Пиперидин- и пиперазинзамещенные n-гидроксиформамиды в качестве ингибиторов металлопротеиназ

Иллюстрации

Показать все

Настоящее изобретение относится к пиперидин- и пиперазин-замещенным N-гидроксиформамидам общей формулы I или их фармацевтически приемлемым солям где В представляет собой фенильную группу, монозамещенную по 3- или 4-положению галогеном или трифторметилом или двузамещенную по 3- и 4-положениям галогеном (который может быть одинаковым или разным); или В представляет собой 2-пиридильную или 2-пиридилоксигруппу, монозамещенную по 4-, 5- или 6-положению галогеном, трифторметилом, циано или С1-4алкилом; или В представляет собой 4-пиримидинильную группу, возможно замещенную по 6-положению галогеном или С1-4алкилом; Х представляет собой атом углерода или азота; R1 представляет собой триметил-1-гидантоинС2-4алкильную или триметил-3-гидантоинС2-4алкильную группу; или R1 представляет собой фенил или С2-4алкилфенил, монозамещенный по 3- или 4-положению галогеном, трифторметилом, тио, или С1-3алкилом, или C1-3алкокси; или R1 представляет собой фенил-SO2NHC2-4алкил; или R1 представляет собой 2-пиридил или 2-пиридилС2-4алкил; или R1 представляет собой 3-пиридил или 3-пиридилС2-4алкил; или R1 представляет собой 2-пиримидин-SCH2СН2; или R1 представляет собой 2- или 4-пиримидинилС2-4алкил, возможно монозамещенный одним из заместителей: галоген, трифторметил, C1-3алкил, С1-3алкилокси, 2-пиразинил, возможно замещенный галогеном, или 2-пиразинилС2-4алкил, возможно замещенный галогеном. Описан также способ получения (варианты) соединений формулы I и фармацевтическая композиция. Соединения могут быть использованы в качестве ингибиторов металлопротеиназ и полезны при таких болезненных состояниях как воспалительные и аллергические состояния. 4 н. и 8 з.п. ф-лы, 1 табл.

Реферат

Настоящее изобретение относится к соединениям, полезным в ингибировании металлопротеиназ, в частности к фармацевтическим композициям, содержащим их, а также их применению.

Соединения по данному изобретению являются ингибиторами одного или более чем одного фермента металлопротеиназы. Металлопротеиназы представляют собой надсемейство протеиназ (ферментов), число которых за последние годы резко увеличилось. Эти ферменты классифицировали на семейства и подсемейства, основываясь на соображениях относительно структуры и функциий, как описано в N.M.Hooper (1994) FEBS Letters 354:1-6. Примеры металлопротеиназ включают в себя матриксные металлопротеиназы (ММП), такие как коллагеназы (ММП-1, ММП-8, ММП-13), желатиназы (ММП-2, ММП-9), стромелизины (ММП-3, ММП-10, ММП-11), матрилизин (ММП-7), металлоэластаза (ММП-12), энамелизин (enamelysin) (ММП-19), МТ-ММП (металлопротеиназы мембранного типа) (ММП-14, ММП-15, ММП-16, ММП-17); репролизин (reprolysin), или адамализин (adamlysin), или семейство MDC, которое включает в себя секретазы и шеддазы (sheddases), такие как ФНО (фактор некроза опухоли)-превращающие ферменты (ADAM10 и ТАСЕ); семейство астацинов, которое включает в себя ферменты, такие как протеиназа для процессинга проколлагена (ППК), и другие металлопротеиназы, такие как аггреканаза, семейство эндотелин-превращающих ферментов и семейство ангиотензин-превращающих ферментов.

Считают, что металлопротеиназы важны при множестве физиологических процессов заболеваний, которые затрагивают ремоделирование ткани, такое как эмбриональное развитие, образование кости и ремоделирование матки во время менструации. Это основано на способности металлопротеиназ расщеплять широкий ряд матриксных субстратов, таких как коллаген, протеогликан и фибронектин. Также считают, что металлопротеиназы важны при процессинге или секреции биологически важных клеточных медиаторов, таких как фактор некроза опухоли (ФНО), и пост-трансляционном протеолизном процессинге или шеддинге биологически важных мембранных белков, таких как низкоаффинный lgE-рецептор CD23 (более полный список см. N.M.Hooper et al., (1997) Biochem. J. 321:265-279).

Металлопротеиназы связаны со многими болезненными состояниями. Ингибирование активности одной или более чем одной металлопротеиназы может быть весьма полезным при таких болезненных состояниях, как например: различные воспалительные и аллергические заболевания, такие как воспаление сустава (в частности, ревматоидный артрит, остеартрит и подагра), воспаление желудочно-кишечного тракта (в частности, воспалительное заболевание кишечника, неспецифический язвенный колит и гастрит), воспаление кожи (в частности, псориаз, экзема, дерматит); при метастазировании опухоли или инвазии; при заболевании, связанном с неконтролируемым расщеплением внеклеточного матрикса, таком как остеоартрит; при заболевании, связанном с резорбцией кости (таком как остеопороз и болезнь Педжета); при заболеваниях, связанных с аберрантным ангиогенезом; усиленном ремоделировании коллагена, связанным с диабетом, заболеванием периодонта (таким как гингивит), изъязвлением роговицы, изъязвлением кожи, послеоперационными состояниями (такими как кишечный анастомоз) и заживлением кожных ран; демиелинизирующих заболеваниях центральной и периферической нервной системы (таких как рассеянный склероз); болезни Альцгеймера, ремоделировании внеклеточного матрикса, наблюдаемом при сердечно-сосудистых заболеваниях, таких как рестеноз и атеросклероз; и хронических обструктивных заболеваниях легких, ХОЗЛ, (например, роль ММП, таких как ММП-12, обсуждается в Anderson & Shinagawa, 1999, Current Opinion in Anti-inflammatory and Immunornodulatory Investigational Drugs, 1(1): 29-38).

Известен ряд ингибиторов металлопротеиназ; различные классы соединений могут иметь различные степени эффективности и селективности в отношении ингибирования различных металлопротеиназ. Авторы изобретения обнаружили новый класс соединений, которые являются ингибиторами металлопротеиназ и представляют особый интерес в ингибировании ММП-13, а также ММП-9. Соединения по настоящему изобретению имеют полезные эффективность и/или фармакокинетические свойства.

ММП-13, или коллагеназу 3, первоначально клонировали из библиотеки кДНК, имеющей происхождение от опухоли груди [J.M.P.Freije et al. (1994) Journal of Biological Chemistry 269(24): 16766-16773]. ПЦР-РНК-анализ (ПЦР-полимеразная цепная реакция) РНК широкого ряда тканей показал, что экспрессия ММП-13 ограничена карциномами груди, поскольку она не найдена в фиброаденомах груди, нормальной молочной железе или молочной железе в состоянии покоя, плаценте, печени, яичнике, матке, простате или околоушной железе или в клеточных линиях рака груди (T47-D, MCF-7 и ZR75-1). После этого наблюдения ММП-13 обнаружили в трансформированных эпидермальных кератиноцитах [N.Johansson et al., (1997) Cell Growth Differ. 8(2): 243-250], сквамозных клеточных карциномах [N.Johansson et al,, (1997) Am. J.Pathol. 151(2):499-508] и эпидермальных опухолях [К.Airola et al., (1997) J.Invest. Dermatol. 109(2):225-231]. Эти результаты позволяют предположить, что ММП-13 секретируется трансформированными эпителиальными клетками и может быть вовлечена в расщепление внеклеточного матрикса и взаимодействие клетка-матрикс, связанными с метастазированием, в частности, как наблюдается, при инвазивных повреждениях при раке груди и при злокачественном росте эпителия в канцерогенезе кожи.

Недавно опубликованные данные означают, что ММП-13 играет определенную роль в обновлении других соединительных тканей. Например, в соответствии с субстратной специфичностью ММП-13 и предпочтением к расщеплению коллагена типа II [P.G.Mitchell et al., (1996) J. Clin. Invest. 97(3):761-768; V.Knauper et al., (1996) The Biochemical Journal 271:1544-1550], предполагали, что ММП-13 играет роль во время первичной оссификации и скелетного ремоделирования [М.Stahle-Backdahl et al., (1997) Lab. Invest. 76(5):717-728; N.Johansson et al., (1997) Dev. Dyn. 208(3):387-397], в деструктивных поражениях суставов, таких как ревматоидный и остеоартрит [D.Wernicke et al., (1996) J.Rheumatol. 23:590-595; P.G.Mitchell et al., (1996) J. Clin. Invest. 97(3): 761-768; O.Lindy et al., (1997) Arthritis Rheum 40(8):1391-1399], и в ходе асептической нестабильности замен тазобедренного сустава [S.Imai et al., (1998) J.Bone Joint Surg. Br. 80(4):701-710]. ММП-13 также вовлечена в хронический периодонтит взрослых, поскольку она локализована в эпителии хронически воспаленной слизистой оболочки ткани десны человека [V.J.Uitto et al., (1998) Am. J.Pathol 152(6):1489-1499], и в ремоделирование коллагенового матрикса в хронических ранах (М.Vaalamo et al., (1997) J.Invest. Dermatol. 109(1):96-101).

ММП-9 (желатиназа Б, 92 кДа, Коллагеназа IV типа, 92 кДа Желатиназа) является секретируемым белком, который впервые очистили, затем клонировали и секвенировали в 1989 г (S.M.Wilhelm et al, (1989) J. Biol. Chem. 264(29): 17213-17221. Published erratum in J. Biol. Chem. (1990) 265(36):22570). Недавний анализ ММП-9 обеспечил превосходный источник подробной информации и ссылок по этой протеазе; Т.Н.Vu & Z.Werb (1998) (In: Matrix Metalloproteinases. 1998. Edited by W.C.Parks & R.P.Mecham. Pp.115-148. Academic Press. ISBN 0-12-545090-7). Следующие пункты взяты из этого обзора Т.Н.Vu & Z.Werb (1998).

Экспрессия ММП-9 ограничена в норме несколькими типами клеток, включая трофобласты, остеокласты, нейтрофилы и макрофаги. Однако ее экспрессия может быть индуцирована в этих же клетках и в других типах клеток некоторыми медиаторами, включая воздействие на эти клетки факторов роста или цитокинов. Это те же медиаторы, которые часто вовлечены в инициирование воспалительного ответа. Как и другие секретируемые ММП, ММП-9 высвобождается в виде неактивного про-фермента, который далее расщепляется с образованием ферментативно активного фермента. Протеазы, необходимые для этой активации in vivo, не известны. Соотношение активной ММП-9 и неактивного фермента далее регулируется in vivo путем взаимодействия с ТИМП-1 (тканевым ингибитором металлопротеиназ-1), естественно встречающимся белком. ТИМП-1 связывается с С-концевым участком ММП-9, что приводит к ингибированию каталитического домена ММП-9. Соотношение между индуцированной экспрессией проММП-9, расщеплением про- до активной ММП-9 и присутствием ТИМП-1 определяет количество каталитически активной ММП-9, которая присутствует в данном месте. Протеолитически активная ММП-9 атакует субстраты, которые включают в себя желатин, эластин и нативные коллагены типа IV и типа V; она не обладает активностью по отношению к нативному коллагену типа I, протеогликанам или ламининам.

Увеличивается количество данных, дающих основание предполагать участие ММП-9 в различных физиологических и патологических процессах. Физиологическая роль включает в себя инвазию эмбриональных трофобластов в эпителий матки на ранних стадиях эмбриональной имплантации; некоторую роль в росте и развитии костей; и миграцию воспалительных клеток из сосудистой сети в ткани. Повышенная экспрессия ММП-9 наблюдается при некоторых патологических состояниях, вовлекая тем самым ММП-9 в болезненные процессы, такие как артрит, метастазирование опухоли, болезнь Альцгеймера, рассеянный склероз и разрыв бляшек при атеросклерозе, ведущий к острым коронарным состояниям, таким как инфаркт миокарда.

В WO-99/38843 заявлены соединения общей формулы

B-X-(CH2)m-(CR1R2)n-W-COY

для применения в производстве лекарственного средства для лечения или предупреждения состояния, связанного с матриксными металлопротеиназами. Конкретно описано соединение N-{1S-[4-(4-хлорфенил)пиперазин-1-сульфонилметил]-2-метилпропил}-N-гидроксиформамид.

Авторы изобретения в настоящее время обнаружили соединения, которые являются сильными ингибиторами ММП-13 и имеют желаемые профили активности.

В первом аспекте изобретения предложены соединения формулы I,

где В представляет собой фенильную группу, монозамещенную по 3- или 4-положению галогеном или трифторметилом или двузамещенную по 3- и 4-положениям галогеном (который может быть одинаковым или разным); или В представляет собой 2-пиридильную или 2-пиридилоксигруппу, монозамещенную по 4-, 5- или 6-положению галогеном, трифторметилом, циано или С1-4алкилом; или В представляет собой 4-пиримидинильную группу, возможно замещенную по 6-положению галогеном или С1-4алкилом;

Х представляет собой атом углерода или азота;

R1 представляет собой триметил-1-гидантоинС2-4алкильную или триметил-3-гидантоинС2-4алкильную группу; фенил или С2-4алкилфенил, монозамещенный по 3- или 4-положению галогеном, трифторметилом, тио, или C1-3алкилом, или C1-3алкокси; фенил-SO2NHC2-4алкил; 2-пиридил или 2-пиридилС2-4алкил; 3-пиридил или 3-пиридилС2-4алкил; 2-пиримидин-SCH2СН2; 2- или 4-пиримидинилС2-4алкил, возможно монозамещенный одним из заместителей: галоген, трифторметил, С1-3алкил, C1-3алкилокси, 2-пиразинил, возможно замещенный галогеном, или 2-пиразинилС2-4алкил, возможно замещенный галогеном.

Любые алкильные группы, упомянутые выше, могут быть неразветвленными или разветвленными.

Предпочтительными соединениями по изобретению являются такие соединения, к которым относится одно или более чем одно из следующего:

В представляет собой 4-хлорфенил, 4-фторфенил, 4-бромфенил или 4-трифторфенил; 2-пиридил или 2-пиридилокси, монозамещенный по 4- или 5-положению, такой как 5-хлор-2-пиридил, 5-бром-2-пиридил, 5-фтор-2-пиридил, 5-трифторметил-2-пиридил, 5-циано-2-пиридил, 5-метил-2-пиридил; в частности, 4-фторфенил, 5-хлор-2-пиридил или 5-трифторметил-2-пиридил;

Х представляет собой атом азота;

R1 представляет собой 3-хлорфенил, 4-хлорфенил, 3-пиридил, 2-пиридилпропил, 2- или 4-пиримидинилэтил (возможно монозамещенный фтором), 2- или 4-пиримидинилпропил, 2-(2-пиримидинил)пропил (возможно монозамещенный фтором); в частности, 2-пиримидинилпропил, 2-(2-пиримидинил)пропил (возможно монозамещенный фтором) или 5-фтор-2-пиримидинилэтил.

Для соединений формулы I, отдельная подгруппа представлена соединениями, где В представляет собой фенильную группу, монозамещенную по 3- или 4-положению галогеном или трифторметилом или двузамещенную по 3- и 4-положениям галогеном (который может быть одинаковым или разным); или В представляет собой 2-пиридильную или 2-пиридилоксигруппу, монозамещенную по 5- или 6-положению галогеном, трифторметилом или циано; или В представляет собой 4-пиримидинильную группу, возможно замещенную по 6-положению галогеном или С1-4алкилом; Х представляет собой атом углерода или азота; R1 представляет собой триметил-1-гидантоинС2-4алкильную или триметил-3-гидантоинС2-4алкильную группу; или R1 представляет собой фенил или С2-4алкилфенил, монозамещенный по 3- или 4-положению галогеном, трифторметилом, тио, или C1-3алкилом, или С1-3алкокси; или R1 представляет собой фенил-SO2NHC2-4алкил; или R1 представляет собой 2-пиридил или 2-пиридилС2-4алкил; или R1 представляет собой 3-пиридил или 3-пиридилС2-4алкил; или R1 представляет собой 2-пиримидин-SCH2CH2; или R1 представляет собой 2- или 4-пиримидинилС2-4алкил, возможно монозамещенный одним из заместителей: галоген, трифторметил, C1-3алкил, С1-3алкилокси, 2-пиразинил или 2-пиразинилС2-4алкил; любая алкильная группа может быть неразветвленной или разветвленной.

Понятно, что отдельные заместители и количество заместителей на В и/или R1 выбраны так, чтобы избежать стерически нежелательных комбинаций.

Каждое подтвержденное примером соединение представляет собой отдельный и независимый аспект изобретения.

Если в соединениях формулы I существуют оптически активные центры, то авторами изобретения раскрыты все индивидуальные оптически активные формы и их комбинации как индивидуальные специфические воплощения изобретения, а также их соответствующие рацематы. Рацематы могут быть разделены на индивидуальные оптически активные формы с использованием известных методик (см. Advanced Organic Chemistry: 3rd Edition: author J.March, p.104-107), включая, например, образование диастереоизомерных производных, имеющих подходящие оптически активные вспомогательные группы, с последующим разделением, а затем отщеплением вспомогательных групп.

Понятно, что соединения по изобретению могут содержать один или более чем один асимметрически замещенный атом углерода. Присутствие одного или более чем одного таких асимметрических центров (хиральных центров) в соединении формулы I может дать начало стереоизомерам, и в каждом случае нужно понимать, что изобретение охватывает все подобные стереоизомеры, включая энантиомеры и диастереоизомеры и смеси, включающие их рацемические смеси.

В примерах описаны выделение и характеристика некоторых энантиомеров. Энантиомеры могут быть получены путем взаимодействия рацемического вещества с хиральным вспомогательным соединением, разделения образовавшихся диастереоизомеров с помощью хроматографии с последующим дальнейшим отщеплением хирального вспомогательного соединения. Диастереоизомер, элюированный вторым с колонки (с использованием условий, описанных здесь) и затем расщепленный, при исследовании дает более активный энантиомер, В каждом случае авторы изобретения считают, что активный энантиомер имеет S-стереохимическую конфигурацию, но не желают ограничиваться этим начальным определением. Активный энантиомер характеризуется своим производным, элюируемым вторым с разделительной колонки. Использование различных соединений формулы I, альтернативных колонок и/или различных растворителей может влиять на порядок элюирования наиболее активного энантиомера.

В примерах описаны выделение и характеристика некоторых диастереоизомеров. Хроматографическое разделение и дальнейшее исследование выявило то, что более активный диастереоизомер элюируется первым с разделительной колонки (то есть более активный диастереомер характеризуется тем, что он элюируется первым с разделительной колонки). Использование различных соединений формулы I, альтернативных колонок и/или различных растворителей может влиять на порядок элюирования наиболее активного диастереоизомера.

Для соединений формулы I с двумя хиральными центрами авторы изобретения считают, что активный энантиомер имеет S,S-стереохимическую конфигурацию, но не желают ограничиваться этим начальным определением.

В случае существования таутомеров в соединениях формулы I, авторами изобретения раскрыты все индивидуальные таутомерные формы и их комбинации как индивидуальные специфические воплощения изобретения.

Как изложено ранее, соединения по изобретению являются ингибиторами металлопротеиназ, в частности, они являются ингибиторами ММП-13. Каждый из указанных выше признаков для соединений формулы I представляет собой независимое и частное воплощение изобретения. Не желая быть связанными теоретическими соображениями, авторы изобретения считают, что соединения по изобретению проявляют селективное ингибирование относительно любого из вышеуказанных признаков по отношению к любой ММП-1-ингибирующей активности, в качестве неограничивающего примера, они могут проявлять 100-1000-кратную селективность относительно любой ММП-1-ингибирующей активности.

Некоторые соединения по изобретению особенно полезны как ингибиторы аггреканазы, то есть ингибиторы расщепления аггрекана. Некоторые соединения по изобретению особенно полезны как ингибиторы ММП-9 и/или ММП-12.

Соединения по изобретению могут быть предложены в виде фармацевтически приемлемых солей. Такие соли включают в себя соли присоединения кислоты, такие как соли гидрохлорид, гидробромид, цитрат и малеат, и соли, образованные фосфорной и серной кислотой. В другом аспекте подходящими солями являются соли с основаниями, такие как соль щелочного металла, например натрия или калия, соль щелочноземельного металла, например кальция или магния, или соль органического амина, например триэтиламина.

Они могут быть также предложены в виде гидролизуемых in vivo сложных эфиров. Такими являются фармацевтически приемлемые сложные эфиры, которые гидролизуются в организме человека с образованием исходного соединения. Такие эфиры могут быть идентифицированы с помощью введения, например внутривенно, испытуемому животному исследуемого соединения и дальнейшего изучения жидкостей тела исследуемого животного. Подходящие гидролизуемые in vivo сложные эфиры для карбоксигруппы включают в себя метоксиметил и для гидроксигруппы включают в себя формил и ацетил, в частности ацетил.

Для того чтобы использовать соединение формулы I, или его фармацевтически приемлемую соль, или его гидролизуемый in vivo сложный эфир для терапевтического лечения (включая профилактическое лечение) млекопитающих, включая людей, его обычно приготавливают в соответствии со стандартной фармацевтической практикой, в виде фармацевтической композиции.

Таким образом, в другом аспекте настоящего изобретения предложена фармацевтическая композиция, которая содержит соединение формулы I или его фармацевтически приемлемые соль или гидролизуемый in vivo сложный эфир и фармацевтически приемлемый носитель.

Фармацевтические композиции по этому изобретению могут быть введены стандартным образом при болезненном состоянии, подлежащем лечению, например путем перорального, местного, парентерального, трансбуккального, назального, вагинального или ректального введения или путем ингаляции. Для этих целей соединения по настоящему изобретению могут быть приготовлены известными специалистам способами в форме, например, таблеток, капсул, водных или масляных растворов, суспензий, эмульсий, кремов, мазей, гелей, аэрозолей для носа, суппозиториев, тонкоизмельченных порошков или аэрозолей для ингаляции, и для парентерального применения (включая внутривенное, внутримышечное введение или инфузию) стерильных водных или масляных растворов, или суспензий, или стерильных эмульсий.

В дополнение к соединениям по настоящему изобретению фармацевтические композиции по настоящему изобретению могут также содержать или могут совместно вводиться (одновременно или последовательно) с одним или более чем одним агентом, ценным в лечении одного или более чем одного болезненного состояния, упомянутого выше.

Фармацевтические композиции по настоящему изобретению обычно вводят людям таким образом, чтобы, например, получать суточную дозу от 0,5 до 75 мг/кг массы тела (и предпочтительно от 0,5 до 30 мг/кг массы тела). Эта суточная доза может быть дана в разделенных дозах как необходимо, точное полученное количество соединения и путь введения зависят от массы, возраста и пола пациента, подлежащего лечению, и от конкретного болезненного состояния, которое лечат, в соответствии с принципами, известными в данной области техники.

Типично стандартные лекарственные формы содержат приблизительно от 1 до 500 мг соединения по этому изобретению.

Таким образом, в следующем аспекте настоящего изобретения предложено соединение формулы I или его фармацевтически приемлемые соли или гидролизуемый in vivo сложный эфир для применения в способе терапевтического лечения организма человека или животного. В частности, описано применение в лечении заболевания или состояния, опосредованного ММП-13, и/или аггреканазой, и/или ММП-9, и/или ММП-12.

Еще в одном аспекте настоящего изобретения предложен способ лечения болезненного состояния, опосредованного металлопротеиназами, при котором теплокровному животному вводят терапевтически эффективное количество соединения формулы I или его фармацевтически приемлемых соли или гидролизуемого in vivo сложного эфира. Болезненные состояния, опосредованные металлопротеиназами, включают в себя артрит (такой как остеоартрит), атеросклероз, хронические обструктивные заболевания легких (ХОЗЛ).

В другом аспекте настоящего изобретения предложен способ получения соединения формулы I или его фармацевтически приемлемых соли или гидролизуемого in vivo сложного эфира, при котором соединение формулы II подвергают взаимодействию с подходящим соединением формулы R1CHO с получением алкена формулы III, который затем превращают в соединение формулы IV, которое является предшественником соединения I и, возможно, после этого осуществляют образование фармацевтически приемлемых соли или гидролизуемого in vivo сложного эфира соединения формулы I, как изложено ниже.

Соединение формулы II можно удобно получить путем взаимодействия соединения формулы V с соединением формулы VI, где В' является предшественником В и X' представляет собой X, или предшественник X, или активированную форму X, подходящую для взаимодействия с В'. Оно также может быть получено из соединения VII так, как показано ниже:

Понятно, что многие из необходимых исходных веществ имеются в продаже. Дополнительно в нижеследующей таблице подробно описаны альдегидные промежуточные соединения и их соответствующие регистрационные номера в Chemical Abstracts.

RCHOРегистрационный номер согласно Chemical Abstracts
3-(2-пиримидинилтио)-пропионовый альдегид155957-56-5
3-(2-пиразинил)-масляный альдегид177615-94-0
3-фенилсульфониламидо-пропионовый альдегид57483-28-0
4-(4-метоксифенил)-масляный альдегид160093-24-3
4-(3-метоксифенил)-масляный альдегид113504-55-5

Альдегиды без регистрационных номеров согласно Chemical Abstracts

3-(2-Пиримидил)пропионовый альдегид. К раствору 2-бромпиримидина (7,95 г, 0,05 М) в ацетонитриле (150 мл) добавляют пропаргиловый спирт (4,2 г, 0,075 М), хлорид бис-(трифенилфосфин)-палладия (II) (750 мг, 1 мМ), иодид меди (100 мг, 0,5 мМ) и триэтиламин (25 мл, 0,25 М) и смесь перемешивают и нагревают при 70°С в течение 2 часов. Затем к реакционной смеси, которую перемешивали и нагревали при 70°С дополнительно в течение 1 часа, добавляют дополнительное количество пропаргилового спирта (2,1 г, 0,038 М), хлорида бис-(трифенилфосфин)-палладия (II) (375 мг, 0,5 мл) и иодида меди (50 мг, 0,25 мл).

Реакционную смесь выпаривают досуха и остаток, который предварительно адсорбируют на диоксиде кремния, подвергают хроматографии. При элюции этилацетатом получали 3-(2-пиримидил)проп-2-ин-3-ол в виде желтого твердого вещества, 4,45 г (66%). ЯМР (ядерный магнитный резонанс) (CDCl3) 2,9 (1Н, t), 4,5 (2Н, d), 7,3 (1H, d), 8,8 (2H, t), МС (масс-спектроскопия) найдено МН+ 135.

3-(2-Пиримидил)проп-2-ин-1-ол (4,45 г, 0,033 М) растворяют в этилацетате (140 мл), добавляют 10% Pd/C (890 мг) и смесь перемешивают в атмосфере водорода в течение 6 часов. Реакционную смесь фильтруют через целит и фильтрат выпаривают с получением 3-(2-пиримидил)пропан-1-ола в виде желтого масла, 4,15 г (91%). ЯМР (CDCl3) 2,1 (2H, m), 3,2 (2H, t), 3,8 (2H, t), 7,2 (1H, t), 8,7 (2H, d) MC найдено MH+ 139.

3-(2-Пиримидил)пропан-1-ол окисляют с получением 3-(2-пиримидил)пропионового альдегида, используя следующие условия по Сверну (Swern). К оксалилхлориду (14,3 мл), растворенному в дихлорметане (700 мл), добавляют ДМСО (диметилсульфоксид) (21,3 мл), поддерживая температуру ниже -60°С. Через 15 минут медленно добавляют этиловый спирт (20,8 г) растворенный в дихлорметане (20 мл) с последующим добавлением через 30 минут триэтиламина (125 мл). Через 15 минут реакционную смесь оставляют нагреваться до комнатной температуры при добавлении воды (100 мл). Растворители разделяют и органический слой промывают водой (3×150 мл), сушат (MgSO4) и выпаривают с получением масла, которое очищают путем колоночной флэш-хроматографии, элюируя смесью этилацетат/метанол (5%) с получением продукта (8,71 г, 43%) в виде масла. ЯМР (CDCl3) 3,0 (2Н, t), 3,4 (2H, t), 7,1 (1H, t), 8,7 (2H, d), 9,9 (1H, s).

Используя методику, описанную выше, получили следующие альдегиды:

4-(2-пиримидил)масляный альдегид, используя 3-бутин-1-ол вместо пропаргилового спирта. ЯМР (CDCl3) 9,8 (1Н, s), 8,6 (2Н, m), 7,15 (1H, m), 3,0 (2H, m), 2,5 (2H, m), 2,2 (2H, m).

3-(2-пиразинил)пропионовый альдегид, используя 2-бромпиразин вместо 2-бромпиримидина. ЯМР (d6-ДМСО) 9,77 (s, 1H), 8,61 (а, 1H), 8,54 (dd, 1H), 8,46 (d, 1H), 3,10 (t, 2Н), 2,92 (t, 2Н).

4-(2-пиразинил)масляный альдегид, используя 2-бромпиразин вместо 2-бромпиримидина и 3-бутин-1-ол вместо пропаргилового спирта. ЯМР (d6-ДМСО) 9,68 (s, 1H), 8,56 (m, 2Н), 8,49 (m, 1H), 2,80 (t, 2Н), 2,5 (m, 2Н), 1,96 (m, 2Н).

4-(4-трифторметилпиримидин-2-ил)масляный альдегид, используя 2-хлор-4-трифторпиримидин [CAS регистрационный номер 33034-67-2] вместо 2-бромпиримидина и 3-бутин-1-ол вместо пропаргилового спирта. 1Н ЯМР (CDCl3): 9,80 (s, 1H), 8,92 (d, 1H, J=5,0 Гц), 7,47 (d, 1H, J=5,0 Гц), 3,11 (dd, 2Н, H=7,5, 7,5 Гц), 2,60 (dd, 2Н, J=6,1, 6,1 Гц), 2,21 (m, 3H).

4-(5-фторпиримидин-2-ил)масляный альдегид, используя 2-хлор-5-фтор-пиримидин [CAS регистрационный номер 62802-42-0] вместо 2-бромпиримидина и 3-бутин-1-ол вместо пропаргилового спирта. 1H ЯМР (CDCl3): 9,90 (s, 1H), 8,52 (s, 2Н, J=5,0 Гц), 7,47, 3,47 (m, 2Н), 3,33 (dd, 2H, J=6,8, 6,8 Гц), 3,02 (m, 2H).

4-(4-метоксипиримидин-2-ил)масляный альдегид, используя 2-хлор-4-метокси-пиримидин [CAS регистрационный номер 22536-63-6] вместо 2-бромпиримидина и 3-бутин-1-ол вместо пропаргилового спирта. 1Н ЯМР (CDCl3): 9,80 (s, 1H), 8,34 (d, 1H, J=5,0 Гц), 6,55 (d, 1H, J=5,0 Гц), 3,97 (s, 3H), 2,91 (dd, 2H, J=6,8, 6,8 Гц), 2,58 (m, 2H), 2,20 (m, 2H).

4-(5-этилпиримидин-2-ил)масляный альдегид, используя 2-хлор-5-этил-пиримидин [CAS регистрационный номер 111196-81-7] вместо 2-бромпиримидина и 3-бутин-1-ол вместо пропаргилового спирта. 1Н ЯМР (CDCl3): 9,79 (s, 1H), 8,51 (s, 2H), 2,99 (dd, 2H, J=7,4, 7,4 Гц), 2,54 (m, 4H), 2,17 (р, 1H, J=7,4 Гц), 1,04 (t, 2H, J=7,2 Гц).

5-(2-пиримидил)пентаналь, используя 2-бромпиримидин и 4-пентин-1-ол вместо пропаргилового спирта: 1Н ЯМР (CDCl3): 9,8 (1Н, s), 8,65 (2Н, m), 7,1 (1H, m), 3,0 (2Н, m), 2,5 (2Н, m), 1,9 (2Н, m), 1,7 (2Н, m).

3-(5-бромпиримидин-2-ил)пропионовый альдегид, используя 2-иод-5-бромпиримидин вместо 2-бромпиримидина. 1Н ЯМР (CDCl3): 9,90 (s, 1H), 8,70 (s, 2Н), 3,30 (dd, 2Н), 3,0 (dd, 2Н).

4-(4-Пиримидил)-бутан-1-аль. 2,4-Дихлорпиримидин (4,47 г, 0,03 M) растворяют в триэтиламине (250 мл) под аргоном. Добавляют (Ph3P)2PdCl2 (420 мг, 0,006 M), Cul (28 мг, 0,00015 M) и 3-бутин-1-ол (2,36 мл, 0,03 M) и смесь перемешивают при температуре окружающей среды в течение 18 часов. После выпаривания досуха добавляют воду (250 мл) и экстрагируют дихлорметаном. Объединенные органические фазы сушат и выпаривают досуха. Оставшееся масло подвергают хроматографии, элюируя смесью изо-гексан/этилацетат 1:1, с получением 4-(2-хлор-4-пиримидил)-3-бутин-1-ола в виде масла (3,3 г). ЯМР (CDCl3) d 8,5 (d, 1H); 7,3 (d, 1H); 3,9, (t, 2Н); 2,8, (m, 2Н); 1,6, (s, 1H). Macc-спектроскопия показала MH+ 183. Это вещество гидрируют, как описано выше, но в присутствии 1 эквивалента триэтиламина, с получением требуемого насыщенного спирта, который окисляют, используя описанное ранее окисление по Сверну с получением требуемого 4-(4-пиримидил)-бутан-1-аля. ЯМР (CDCl3) d 9,8, (s, 1H); 9,1; (s, 1H); 8,5, (d, 1H); 7,1, (d, 1H); 2,8, (t, 2Н); 2,5, (t, 2Н); 2,1, (m, 2Н). Масс-спектроскопия показала МН- 149.

3-(5-Фторпиримидин-2-ил)пропионовй альдегид. К перемешиваемому раствору (Е)-1-этокси-3-(5-фторпиримидин-2-ил)проп-2-енилэтилового эфира и (Z)-1-этокси-3-(5-фторпиримидин-2-ил)проп-2-енилэтилового эфира (9,7 г, 43 ммоль) в безводном этаноле (100 мл) при комнатной температуре в атмосфере аргона добавляют 10% палладий на активированном угле (1,0 г). Из реакционной колбы затем откачивают воздух и наполняют газообразным водородом. Смесь затем перемешивают в течение 18 часов при комнатной температуре. Реакционную смесь затем фильтруют через слой из целита и выпаривают при пониженном давлении с получением желтого масла (8,7 г, 89%). К раствору этого масла (15 г, 66 ммоль) в ТГФ (тетрагидрофуране) (200 мл) при комнатной температуре добавляют водный раствор соляной кислоты (36 мл 2М раствора, 72 ммоль) и реакционную смесь перемешивают при комнатной температуре в течение 3 часов. Реакционную смесь затем разбавляют этилацетатом (100 мл) и рН смеси доводят до рН 9 путем добавления водного раствора гидрокарбоната натрия (насыщенный, 100 мл). Слои затем разделяют и водную фазу экстрагируют этилацетатом (3×100 мл). Объединенные органические экстракты затем сушат (Na2SO4), фильтруют и выпаривают при пониженном давлении с получением 3-(5-фторпиримидин-2-ил)пропионового альдегида (16 г), который использовали без дополнительной очистки. 1H ЯМР (CDCl3): 9,90 (s, 1Н), 8,50 (s, 2H), 3,33 (dd, 2H, J=6,9, 6,9 Гц), 3,00 (dd, 2H, J=6,9, 6,9 Гц).

Исходное вещество получили с помощью следующего способа: К раствору 2-хлор-5-фтор-пиримидина [CAS регистрационный номер 62802-42-0] (9,0 г, 6,8 ммоль) и 1-трибутилстаннил-3,3-диэтоксипроп-1-ена (42,8 г, 102 ммоль, смесь E:Z-изомеров 5:1) в сухом ДМФ (диметилформамиде) (140 мл) в атмосфере сухого аргона добавляют последовательно твердый карбонат калия (9,4 г, 68 ммоль), хлорид тетраэтиламмония (11,2 г, 68 ммоль) и хлорид бис(трифенилфосфин)палладия (II) (2,4 г, 3,4 ммоль). Полученную смесь затем нагревают до 120°С в течение 3 часов. Реакционную смесь затем охлаждают до комнатной температуры и разбавляют водой (100 мл) и диэтиловым эфиром (150 мл). Эту смесь затем фильтруют через слой из целита. Слои разделяют и водную фазу экстрагируют диэтиловым эфиром (3×100 мл). Объединенные органические экстракты затем сушат (MgSO4), фильтруют и выпаривают при пониженном давлении. Флэш-хроматография (силикагель, 10% этилацетат в гексанах) затем дала продукт в виде светло-желтого масла и смеси E:Z-изомеров 3:1 (9,7 г, 63%).

Е-изомер: 1Н ЯМР (CDCl3): 8,53 (s, 2H), 6,99 (dd, 1Н, J=15,4, 4,1 Гц), 6,86 (d, 1Н, J=15,4 Гц), 5,14 (d, 1Н, J=4,1 Гц), 3,56 (m, 4H), 1,24 (t, 6H, J=7,1 Гц).

Z-изомер: 1H ЯМР (CDCl3): 8,57 (s, 2H), 6,65 (d, 1Н, J=12,1 Гц), 6,49 (d, 1Н, J=7,5 Гц), 6,09 (dd, 1Н, J=12,1, 7,5 Гц), 3,70 (m, 4H), 1,21 (t, 6H, J=7,1 Гц).

Аналогичный способ использовали для получения следующих альдегидов с использованием подходящим образом замещенного 2-хлор-пиримидина:

3-(4-метоксипиримидин-2-ил)пропионовый альдегид, 1H ЯМР (CDCl3): 9,82 (s, 1Н), 8,34 (d, 1H, J=8,4 Гц), 6,55 (d, 1H, J=7,4 Гц), 3,91 (s, 3H), 3,28 (dd, 2H, J=7,4, 7,4 Гц), 2,99 (dd, 2H, J=7,4, 7,4 Гц).

3-(4-трифторметилпиримидин-2-ил)пропионовый альдегид, 1H ЯМР (CDCl3): 9,92 (s, 1H), 8,90 (d, 1H, J=5,0 Гц), 7,47 (d, 1H, J=5,0 Гц), 3,43 (dd, 2H, J=6,8, 6,8 Гц), 3,07 (dd, 2H, J=6,8, 6,8 Гц).

3-(5-этилпиримидин-2-ил)пропионовый альдегид 1H ЯМР (CDCl3): 9,91 (s, 1H), 8,49 (s, 2H), 3,31 (dd, 2H, J=6,9, 6,9 Гц), 2,98 (dd, 2H, J=6,9, 6,9 Гц), 2,61 (q, 2H, J=7,6 Гц), 1,26 (t, 3H, J=7,6 Гц).

3,5,5-Триметил-1-пропанальгидантоин

Раствор 3,5,5-триметилгидантоина [CAS (6345-19-3)] (3,5 г, 0,025 моль), 2-(2-бромэтил)-1,3-диоксолана (4,8 мл, 0,041 моль), К2СО3 (8,5 г, 0,062 моль), хлорида бензилтриметиламмония (2,23 г, 0,012 моль) в MeCN (100 мл) нагревают вместе при температуре дефлегмации в течение 24 часов. После охлаждения реакционной смеси до комнатной температуры и фильтрования, фильтрат выпаривают в вакууме. Остаток растворяют ДХМ (дихлорметане), затем промывают водой (×3) перед выпариванием в вакууме. Остаток подвергают азеотропной перегонке с толуолом (×3) с получением желтого масла (5,4 г). Масло затем перемешивают в ТГФ (30 мл) с конц. HCl (4 мл) при комнатной температуре в течение 20 часов. Нейтрализуют водным раствором NaHCO3 и экстрагируют ДХМ (×8). Объединенные органические слои сушат над Na2CO3 и выпаривают в вакууме с получением желтого масла (4,3 г). 1H ЯМР (CDCl3): 9,82 (s, 1H), 3,62 (t, 2H), 3,04 (s, 3H), 2,90 (m, 2H), 1,37 (s, 6H).

1,5,5-Триметил-3-пропанальгидантоин

1,5,5-Триметилгидантоин [CAS (6851-81-6)] (5,0 г), 35,0 моль) добавляют к смеси NaOEt (0,02 г, 0,298 ммоль, каталитический) и EtOH (8 мл) и перемешивают под аргоном. Смесь нагревают до 30°С перед медленным добавлением акролеина (2,35 мл) и реакционная смесь экзотермически нагревается до 45°С. Реакционную смесь оставляют охлаждаться до комнатной температуры и перемешивают в течение дополнительных 2 часов. К смеси добавляют АсОН (0,136 мл, 2,4 ммоль) и силикагель (3,5 г) перед выпариванием в вакууме. Продукт на диоксиде кремния подвергают хроматографии на колонке с диоксидом кремния (элюент: смесь 5% ацетон/ДХМ) с получением прозрачного масла (6,2 г). Дополнитнльная очистка остатка на оксиде алюминия (элюент: ДХМ) привела к получению прозрачного масла (2,7 г). 1H ЯМР (CDCl3): 9,78 (s,1H), 3,88 (t, 2H), 2,86 (s, 3H), 2,82 (m, 2H), 1,37 (s, 6H).

Аналогичным способом получили 1,5,5-триметил-3-бутанальгидантоин [M+H 213].

3-(3-Хлорфенил)масляный альдегид. Смесь 3-хлориодбензола (2,38 г), ацетата палладия (20 мг), бикарбоната натрия (1,01 г) и кротонового спирта (1,28 г) в N-метилпирролидоне (4 мл) перемешивают и нагревают при 130°С в течение 2 часов. Реакционную смесь оставляют охлаждаться, добавляют воду (50 мл) и смесь экстрагируют диэтиловым эфиром (2×50 мл). Объединенные органические экстракты сушат и остаток, полученный при удалении растворителя, очищают путем хроматографии на диоксиде кремния, элюируя смесью этилацетата и метиленхлорида (1:20), с получением указанного в заголовке соединения в виде масла, выход 519 мг, М-Н=181.

3-(2-Пиридил)масляный альдегид. Получают с помощью окисления по Сверну соответствующего спирта (CAS 90642-86-7).

3-(5-Фторпиримидин-2-ил)масляный альдегид

Концентрированную соляную кислоту (1 мл) добавляют к перемешиваемому раствору 2-[2-(1,3-диоксолан-2-ил)-1-метилэтил]-5-фторпиримидина (1,1 г) в тетрагидрофуране (10 мл) при температуре окружающей среды, перемешивают в течение 3 часов, затем добавляют твердый гидрокарбонат натрия до нейтрального рН. Смесь выливают на угольный брикет Chemelute (Chemelute cartridge) и промывают этилацетатом (3×20 мл), объединенные органические слои сушат над Na2SO4 и выпаривают в вакууме с получением 3-(5-фторпиримидин-2-ил)масляного альдегида (300 мг, 35%), который используют без дополнительной очистки.

Исходное вещество получали следующим образом:

2-[2-(1,3-диоксолан-2-ил)-1-метилэтил]-5-фторпиримидин

К перемешиваемой суспензии активированного цинка "Rieke" в тетрагидрофуране (21 мл, 1,53 М) добавляют 2-(2-бромпропил)-1,3-диоксолан (6,6 г) в тетрагидрофуране (50 мл), наблюдают повышение температуры от 21 до 40°С, нагревают при 40°С в течение 1 часа, затем оставляют охлаждаться до температуры окружающей среды перед добавлением 2-хлор-5-фторпиримидина (3 г) и хлорида [1,2-бис(дифенилфосфино)-пропан]дихлорникеля (II) (368 мг). Смесь перемешивают при температуре окружающей среды в течение 4 часов, затем фильтруют через слой из целита и фильтрат выпаривают при пониженном давлении. Затем флэш-хроматография (силикагель, гексан-25% этилацетат в гексанах) дала продукт в виде бледно-желтого масла (1,1 г); 1H ЯМР (d6-ДМСО): 8,81 (s, 2H), 4,73 (dd, 1H), 3,66-3,87 (m, 4H), 3,21-3,30 (m, 1H), 2,19 (ddd, 1H), 1,83 (ddd, 1H), 1,27 (d, 3H); m/z 213 (M+1).

2-(2-Бромпропил)-1,3-диоксолан

Кротоновый альдегид (9,18 г, 108 ммоль) по каплям добавляют к перемешиваемому раствору бромтриметилсилана (24 г, 156 ммоль) при 0°С, перемешивают в течение 1 часа при 0°С, затем нагревают до комнатной температуры и перемешивают в течение еще 1 часа. Добавляют этиленгликоль (9,5 г, 156 ммоль) и паратолуолсульфоновую кислоту (100 мг) и раствор нагревают до температуры дефлегмации, воду