Источник спонтанного излучения
Изобретение относится к светотехнике и может быть использовано при создании и применении эффективных источников излучения в ультрафиолетовой (УФ) и вакуумной ультрафиолетовой (ВУФ) областях спектра. Техническим результатом является увеличение плотности мощности излучения на облучаемом объекте в коротковолновой области спектра и увеличение коэффициента теплопроводности. Источник содержит две цилиндрические коаксиальные диэлектрические трубки, образующие герметичную газоразрядную колбу, наполненную рабочей средой. На внешней поверхности внешней трубки и на внутренней поверхности внутренней трубки размещены электроды. Внешний электрод выполнен из сплошного отражающего излучения полуцилиндра, плотно прижатого к трубке витками проволоки. Соотношение диаметров внутренней трубки D2 к диаметру внешней трубки D1 составляет 0,4<D2/D1<0,7. В качестве рабочей среды может быть использована смесь ксенона и криптона. 3 п. ф-лы, 1 ил.
Реферат
Изобретение относится к светотехнике и может быть использовано при создании эффективных источников излучения в ультрафиолетовой (УФ) и вакуумно-ультрафиолетовой (ВУФ) областях спектра. Изобретение может найти применение, в частности, в микроэлектронике при обработке и чистке поверхности посредством ее облучения (ultraviolet cleaning and ultraviolet surface reformation) и других областях.
Известны источники спонтанного излучения в ВУФ-области спектра, в которых в качестве рабочей среды используются водород (дейтерий) [1], инертные газы и их смесь с водородом при низком давлении, что позволяет получать излучение на резонансных переходах данных газов [2]. При этом плотность мощности излучения относительно низка - не превышает ˜10 мВт/см2. Известны также источники излучения на В-Х переходах димеров инертных газов при высоком давлении [3, 4]. Недостатком данных устройств является сложность конструкции и относительно малая площадь излучающей поверхности.
Наиболее близким по техническому решению, выбранным в качестве прототипа, является источник излучения, описанный в [5]. Источник излучения состоит из отпаянной газоразрядной колбы, заполненной рабочей средой, которая при протекании электрического тока через газ излучает свет. Стенками данной колбы являются внутренняя поверхность внешней диэлектрической трубки и внешняя поверхность диэлектрического прутка, вставленного внутрь первой трубки. Металлические электроды установлены на внешней поверхности внешней трубки и внутри диэлектрического прутка. При этом внешний диаметр диэлектрического прутка в 5-10 раз меньше внутреннего диаметра внешней трубки. Для формирования электрического разряда в колбе, заполненной рабочей средой, на электроды подается напряжение от источника питания переменного тока. В качестве рабочей среды источника излучения используются инертные газы, смеси инертных газов или паров ртути с галогенами и другие газы. Источник излучения позволяет получать в зависимости от рабочей среды излучение от ВУФ до видимой области спектра.
Недостатком данного источника излучения является, во-первых, малая величина емкости внутреннего электрода из-за малого размера внешней поверхности диэлектрического прутка, вставленного в диэлектрическую трубку. Это приводит к тому, что величина емкости источника излучения, формируемая двумя последовательно включенными диэлектрическими барьерами, оказывается малой. При этом известно, что мощность возбуждения в данных условиях пропорциональна емкости источника излучения [6]. Это означает, что погонная мощность возбуждения будет при прочих равных условиях малой. Из-за малого диаметра диэлектрического прутка возникает также ограничение на максимальный диаметр внешней диэлектрической трубки, поскольку для эффективного формирования эксимерных молекул предпочтительно использовать большее давление рабочей среды. В то же время повышенное давление рабочей среды и большой зазор между внешней и внутренней диэлектрической трубкой затрудняют электрический пробой и формирование электрического разряда в источнике излучения. Во-вторых, при использовании ксенона в качестве рабочей среды спектр излучения ограничен областью ˜160-190 нм. Кроме того, ксенон обладает наименьшей среди инертных газов теплопроводностью [7], что приводит к большему нагреву рабочей среды и уменьшению эффективности работы источника излучения.
Задачей изобретения является увеличение плотности мощности излучения на облучаемом объекте при неизменной величине погонной емкости источника излучения. Кроме того, решается задача увеличения мощности излучения в коротковолновой части спектра излучения, а также увеличения теплопроводности рабочей среды источника излучения.
Технический эффект достигается тем, что в источнике излучения, состоящем из двух цилиндрических коаксиально расположенных диэлектрических трубок, образующих между собой изолированную от внешней среды газоразрядную колбу, заполненную рабочей газовой средой, и электродов, размещенных на внешней поверхности внешней трубки и на внутренней поверхности внутренней трубки, согласно изобретению внешний электрод состоит из сплошного отражающего металлического полуцилиндра, плотно прижатого к трубке витками проволоки малого диаметра, намотанной на трубку поверх полуцилиндра, а соотношение диаметров внутренней трубки D2 к диаметру внешней трубки D1 составляет
0,4≤D2/D1≤0,7.
Намотка проволоки поверх полуцилиндра обеспечивает одновременно, во-первых, уменьшение индуктивности внешнего электрода относительно индуктивности электрода, выполненного из проволоки, намотанной на трубку в виде спирали. Во-вторых, прозрачность витков проволоки выше относительно сетки, изготавливаемой из проволоки того же диаметра. Соответственно, это приводит к уменьшению падения напряжения на индуктивности внешнего электрода по сравнению со случаем использования в качестве внешнего электрода лишь спирали и не уменьшает погонной емкости источника излучения. Все это обеспечивает эффективное формирование и вывод излучения из источника излучения. Внутренний электрод изготовлен также из отражающей фольги, плотно прилегающей к внутренней стенке внутренней трубки. Диаметр трубки внутреннего электрода выбирается равным ˜1/2 от диаметра внешней трубки. Это позволяет, во-первых, увеличить емкость диэлектрического барьера внутреннего электрода, что приводит к увеличению погонной мощности возбуждения, во-вторых, эффективно выводить излучение из рабочего объема и формировать направленный в одну полуплоскость поток излучения.
Кроме того, для увеличения мощности излучения в коротковолновой части спектра излучения, а также увеличения теплопроводности и, соответственно, уменьшения температуры рабочей среды при работе источника излучения в качестве рабочей среды используется смесь ксенона с более легким инертным газом криптоном в соотношении криптон ˜70%, ксенон ˜30%.
Принцип работы описываемого источника излучения основан на протекании электрического тока в газе с последующим формированием в газоразрядной плазме эксимерных молекул, излучающих при переходе из устойчивого возбужденного состояния в неустойчивое основное состояние. В качестве рабочей среды могут использоваться инертные газы или их смесь с галогенами. Основным требованием при этом являются возможность электрического пробоя, протекание электрического тока и пропускание излучения газоразрядной плазмы через стенки диэлектрических трубок. В случае кварцевых трубок высокого качества коротковолновая граница пропускания лежит в области от 150 до 155 нм. Это означает, что в этом случае возможно пропускание длинноволнового крыла полосы В-Х перехода эксимерной молекулы Kr* 2, излучающей в области 140-160 нм.
На чертеже приведена конструкция источника излучения, включающая: внешнюю 1 и внутреннюю 2 диэлектрические трубки; внешний электрод, состоящий из отражающей фольги в форме полуцилиндра 3 и тонкой проволоки, намотанной в форме спирали на трубку 1 и прижимающей фольгу к трубке 1, а также внутренний отражающий электрод 5, установленный на внутренней поверхности внутренней трубки 2. Пространство между трубками 6 заполняется рабочей средой. Наличие диэлектрических барьеров 1 и 2 между электродами вызывает необходимость использования импульсного напряжения и приводит к равномерному распределению тока разряда. Использование в качестве внешнего электрода полуцилиндра-отражателя 3 и спирали из тонкой проволоки 4 обеспечивает увеличение плотности мощности излучения, направленного в одну полуплоскость. Коэффициент прозрачности проволочной спирали 4 при шаге спирали ˜ 1 мм и диаметре проволоки ≤0,1 мм достигает ≥90%. Контакт проволочной спирали с металлическим полуцилиндром обеспечивает уменьшение индуктивности спирали и, соответственно, уменьшение падения напряжения на индуктивности спирали. Внутренний электрод 5 за счет отражения света от его внешней поверхности также обеспечивает увеличение доли излучения, выводимого из пространства 6 в требуемом направлении. Кроме того, в случае, если внешний электрод заземлен, отражатель 3 и проволочная спираль 4 уменьшают уровень электромагнитной наводки источника излучения.
Выбор величины диаметра внутренней диэлектрической трубы обусловлен следующим. Во-первых, чем он меньше, тем согласно [5] большая доля излучения выводится из источника излучения. При этом, однако, уменьшается емкость внутреннего электрода и, соответственно, емкость источника излучения в целом. Это приводит согласно [6] к уменьшению мощности возбуждения. Во-вторых, при увеличении диаметра внутренней трубки происходит увеличение доли излучения, экранируемой внутренней трубой. Кроме того, по мере увеличения D2 уменьшается объем пространства между трубками 6, что может привести к уменьшению ресурса рабочей среды. Согласно изобретению соотношение диаметров D2/D1 оптимально с точки зрения вывода излучения и достаточной величины емкости источника излучения и составляет 0,4≤D2/D1≤0,7. При проведении эксперимента соотношение D2/D1 составляло ˜0,5 при D1=4,4 см.
Известно, что эффективность формирования эксимерных молекул уменьшается с ростом температуры среды. Поэтому с целью, во-первых, охлаждения рабочей среды, во-вторых, для увеличения мощности излучения в коротковолновой области спектра в тяжелый инертный газ ксенон был добавлен более легкий инертный газ криптон. Лучший результат при этом был получен при содержании криптона в смеси на уровне ˜70%. Это позволило увеличить мощность излучения в коротковолновой части спектра на ˜10%. Кроме того, теплопроводность смеси газов больше теплопроводности чистого ксенона, что уменьшает температуру рабочей среды источника излучения.
Примеры исследования функциональной способности предлагаемого источника изучения
Возбуждение ксенона или смеси ксенона с криптоном осуществлялось в коаксиальной двухбарьерной конструкции с диаметрами внешней и внутренней трубок, соответственно, 4,4 см и 2,3 см. Толщина стенок трубок была равна 2 мм. Длина газоразрядной зоны источника излучения составляла 30 см. Толщина проволоки, использованной для намотки спирали 4, составила 0,12 мм. При шаге спирали ˜0,8 мм прозрачность внешнего электрода в полуплоскость составляет ˜85%. Состав рабочей среды, включавшей ксенон и криптон, варьировался по парциальному давлению каждого из газов от 0 до 210 Top при полном давлении 210 Top. Спектр излучения регистрировался на вакуумном монохроматоре VM-502. Кроме того, теплопроводность рабочей среды при содержании в ней ˜70% криптона определяется, главным образом, теплопроводностью криптона, которая приблизительно вдвое выше теплопроводности ксенона [7].
Возбуждение разряда осуществлялось генератором с регулируемыми по частоте - от 10 до 100 кГц и напряжению - до 5 кВ импульсами напряжения. Высокое напряжение при этом подавалось на внутренний электрод, а внешний электрод заземлялся. Это обеспечивало снижение электромагнитных наводок при работе источника излучения.
Источники информации
1. А.Н.Зайдель, Е.Я.Шрейдер Спектроскопия вакуумного ультрафиолета/ Изд-во "Наука", Гл. ред. физ.-мат. лит-ры, Москва, 1967.
2. Л.П.Шишацкая, С.А.Яковлев, Г.А.Волкова/ ВУФ-лампы с большой излучающей поверхностью/ Оптический журнал, т.65, №12, с.93-95, 1998.
3. Y.Tanaka Continuous emission spectra of rare gases in the vacuum ultraviolet region/ J. Opt. Soc. Amer. Vol.45, N 9, pp.710-713, 1955.
4. Волкова Г.А., Кириллова Н.Н., Павловская Е.Н., Подмошенский И.В., Яковлева А.В. Лампа для облучения в вакуумной ультрафиолетовой области спектра/ Бюл. изобр. - 1982. - №41. - С.179.
5. High-Power Radiator. U.Kogelschatz, United States Patent No.5013959, date of patent: may 7, 1991.
6. E.Arnold, R.Dreiskemper, and S.Reber High-Power Excimer Sources// Proceedings of the 8th Int. Symp. on Science and Technology of Light Sources (Greifswald, Germany) IL 12., pp.90-98. 1998.
7. Физические величины. Справочник. Под ред. И.С.Григорьева, Е.З.Мейлихова. Москва, Энергоатомиздат, 1991, с.340.
1. Источник спонтанного излучения, содержащий две цилиндрические коаксиально расположенные диэлектрические трубки, образующие герметичную газоразрядную колбу, наполненную рабочей газовой средой, электроды, размещенные на внешней поверхности внешней трубки и на внутренней поверхности внутренней трубки, отличающийся тем, что внешний электрод выполнен из сплошного отражающего излучение полуцилиндра, плотно прижатого к колбе витками проволоки, а отношение диаметра внутренней трубки D2 к диаметру внешней трубки D1 составляет 0,4<D2/D1<0,7.
2. Источник спонтанного излучения по п.1, отличающийся тем, в качестве рабочей среды в колбе используются ксенон и криптон в соотношении: криптон ˜70%, ксенон ˜30%.