бензольное кольцо (соответственно необязательно замещенное вышеуказанными атомами либо группами), за исключением тех случаев, когда Z обозначает CR8R9, R1 и R2 не могут одновременно представлять собой водород, и когда Z обозначает S, а m обозначает 0, не могут представлять собой метоксигруппу,

R3 обозначает водород, гидроксигруппу или группу формулы CH2-NR6R7, в которой R6 и R7 имеют указанные выше значения,

R4 обозначает водород, C13 алкильную группу, атом фтора, дифтор- либо трифторметильную группу,

R8 обозначает водород, алкильную группу с 1-4 С-атомами (прямоцепочечную либо разветвленную), бензил или фенетил (необязательно замещенный вышеуказанными атомами либо группами), и

R9 имеет те же значения, что и R8, или обозначает сложноэфирную группу формулы COOR5, фенильную, гидрокси- или алкоксигруппу (прямоцепочечную либо разветвленную) с 1-4 С-атомами, атом фтора либо хрома или трифторметильную группу,

и их энантиомеры, смеси энантиомеров, рацематы, диастереомеры или смеси диастереоизомеров в виде их оснований или солей физиологически приемлемых кислот.

К предпочтительным относятся такие соединения по изобретению, в которых Х обозначает группы CH2-N и S-CH2, R1 обозначает карбоксильную группу, сложноэфирную группу указанной выше формулы COOR5, ацильную группу указанной выше формулы COR5 или амидную группу формулы CONR6R7, в которой R6 и R7 имеют идентичные либо разные значения и представляют собой водород, алкильную группу (прямоцепочечную либо разветвленную) с 1-6 С-атомами (необязательно замещенную, как указано выше), фенильную группу или вместе с N-атомом образуют гидразидную группу, пирролидиновое или морфолиновое кольцо, R2 обозначает водород, нитро- или аминогруппу, R3 обозначает водород, а R4 обозначает водород, метил или фтор.

Особенно предпочтительными являются следующие замещенные глутаримиды:

2-[(3S)-(2,6-диоксопиперидин-3-иламино)метил]бензойная кислота,

2[(3R)-(2,6-диоксопиперидин-3-иламино)метил]бензойная кислота,

2-[(3S)-(2,6-диоксопиперидин-3-иламино)метил]-N,N-диэтилбензамид,

(3S)-[2-морфолин-4-карбонил)бензиламино]пиперидин-2,6-дион,

метиловый эфир {2-[(3S)-(2,6-диоксопиперидин-3-иламино)метил]бензоиламино}уксусной кислоты,

2-[(3S)-(2,6-диоксопиперидин-3-иламино)метил]бензамид,

2-[(3S)-(2,6-диоксопиперидин-3-иламино)метил]-N-этилбензамид,

(3S)-[2-пирролидин-1-карбонил)бензиламино]пиперидин-2,6-дион,

гидразид 2-[(3S)-(2,6-диоксопиперидин-3-иламино)метил]бензойной кислоты,

2-[(3S)-(2,6-диоксопиперидин-3-иламино)метил]-N-фенилбензамид,

2-[(3R)-(2,6-диоксопиперидин-3-иламино)метил]-N-фенилбензамид,

2-[(3R)-(2,6-диоксопиперидин-3-иламино)метил]-N,N-диэтилбензамид,

2-[(3R)-(2,6-диоксопиперидин-3-иламино)метил]бензамид,

метиловый эфир 2-[(3S)-(2,6-диоксопиперидин-3-иламино)метил]бензойной кислоты,

бензиловый эфир 2-[(3S)-(2,6-диоксопиперидин-3-иламино)метил]бензойной кислоты,

метиловый эфир 2-(2,6-диоксопиперидин-3-илметилсульфанил)бензойной кислоты,

метиловый эфир 2-(2,6-диоксопиперидин-3-илметилсульфанил)-6-нитробензойной кислоты.

Еще одним объектом настоящего изобретения являются способы получения предлагаемых соединений общей формулы I.

Соединения общей формулы I, в которой R3 обозначает водород или гидроксигруппу, можно получать циклизацией производных глутаровой кислоты общей формулы II

в которой X, R1, R2 и R4 имеют указанные выше значения, А представляет собой ОН, а В представляет собой NH2 или NHOH либо, наоборот, А имеет значения В, а В имеет значение А, в присутствии активирующих реагентов, таких, например, как карбонилдиимидазол. Если в соединении формулы I указанный при раскрытии значений Х радикал Z обозначает NH-группу, то циклизацию (замыкание цикла) предпочтительно проводить с помощью соединений формулы II, в которых NH-функция представлена в защищенном виде, например, с использованием в этих целях бензилоксикарбонильной группы, которую затем, например, с помощью раствора бромистого водорода в уксусной кислоте отщепляют при температурах в интервале от 20 до 40°С.

Если же А и В в формуле II представляют собой ОН, то сначала путем нагрева в уксусном ангидриде осуществляют циклизацию с образованием циклического ангидрида, из которого затем путем нагрева с мочевиной или каким-либо иным источником азота получают соединение формулы I, где R обозначает Н. Из этого соединения взаимодействием с параформальдегидом либо с водным раствором формальдегида и вторичным амином формулы HNR6R7, где R6 и R7 имеют указанные выше значения, можно получать соединения общей формулы I, в которой R3 обозначает CH2-NR6R7.

Соединения общей формулы I, где R3 обозначает Н, можно получить также из лактамов общей формулы III

в которой R1, R2, R4 и Х имеют указанные выше значения, путем окисления соединения формулы III до имида, предпочтительно с использованием в этих целях м-хлорнадбензойной кислоты или оксида рутения (IV)/периодата натрия.

В соединениях общей формулы I, в которых R1-R3 и Х имеют указанные выше значения, а R4 обозначает водород, этот водород по известным реакциям алкилирования или галогенирования может быть обменен на остальные заместители R4 в соответствии с указанными его значениями.

Если для группы Х в соединениях формулы I указано, что m обозначает 0, а Z представляет собой NR8, где R8 имеет указанные выше значения, и что n и p также имеют указанные выше значения, то названные соединения можно получать алкилированием α-аминоглутаримидов общей формулы IV

в которой R3, R4 и R5 имеют указанные выше значения, с помощью соединений общей формулы V

в которой R1, R2, R8, R9 n и р имеют указанные выше значения, a Y представляет собой атом хлора, брома либо иода или толуол-4-сульфонатную группу.

Те же соединения, в которых, кроме того, р обозначает 1, а R8 или R9 обозначают водород, можно получать также восстановительным аминированием из соединений общих формул VI и IV, в которых R1, R2, R4, R8 и n имеют указанные выше значения, а R3 обозначает водород или гидроксигруппу.

Восстановителями при этом служат предпочтительно борогидрид натрия, триацетоксиборогидрид натрия, цианоборогидрид натрия, комплекс боран-пиридин или каталитически активированный водород.

Если в группе Х соединения формулы I m обозначает 0, a Z представляет собой О, S или NR8, и при этом R8, n и р имеют указанные выше значения, то такие соединения также можно получать алкилированием соединения общей формулы VII

с помощью α-бромглутаримидов общей формулы VIII

в которой R3 и R4 имеют указанные выше значения.

Соединения общей формулы I, в которых R4 обозначает водород и в которых в группе Х n и р имеют указанные выше значения, m обозначает 1, Z представляет собой О, S или NR8, а в группе CR8R9 по меньшей мере один из радикалов R8 или R9 представляет собой водород, могут быть получены присоединением соединения общей формулы VII к 3-метиленглутаримиду общей формулы IX

Эту реакцию целесообразно проводить в растворителях, таких как ацетонитрил или толуол, с добавлением третичных аминов, таких, например, как триэтиламин или диизопропилэтиламин, при температурах в интервале от 80 до 110°С.

В принципе из соединений формулы I, в которых R1 и/или R2 обозначают нитрогруппу, путем восстановления можно получать соединения формулы I, где R1 и/или R2 обозначают NH2. Восстановление осуществляют, например, с использованием каталитически активированного водорода в кислотосодержащих органических растворителях, таких как этиловый эфир уксусной кислоты, предпочтительно при этом применять палладиевые катализаторы. Согласно другому варианту восстановление можно осуществлять с помощью металлов, таких как олово или железо, в кислом растворе.

Если Z в группе Х представляет собой SO или SO2, то такие соединения формулы I можно получать постепенным (ступенчатым) окислением соответствующего тиоэфира (Z представляет собой S). В качестве окислителей могут использоваться пероксид водорода в уксуснокислом растворе, м-хлорнадбензойная кислота, трет-бутилгидропероксид или оксоны, при этом последние предпочтительно служат для получения сульфонов (Z представляет собой SO2). Окисление до сульфоксидов (Z представляет собой SO) можно осуществлять также асимметричным методом, в частности с использованием системы Шарплесса (Sharpless), соответственно реагента Дэвиса или с помощью ферментативных методов.

Если Z в группе Х представляет собой группу NR8, то эту последнюю можно переводить в соответствующий N-оксид, предпочтительно используя при этом в качестве окислителя пероксид водорода.

Предлагаемые в изобретении соединения обладают иммуномодуляторной активностью, которая проявляется в ингибировании продуцирования IL-12 активированными ЛПС моноцитами. Кроме того, эти соединения обладают по сравнению с уже известными соединениями более высокой устойчивостью к гидролизу. Они могут применяться для лечения и/или профилактики воспалительных и аутоиммунных заболеваний, а также онкогематологических заболеваний.

К заболеваниям названного типа относятся, в частности, дерматозы (например, атопический дерматит, псориаз, экземы), воспаления дыхательных путей (например, бронхит, пневмония, бронхиальная астма, РДСВ (респираторный дистресс-синдром взрослых), саркоидоз, силикоз/фиброз), воспаления желудочно-кишечного тракта (например, язвы двенадцатиперстной кишки, болезнь Крона, язвенный колит), а также такие заболевания, как гепатит, панкреатит, аппендицит, перитонит, нефрит, афтоз, конъюнктивит, кератит, увеит и ринит.

Понятие "аутоиммунные заболевания" включают среди прочих заболевания артритного характера (например, ревматоидный артрит, заболевания, связанные с HLA-B27 (локус антигена анкилозирующего спондилоартрита), болезнь Бехчета, а также множественный склероз, диабет в раннем возрасте или красная волчанка.

Другими показаниями к применению соединений по изобретению являются сепсис, бактериальный менингит, кахексия, реакции отторжения трансплантата, реакции "трансплантат против хозяина", а также реперфузионный синдром, атеросклероз и ангиопатии (например, дегенерация желтого пятна, диабетическая ретинопатия).

Помимо указанных, следует назвать далее гематологические заболевания, такие как множественная миелома и лейкозы, а также другие онкологические заболевания, такие, например, как глиобластома, рак предстательной железы и рак молочной железы, которые можно ингибировать снижением уровня IL-12.

Предлагаемые в изобретении лекарственные средства наряду с по меньшей мере одним соединением общей формулы I содержат в своем составе носители, наполнители, растворители, разбавители, красители и/или связующие. Выбор вспомогательных веществ, равно как и их используемые количества зависят от того, предназначается ли лекарственное средство для перорального, ректального применения, применения на глазах (интравитреально, интракамерально), назального, местного (включая буккальное и сублингвальное введение), вагинального или парентерального применения (включая подкожное, внутримышечное, внутривенное, интрадермальное, интратрахеальное и эпидуральное введение).

Для перорального введения пригодны композиции в виде таблеток, жевательных таблеток, драже, капсул, гранул, капель, настоек или сиропов; для парентерального, местного и ингаляционного применения могут назначаться растворы, суспензии, легко восстанавливаемые сухие композиции, а также аэрозоли. Лекарственными формами для применения на коже являются мази, кремы, гели и пасты. Для применения на глазах пригодны такие лекарственные формы, как капли, мази и гели. Пригодными для интрадермального введения являются композиции из предлагаемых соединений в депо-форме в растворенном виде, заделанными в пленку или в пластырь, необязательно с добавками средств, способствующих пенетрации. Из применяемых для перорального или интрадермального введения лекарственных форм соединения по изобретению могут высвобождаться постепенно, с замедлением, т.е. обладать пролонгированным действием.

Назначаемое пациентам количество активного вещества варьируют в зависимости от веса пациента, методики введения, показания к применению и степени тяжести заболевания. Обычно назначают от 1 до 150 мг/кг по меньшей мере одного соединения формулы I по изобретению.

Примеры

Ниже изобретение более подробно поясняется на примерах.

В качестве неподвижной фазы в хроматографии использовали силикагель 60 (0,040-0,063 мм) фирмы Е. Merck, Дармштадт. Соотношения в смеси элюентов указаны в объемном отношении (объем/объем). Субстанции анализировали по их температуре плавления и/или методом 1H-ЯМР-спектроскопии. Спектрограммы получали при 300 МГц с помощью прибора типа Gemini 300 фирмы Varian. Коэффициенты смещения указаны в част./млн (δ-шкала). В качестве внутреннего стандарта использовали тетраметилсилан (ТМС).

Пример 1

3-(2-хлорбензиламино)пиперидин-2,6-дион в виде гидрохлорида

Стадия 1

3-бромпиперидин-2,6-дион

10,2 г глутаримида, суспендированного в 20 мл хлороформа, смешивали с 4,5 мл брома и смесь в течение 90 мин перемешивали в закрытом сосуде при температуре ванны 110°С. После охлаждения сосуд открывали и продолжали перемешивание до тех пор, пока полностью не прекращалось выделение бромистого водорода. Затем реакционную смесь упаривали в вакууме, остаток растворяли в этаноле и повторно упаривали. В результате получили 17,1 г (99%) указанного в заголовке соединения в виде почти белых кристаллов с температурой плавления 76-83°С.

Стадия 2

3-(2-хлорбензиламино)пиперидин-2,6-дион в виде гидрохлорида

Раствор из 0,39 г полученного на стадии 1 продукта и 0,71 г 2-хлорбензиламина в 8 мл N,N-диметилформамида перемешивали при 20°С в течение 36 ч. После упаривания в вакууме маслянистый остаток растворяли в 25 мл метанола и этот раствор в течение 2 ч перемешивали с 1 г Amberlyst A-21. Затем отфильтровывали, фильтрат смешивали с 2 г силикагеля и упаривали досуха. Адсорбированное вещество подавали на хроматографическую колонку и продукт элюировали смесью этиловый эфир уксусной кислоты/циклогексан (в соотношении 1:2→1:1), содержавшей 1% триэтиламина. Образовавшийся после упаривания продуктовых фракций остаток растворяли в 10 мл метанола и раствор смешивали с 25 мл насыщенного хлористым водородом диэтилового эфира и диэтилового эфира соответственно. Выпавший в осадок гидрохлорид отделяли и перекристаллизовывали из метанола/диэтилового эфира. В результате получили 0,24 г (41% от теории) указанного в заголовке соединения в виде кристаллов с температурой плавления 217°С при разложении.

1Н-ЯМР (ДМСО-d6): 2,15-2,34 (1Н, m); 2,40-2,56 (1Н, m); 2,60-2,80 (2Н, m); 4,35 (1Н, t, J=13,5 Гц); 4,45 (2Н, d, J=13,8 Гц); 7,40-7,94 (4Н, m).

Пример 2

По методике, описанной в примере 1, стадия 2, и при использовании соответствующих бензиламинов аналогичным путем получили следующие соединения:

2.1: 3-(2-трифторметилбензиламино)пиперидин-2,6-дион в виде гидрохлорида, температура плавления: >250°С (разложение),

2.2: 3-(2,4-диметоксибензиламино)пиперидин-2,6-дион в виде гидрохлорида, температура плавления: 214°С (разложение),

2.3: 3-(2,6-дифторбензиламино)пиперидин-2,6-дион в виде гидрохлорида, температура плавления: 208-215°С (разложение),

2.4: 3-(2,5-дифторбензиламино)пиперидин-2,6-дион в виде гидрохлорида, температура плавления: 208°С (разложение),

2.5: 3-(3,5-дифторбензиламино)пиперидин-2,6-дион в виде гидрохлорида, температура плавления: 230-236°С (разложение),

2.6: 3-[(нафт-1-илметил)амино]пиперидин-2,6-дион в виде гидрохлорида. температура плавления: 188°С (разложение),

2.7: 3-(2,3-дифторбензиламино)пиперидин-2,6-дион в виде гидрохлорида, температура плавления: 206-212°С (разложение),

2.8: 3-(4-диметиламинобензиламино)пиперидин-2,6-дион в виде основания.

2.9: 3-(4-нитробензиламино)пиперидин-2,6-дион в виде гидрохлорида.

2.10: 3-(3-трифторметилбензиламино)пиперидин-2,6-дион в виде гидрохлорида.

2.11: 3-(3-трифторметоксибензиламино)пиперидин-2,6-дион в виде гидрохлорида, температура плавления: 199-201°С,

2.12: 3-[(нафт-2-илметил)амино]пиперидин-2,6-дион в виде основания, температура плавления: 120-125°С (разложение),

2.13: 3-(2-хлор-4-фторбензиламино)пиперидин-2,6-дион в виде гидрохлорида, температура плавления: 241-242°С,

2.14: 3-(3-нитробензиламино)пиперидин-2,6-дион в виде гидрохлорида, температура плавления: выше 240°С разложение,

2.15: 3-(2-хлор-6-метилбензиламино)пиперидин-2,6-дион в виде гидрохлорида, температура плавления: 238-240°С,

2.16: 3-(2-метилбензиламино)пиперидин-2,6-дион в виде гидрохлорида. температура плавления: 235-240°С,

2.17: 3-(3,5-дихлорбензиламино)пиперидин-2,6-дион в виде гидрохлорида. температура плавления: 234-238°С,

2.18: 3-[3-фтор-5-(трифторметил)бензиламино]пиперидин-2,6-дион в виде гидрохлорида, температура плавления: 241-243°С,

2.19: 3-(3-фторбензиламино)пиперидин-2,6-дион в виде гидрохлорида, температура плавления: 231-235°С,

2.20: 3-(3-метилбензиламино)пиперидин-2,6-дион в виде гидрохлорида. температура плавления: 240-242°С,

2.21: 3-(4-трифторметилбензиламино)пиперидин-2,6-дион в виде гидрохлорида, температура плавления: 252-255°С,

2.22: 3-[4-фтор-2-(трифторметил)бензиламино]пиперидин-2,6-дион в виде гидрохлорида, температура плавления: выше 241°С разложение,

2.23: 3-(4-фторбензиламино)пиперидин-2,6-дион в виде гидрохлорида, температура плавления: 241-242°С,

2.24: 3-(4-трет-бутилбензиламино]пиперидин-2,6-дионв виде гидрохлорида, температура плавления: выше 239°С разложение,

2.25: 3-(3,5-диметилбензиламино)пиперидин-2,6-дион в виде гидрохлорида, температура плавления: выше 226°С разложение,

2.26: 3-(3-хлорбензиламино)пиперидин-2,6-дион в виде гидрохлорида, температура плавления: 237-238°С,

2.27: 3-(4-метоксибензиламино)пиперидин-2,6-дион в виде гидрохлорида, температура плавления: выше 227°С разложение,

2.28: 3-(2,4-дихлорбензиламино)пиперидин-2,6-дион в виде гидрохлорида, температура плавления: 240-242°С,

2.29: 3-(2-фторбензиламино)пиперидин-2,6-дион в виде гидрохлорида, температура плавления: 245-247°С,

2.30: 3-(2-бромбензиламино)пиперидин-2,6-дион в виде гидрохлорида, температура плавления: 244-246°С,

2.31: 3-[2-фтор-5-(трифторметил)бензиламино]пиперидин-2,6-дион в виде гидрохлорида, температура плавления: выше 251°С разложение,

2.32: 3-(2,3-дихлорбензиламино]пиперидин-2,6-дион в виде гидрохлорида, температура плавления: 246-248°С,

2.33: 3-(3,4-дихлорбензиламино)пиперидин-2,6-дион в виде гидрохлорида, температура плавления: 252-254°С,

2.34: 3-[3,5-бис(трифторметил)бензиламино]пиперидин-2,6-дион в виде гидрохлорида, температура плавления: 263-265°С,

2.35: 3-(3-бромбензиламино)пиперидин-2,6-дион в виде гидрохлорида. температура плавления: 229-232°С,

2.36: 3-(4-трифторметоксибензиламино)пиперидин-2,6-дион в виде гидрохлорида, температура плавления: 253-255°С,

2.37: 3-(4-хлорбензиламино)пиперидин-2,6-дион в виде гидрохлорида, температура плавления: 262-265°С,

2.38: 3-(4-метилбензиламино]иперидин-2,6-дион в виде гидрохлорида, температура плавления: 256°С (разложение),

2.39: 3-(2-этоксибензиламино)пиперидин-2,6-дион в виде гидрохлорида, температура плавления: 208-212°С,

2.40: 3-(2.5-дихлорбензиламино)пиперидин-2,6-дион в виде гидрохлорида, температура плавления: 242-246°С,

2.41: 3-(3-метоксибензиламино)пиперидин-2,6-дион в виде гидрохлорида, температура плавления: 217-219°С.

Все вышеуказанные соединения 2.1-2.41 представлены в виде рацемата.

Пример 3

3-(3-аминобензиламино)пиперидин-2,6-дион в виде гидрохлорида

0,56 г продукта из примера 2.14 в смеси из 17 мл этилового эфира уксусной кислоты и 0,85 мл 6н. соляной кислоты гидрировали при 20°С и давлении 4 бара в присутствии 0,17 г палладия на активированном угле (10% Pd). После поглощения теоретического количества водорода отфильтровывали от катализатора и фильтрат упаривали в вакууме. После перекристаллизации остатка из метанола получили 0,25 г (50% от теории) указанного в заголовке рацемического соединения в виде слегка окрашенных кристаллов с температурой плавления 236-239°С.

1H-ЯМР (ДМСО-d6): 2,05-2,20 (m, 1Н); 2,28-2,39 (m, 1H); 2,55-2,74 (m, 2H); 3,97-4,12 (q, 2H); 4,18-4,28 (m, 1H); 6,58-6,70 (m, 3Н); 7,02-7,11 (m, 1H).

Пример 4

По методике, описанной в примере 1, стадия 2, и при использовании соответствующих арилалкиламинов получили следующие соединения:

4.1: 3-фенетиламинопиперидин-2,6-дион в виде гидрохлорида, температура плавления: выше 220°С разложение,

4.2: 3-[2-(2-хлорфенил)этиламино]пиперидин-2,6-дион в виде гидрохлорида, температура плавления: 230°С (разложение),

4.3: 3-(4-фенилбутиламино)пиперидин-2,6-дион в виде гидрохлорида, температура плавления: выше 231°С разложение,

4.4: 3-(N-бензил-N-метиламино)пиперидин-2,6-дион в виде основания, температура плавления: 95-115°С,

4.5: 3-(метилнафт-1-илметиламино)пиперидин-2,6-дион в виде основания, температура плавления: 157-162°С.

Все вышеуказанные соединения 4.1-4.5 представлены в рацемической форме.

4.6: Метиловый эфир (2S)-[(3S)-или(3R-(2,6-диоксопиперидин-3-иламино)]фенилуксусной кислоты в виде гидрохлорида, температура плавления: 200-207°С,

4.7: метиловый эфир (2R-[(3S)-или(3R-(2,6-диоксопиперидин-3-иламино)] фенилуксусной кислоты в виде гидрохлорида, температура плавления: 171-177°С (разложение),

4.8: метиловый эфир (2S)-[(3R,S)-(2,6-диоксопиперидин-3-иламино)]-3-фенилпропионовой кислоты в виде гидрохлорида (смесь диастереомеров), температура плавления: 146-150°С (разложение).

Пример 5

3-бензиламинопиперидин-2,6-дион

А) Раствор из 0,50 г 3-аминопиперидин-2,6-диона [К. Fickentscher, Arch. Pharm. 307, стр.840-844 (1974)], 1,5 мл триэтиламина и 0,4 мл бензилбромида перемешивали в течение 20 ч при 20°С. Затем смесь упаривали, остаток растворяли в 50 мл водного раствора карбоната калия (10%-ного К2СО3) и раствор дважды экстрагировали этиловым эфиром уксусной кислоты порциями по 40 мл. Органические фазы промывали соответственно дистиллированной водой и насыщенным раствором хлорида натрия порциями по 50 мл, сушили над сульфатом натрия и концентрировали в вакууме. Остаток очищали посредством экспресс-хроматографии на силикагеле с использованием содержавшей 1% триэтиламина смеси этиловый эфир уксусной кислоты/циклогексан (в соотношении 2:1) в качестве элюента, получив в результате 0,21 г (26% от теории) указанного в заголовке соединения в виде вязкого масла.

Указанное в заголовке соединение в форме гидробромида в виде чистого S-энантиомера получали также следующим путем.

Б) Стадия 1

(2S)-(N-бензил-N-бензилоксикарбониламино)-4-карбамоилмасляная кислота

0,95 г (2S)-бензиламино-4-карбамоилмасляной кислоты [Е. Davidov и др., Isr. Journ. Chem. 7, стр.487-489 (1969)], растворенной в 4 мл 2-молярного водного раствора гидроксида натрия и 8 мл 1-молярного раствора гидрокарбоната натрия, при 20°С смешивали по каплям в течение 2,5 ч при перемешивании с 0,6 мл бензилового эфира хлормуравьиной кислоты. Затем дважды экстрагировали диэтиловым эфиром порциями по 20 мл. Водную фазу подкисляли концентрированной соляной кислотой до рН 2-3 и дважды экстрагировали этиловым эфиром уксусной кислоты порциями по 30 мл. Экстракты промывали дистиллированной водой, сушили над сульфатом натрия и упаривали в вакууме. После смешения маслянистого остатка с диэтиловым эфиром получили 0,55 г (37% от теории) указанного в заголовке соединения в виде бесцветных кристаллов с температурой плавления 98-99°С.

Стадия 2

(3S)-(N-бутил-N-бензилоксикарбониламино)пиперидин-2,6-дион

К раствору из 0,37 г продукта из стадии 1 в 2,5 мл сухого тетрагидрофурана по каплям добавляли раствор из 0,162 г N,N′-карбонилдиимидазола в 3 мл сухого тетрагидрофурана. Далее сначала в течение 3,5 ч нагревали с обратным холодильником, а затем еще в течение 3 ч при 20°С. Образовавшееся после выпаривания в вакууме растворителя масло растворяли в этиловом эфире уксусной кислоты и раствор последовательно промывали порциями по 20 мл 1-молярного водного раствора гидрокарбоната натрия, насыщенного раствора хлорида натрия и дистиллированной воды. Затем сушили над сульфатом натрия и упаривали в вакууме. В результате получили 0,23 г (65% от теории) указанного в заголовке соединения в виде кристаллов с температурой плавления 51-52°С.

Стадия 3

(3S)-бензиламинопиперидин-2,6-дион в виде гидробромида

Раствор из 0,15 г продукта из стадии 2 в 3 мл раствора бромистого водорода в уксусной кислоте (33% HBr) перемешивали в течение 1 ч при 20°С. Затем реакционную смесь сливали на 50 мл диэтилового эфира. Образующийся при этом осадок отделяли, промывали диэтиловым эфиром и сушили в вакууме. Таким путем получили 0,08 г (63% от теории) указанного в заголовке соединения в виде кристаллов с температурой плавления 228-230°С при разложении.

1Н-ЯМР (ДМСО-d6): 2,01-2,43 (m, 2H); 2,60-2,80 (m, 2H); 4,20-4,45 (m, 3H); 7,40-7,60 (m, 5H).

Пример 6

6.1: 2-[(3S)-(2,6-диоксопиперидин-3-иламино)метил]бензойная кислота в виде гидробромида

Стадия 1

2-[(1S)-(3-карбамоил-1-карбоксипропиламино)метил]бензойная кислота

К раствору из 1,46 г L-глутамина в 5 мл 2-молярного водного раствора гидроксида натрия добавляли суспензию из 1,65 г 2-формилбензойной кислоты в 5 мл этанола и 5 мл 2-молярного раствора гидроксида натрия. После 1-часового перемешивания смеси при 20°С ее охлаждали до 0°С и при интенсивном перемешивании порциями смешивали в течение 15 мин с 0,25 г борогидрида натрия. По истечении 90 мин добавляли еще 0,33 г 2-формилбензойной кислоты и 0,05 г борогидрида натрия. После 16-часового перемешивания при 20°С реакционную смесь подкисляли концентрированной соляной кислотой до рН 2 и охлаждали до 0°С. Образовавшийся осадок отделяли, промывали ацетоном и сушили в вакууме. В результате получили 0,87 г (31% от теории) указанного в заголовке соединения в виде кристаллов с температурой плавления 132-133°С.

Стадия 2

2-{(1S)-[N-бензилоксикарбонил-N-(3-карбамоил-1-карбоксипропил)амино]метил}бензойная кислота

По описанной в примере 5Б, стадия 1, методике из полученного на стадии 1 продукта аналогичным путем получили указанное в заголовке соединение в виде кристаллов с температурой плавления 103-104°С при разложении.

Стадия 3

2-{(3S)-[N-бензилоксикарбонил-N-(2,6-диоксопиперидин-3-ил)амино]метил}бензойная кислота

По описанной в примере 5Б, стадия 2, методике из продукта из стадии 2 аналогичным путем получили указанное в заголовке соединение в виде кристаллов с температурой плавления 71-73°С.

Стадия 4

2-[(3S)-(2,6-диоксопиперидин-3-иламино)метил]бензойная кислота в виде гидробромида

По описанной в примере 5Б, стадия 3, методике из продукта из стадии 3 аналогичным путем получили указанное в заголовке соединение в виде почти бесцветных кристаллов с температурой плавления 158-161°С.

1Н-ЯМР (ДМСО-d6): 2,00-2,25 (m, 1Н); 2,35-2,95 (m, 1H); 2,60-2,80 (m, 2H); 4,35-4,50 (m, 1H); 4,50-4,70 (m, 2H); 7,50-7,75 (m, ЗН); 8,00-8,10 (m, 1H).

6.2: 2-[(3R)-(2,6-диоксопиперидин-3-иламино)метил]бензойная кислота в виде гидробромида

Заменив L-глутамин в примере 6.1 на D-глутамин и используя описанную в примере 6.1, стадия 1, методику, аналогичным путем получили указанное в заголовке соединение в виде кристаллов с температурой плавления 148-152°С.

Пример 7

2-[(3S)-(2,6-диоксопиперидин-3-иламино)метил]-N,N-диэтилбензамид в виде гидробромида

Стадия 1

(3S)-[N-(2-диэтилкарбамоилбензил)-N-бензилоксикарбонил]амино-пиперидин-2,6-дион

Раствор из 1,00 г продукта из примера 6.1, стадия 3, 0,27 г N-метилморфолина и 0,46 г 2-хлор-4,6-диметокси-1,3,5-триазина в 7 мл сухого тетрагидрофурана перемешивали в течение 1 ч при 20°С. После добавления 0,19 г диэтиламина перемешивание продолжали еще в течение 7 ч. Затем путем разбавления хлороформом объем смеси доводили до 50 мл и последовательно промывали 25 мл 0,05 н. соляной кислоты, 25 мл 1-молярного водного раствора гидрокарбоната натрия и насыщенным раствором хлорида натрия. Органическую фазу сушили над сульфатом натрия и упаривали в вакууме. После очистки остатка с помощью экспресс-хроматографии на силикагеле с использованием этилового эфира уксусной кислоты и циклогексана (в соотношении 9:1) в качестве элюентов получили 0,36 г (32% от теории) указанного в заголовке соединения в виде кристаллов с температурой плавления 65-66°С.

Стадия 2

2-[(3S)-(2,6-диоксопиперидин-3-иламино)метил]-N,N-диэтилбензамид в виде гидробромида

0,30 г продукта из стадии 1 подвергали аналогично тому, как это описано выше в примере 5Б, стадия 3, взаимодействию с 3 мл раствора бромистого водорода в уксусной кислоте (33% HBr). После также аналогичной переработки и очистки путем перекристаллизации из метанола/диэтилового эфира получили 0,175 г (66% от теории) указанного в заголовке соединения в виде кристаллов с температурой плавления 119-120°С.

1Н-ЯМР (ДМСО-d6): 1,06 (t, J=7,5 Гц, 3Н); 1,21 (t, J=6,9 Гц, 3Н); 2,04-2,24 (m, 1H); 2,28-2,46 (m, 2H); 2,58-2,80 (m, 2H); 3,19 (dd, 2H); 3,51 (dd, 2H); 4,24 (s, 2H); 4,25-4,40 (m, 1H); 7,44 (d, 1H); 7,48-7,66 (m, 2H); 7,72 (d, 1H).

Пример 8

Заменив диэтиламин в примере 7, стадия 1, на другие амины, аммиак или гидразин, и используя описанную далее в примере 7 методику, аналогичным путем получили следующие соединения:

8.1: (3S)-[2-морфолин-4-карбонил)бензиламино]пиперидин-2,6-дион в виде гидробромида, температура плавления: 133-135°С,

8.2: метиловый эфир {2-[(3S)-(2,6-диоксопиперидин-3-иламино)метил]-бензоиламино} уксусной кислоты в виде гидробромида, температура плавления: 121-123°С,

8.3: 2-[(3S)-(2,6-диоксопиперидин-3-иламино)метил]бензамид в виде гидробромида, температура плавления: 155-156°С (разложение)

8.4: 2-[(3S)-(2,6-диоксопиперидин-3-иламино)метил]-N-этилбензамидв виде гидробромида, температура плавления: 144-146°С,

8.5: (3S)-[2-пирролидин-1-карбонил)бензиламино]пиперидин-2,6-дион в виде гидробромида, температура плавления: 136-138°С,

8.6: гидразид 2-[(3S)-(2,6-диоксопиперидин-3-иламино)метил]бензойной кислоты в виде гидробромида, темпе