N-замещенные производные пиперидина в качестве агентов серотонинового рецептора

Иллюстрации

Показать все

Изобретение относится к новым соединениям - N-замещенным производным пиперидина формулы I или к их фармацевтически приемлемым солям, амидам, сложным эфирам

где значения для R1, R2, R3, m, X, n, W, Ar1, Ar2 раскрыты в формуле изобретения. Изобретение также относится к способам ингибирования активности и способам ингибирования активации моноаминового рецептора, включающим контактирование моноаминового рецептора или системы, содержащей моноаминовый рецептор, с эффективным количеством одного или нескольких соединений формулы I. Кроме того, изобретение относится к применению соединений формулы I для лечения психотических заболеваний. 5 н. и 30 з.п. ф-лы, 1 табл.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к азациклическим соединениям с фармакокинетическими свойствами для лечения симптомов, заболеваний и расстройств, связанных с моноаминовыми рецепторами, включая серотониновые рецепторы.

Уровень техники

Серотонин или 5-гидрокситриптамин (5-HT) играет существенную роль в функционировании организма млекопитающего. В центральной нервной системе 5-HT является важным нейротрансмиттером и нейромодулятором, который вовлечен в такие разнообразные формы поведения и реакции, как сон, питание, локомоция, восприятие боли, познавательная способность и память, сексуальное поведение, контроль температуры тела и кровяного давления. В спинном мозге серотонин играет важную роль в контролирующих системах афферентных периферических ноцицепторов (Moulignier, Rev. Neurol., 150:3-15 (1994)). 5-HT также были приписаны периферические функции в сердечно-сосудистой, гематологической и желудочно-кишечной системах. Было обнаружено, что 5-HT медиирует разнообразные сократительные, секреторные и электрофизиологические эффекты, включая сокращение сосудистых и несосудистых гладких мышц и агрегацию тромбоцитов (Fuller, Biology of Serotonergic Transmission, 1982; Boullin, Serotonin in Mental Abnormalities 1:316 (1978); Barchas et al., Serotonin and Behavior (1973)). 5-HT2A подтип рецептора (также называемый подклассом) широко и, помимо этого, дискретно экспрессируется в головном мозге человека, включая многие корковые, лимбические области и область переднего мозга, которые, как предполагают, включены в модуляцию высших познавательных и аффективных функций. Данный подтип рецептора также экспрессируется на зрелых тромбоцитах, где он опосредует, в свою очередь, агрегацию тромбоцитов, одну из начальных стадий процесса тромбоза сосудов.

При условии широкого распределения серотонина в организме, понятно, что существует огромная заинтересованность в лекарствах, которые воздействуют на серотонинергические системы (Gershon et al., The Peripheral Actions of 5-Hydroxytryptamine, 246 (1989); Saxena et al., J. Cardiovascular Pharmacol. 15: Supp. 7 (1990)). Серотониновые рецепторы являются членами огромного генного семейства мембранно-связанных белков человека, которые функционируют как трансдукторы межклеточной коммуникации. Они существуют на поверхности различных типов клеток, включая нейроны и тромбоциты, где при их активации эндогенным лигандом серотонина, либо экзогенно вводимыми лекарствами, они изменяют свою конформационную структуру и затем взаимодействуют с последующими медиаторами клеточной передачи сигнала. Многие из данных рецепторов, включая подкласс 5-HT2A, являются связанными с G-белком рецепторами (GPCR), которые передают сигнал, активируя белки, связывающие гуаниновые нуклеотиды (G-белки), приводя к генерированию или ингибированию молекул вторичных мессенджеров, таких как циклическая АМФ, инозитолфосфаты и диацилглицерин. Данные вторичные мессенджеры затем модулируют функцию разнообразных внутриклеточных ферментов, включая киназы и ионные каналы, которые, в конечном счете, воздействуют на возбудимость и функцию клетки.

По меньшей мере, 15 генетически различных подтипов 5-HT рецепторов были идентифицированы и приписаны к одному из семи семейств (5-HT1-7). Каждый подтип показывает уникальное распределение, предпочтение к различным лигандам и функциональную корреляцию.

Серотонин может являться важным компонентом в различных типах болезненных состояний, таких как определенные психиатрические расстройства (депрессия, агрессивность, приступы паники, обсессивно-компульсивные расстройства, психоз, шизофрения, суицидная тенденция), определенные нейродегенеративные расстройства (деменция альцгеймеровского типа, паркинсонизм, хорея Гентингтона), анорексия, булимия, расстройства, связанные с алкоголизмом, инсульт и мигрень (Meltzer, Neuropsychopharmacology, 21:106S-115S (1999); Barnes & Sharp, Neuropharmacology, 38:1083-1152 (1999); Glennon, Neurosci. Biobehavioral Rev., 14:35 (1990)). Недавно доказано сильное вовлечение 5-HT2 подтипа рецептора в этиологию таких медицинских состояний, как гипертензия, тромбоз, мигрень, спазм сосудов, ишемия, депрессия, тревога, психоз, шизофрения, расстройства сна и расстройства аппетита.

Шизофрения представляет собой особенно разрушительное нейропсихиатрическое расстройство, которым страдает примерно 1% человеческой популяции. Было оценено, что общая финансовая стоимость диагностики, лечения и потери социальной продуктивности индивидуумов, страдающих данным заболеванием, превышает 2% валового национального продукта (ВНП) Соединенных Штатов. Современная терапия, прежде всего, включает фармакотерапию с использованием класса лекарств, известных как антипсихотические препараты. Антипсихотические препараты являются эффективными для улучшения позитивных симптомов (например, галлюцинаций и бреда), но они часто не улучшают негативные симптомы (например, социальную и эмоциональную абстиненцию, апатию и невыраженность речи).

В настоящее время прописывается девять основных классов антипсихотических препаратов для лечения психотических симптомов. Однако использование данных соединений ограничивается профилем их побочных эффектов. Почти все ″типичные″ соединения или соединения старого поколения обладают существенным неблагоприятным воздействием на моторную функцию человека. Данные ″экстрапирамидальные″ побочные эффекты, названные так из-за своего воздействия на модулирующие моторные системы человека, могут быть как острыми (например, дистонические реакции, потенциально угрожающий жизни, но редкий нейролептический злокачественный синдром), так и хроническими (например, акатизия, тремор и поздняя дискенизия). Поэтому разработка лекарств фокусируется на новых ″атипичных″ веществах, не имеющих данные неблагоприятные побочные эффекты.

Антипсихотические лекарства, как было показано, взаимодействуют с огромным числом центральных моноаминергических нейротрансмиттерных рецепторов, включая допаминергические, серотонинергические, адренергические, мускариновые и гистаминергические рецепторы. Возможно, что терапевтическое и неблагоприятное воздействие данных лекарств опосредуется различными подтипами рецепторов. Высокая степень генетической и фармакологической гомологии данных подтипов рецепторов затрудняет разработку селективных к подтипам соединений, а также определение нормальной физиологической или патофизиологической роли любого конкретного подтипа рецептора. Таким образом, существует необходимость в разработке лекарств, которые являются селективными по отношению к индивидуальным классам и подклассам рецепторов среди моноаминергических нейротрансмиттерных рецепторов.

Наиболее распространенная теория, описывающая механизм действия антипсихотических лекарств, включает антагонизм допаминовых D2 рецепторов. К сожалению, существует вероятность того, что антагонизм допаминовых D2 рецепторов также опосредует экстрапирамидальные побочные эффекты. Антагонизм 5-HT2A является альтернативным молекулярным механизмом для лекарств с антипсихотической эффективностью, возможно посредством антагонизма повышенной или усиленной сигнальной трансдукции через серотонинергические системы. Поэтому антагонисты 5-HT2A являются хорошими кандидатами для лечения психоза без экстрапирамидальных побочных эффектов.

Обычно данные рецепторы, как было предположено, находятся в состоянии покоя, если они не активированы связыванием агониста (лекарство, которое активирует рецептор). К настоящему моменту времени понято, что существенная часть, если не большая, GPCR моноаминовых рецепторов, включая серотониновые рецепторы, может существовать в частично активированном состоянии в отсутствие своих эндогенных агонистов. Данную повышенную базальную активность (конститутивную активность) можно ингибировать соединениями, называемыми обратными агонистами. Как агонисты, так и обратные агонисты обладают собственной активностью по отношению к рецептору, заключающейся в том, что они одни могут, соответственно, активировать или дезактивировать данные молекулы. Противоположным образом классические или нейтральные антагонисты конкурируют с агонистами и обратными агонистами за доступ к рецептору, но не обладают присущей им способностью ингибировать повышенные базальные или конститутивные реакции рецептора.

Заявители недавно выяснили важный аспект функции 5HT2A рецептора, используя Технологию выбора и амплификации рецептора (R-SAT) (патент США 5707798, 1998; Chem. Abstr. 128:111548 (1998) и содержащиеся там ссылки) для изучения 5-HT2 подкласса серотониновых рецепторов. R-SAT представляет собой фенотипический анализ функции рецептора, который включает гетерологическую экспрессию рецепторов в фибропластах млекопитающих. Используя данную методику, у заявителей была возможность продемонстрировать, что природные 5-HT2A рецепторы обладают значительной конститутивной, или не зависящей от агониста, рецепторной активностью (патент США 6358698; Weiner et al. J. Pharmacol. Exp. Ther. 2001, 299 (1), 268-276, которые включены в настоящее описание посредством ссылки во всей своей полноте, включая рисунки). Более того, прямым тестированием огромного числа центрально действующих лекарственных соединений с известной клинической активностью при нейропсихиатрических заболеваниях заявители определили, что все соединения с антипсихотической эффективностью обладают общим молекулярным свойством. Почти каждое из данных соединений, используемых психиатрами для лечения психоза, как было обнаружено, является мощным обратным агонистом 5-HT2A. Данная уникальная клинико-фармакологическая корреляция для одного подтипа рецептора является убедительным доказательством того, что обратный агонизм 5-HT2A рецептора является молекулярным механизмом антипсихотической эффективности в организме человека.

Детальная фармакологическая характеризация большого числа антипсихотических соединений показала, что они обладают широкой активностью по отношению ко многим родственным подтипам рецепторов. Большинство данных соединений показывает агонистическую, конкурентную антагонистическую или обратную агонистическую активность по отношению ко многим подтипам моноаминергических рецепторов, включая серотонинергические, допаминергические, адренергические, мускариновые и гистаминергические рецепторы. Данная широкая активность, вероятно, отвечает за седативные, гипотензивные и моторные побочные эффекты данных соединений. Поэтому было бы огромным достижением разработать соединения, которые являются селективными обратными агонистами 5-HT2A рецептора, которые обладают незначительной или вообще не обладают активностью к другим подтипам моноаминовых рецепторов, особенно к допаминовым D2 рецепторам. Такие соединения могут быть применимы при лечении заболевания человека (например, в качестве антипсихотических препаратов) и могут избежать неблагоприятных побочных эффектов, ассоциированных с неселективными взаимодействиями с рецепторами.

US 4853394 описывает сложные эфиры и амиды N-(гидроксиэтилпиперид-4-ила), которые усиливают двигательную функцию желудка, обладают антирвотной активностью и 5-HT антагонистической активностью.

EP 0260070 описывает 4-(4-(4-хлорфенил)-4-гидрокси-1-пиперидинил)-1-(4-фторфенил)-1-бутаноновый эфир уксусной кислоты для купирования, облегчения, предупреждения или ингибирования проявления психических отклонений.

Сущность изобретения

Описываются соединения формулы I

или их фармацевтически приемлемые соли, амиды, сложные эфиры или пролекарства,

где R1 выбран из группы, состоящей из необязательно замещенного гетероциклила и необязательно замещенного (гетероциклил)C1-6-алкила;

R2 и R3 независимо выбраны из группы, состоящей из водорода, C1-6-алкила и галогена, или R2 вместе с R3 образует кольцо;

m выбран из группы, состоящей из 0, 1 и 2;

n выбран из группы, состоящей из 1, 2 и 3;

Ar1 представляет собой необязательно замещенный арил или гетероарил;

W выбран из группы, состоящей из O и S;

X выбран из группы, состоящей из необязательно замещенного метилена, необязательно замещенного этилена, необязательно замещенного пропилена, необязательно замещенного винилена и CH2N(RN), где RN выбран из водорода и C1-6-алкила, и

Ar2 представляет собой необязательно замещенный арил или гетероарил.

Также описаны способы ингибирования активности моноаминового рецептора, включающие контактирование моноаминового рецептора или системы, содержащей моноаминовый рецептор, с эффективным количеством одного или нескольких соединений формулы I. Также описаны способы ингибирования активации моноаминового рецептора, включающие контактирование моноаминового рецептора или системы, содержащей моноаминовый рецептор, с эффективным количеством одного или нескольких соединений формулы I. Кроме того, описаны способы лечения психотического заболевания с использованием соединения формулы I.

Подробное описание изобретения

В данном описании следующие ниже определения будут использоваться во всей их полноте для определения технических терминов, а также будут использоваться во всей их полноте для определения объема притязаний группы изобретений, для которой испрашивается защита в формуле изобретения. Термин ″конститутивная активность″ определяется как базальная активность рецептора, которая не зависит от присутствия агониста. Конститутивную активность рецептора можно измерить с использованием ряда различных способов, включая клеточные (например, мембранные) препараты (см., например, Barr & Manning, J. Biol. Chem. 272:32979-87 (1997)), очищенные восстановленные рецепторы, содержащие или не содержащие связанный G-белок в фосфолипидных везикулах (Cerione et al., Biochemistry 23:4519-25 (1984)), и функциональные клеточные анализы (патент США 6358698).

Термин ″агонист″ означает соединение, которое увеличивает активность рецептора при его контактировании с рецептором.

Термин ″антагонист″ означает соединение, которое конкурирует с агонистом или обратным агонистом за связывание с рецептором, посредством этого блокируя действие агониста или обратного агониста на рецептор. Однако антагонист (также известный как ″нейтральный″ антагонист) не действует на конститутивную рецепторную активность.

Термин ″обратный агонист″ означает соединение, которое снижает базальную активность рецептора (т.е. опосредованную рецептором передачу сигналов). Такие соединения также известны как отрицательные антагонисты. Обратный агонист является лигандом для рецептора, приводя к тому, что рецептор принимает неактивное состояние относительно базального состояния, имеющего место в отсутствие любого лиганда. Таким образом, в то время как антагонист может ингибировать активность агониста, обратный агонист представляет собой лиганд, который может изменить конформацию рецептора в отсутствие агониста. Понятие обратного агониста было введено Bond et al. в Nature 374:272 (1995). Более конкретно, Bond et al. предположили, что не связанный с лигандом β2-адреноцептор существует в равновесии между неактивной конформацией и спонтанно-активной конформацией. Предполагается, что агонисты стабилизируют рецептор в активной конформации. Наоборот, обратные агонисты, как полагают, стабилизируют неактивную конформацию рецептора. Таким образом, в то время как антагонист проявляет свою активность посредством ингибирования агониста, обратный агонист может дополнительно проявлять свою активность в отсутствие агониста, ингибируя самопроизвольную конверсию не связанного с лигандом рецептора в активную конформацию.

Термин ″5-HT2A рецептор″ означает рецептор, обладающий активностью, соответствующей активности подтипа серотонинового рецептора человека, который характеризуется молекулярным клонированием и фармакологией, как детально описано Saltzman et al. в Biochem. Biophys. Res. Comm. 181:1469-78 и Julius et al. в Proc. Natl. Acad. Sci. USA 87:928-932.

Термин ″субъект″ относится к животному, предпочтительно к млекопитающему, наиболее предпочтительно к человеку, который является объектом лечения, обследования или эксперимента.

Термин ″селективный″ определяется как свойство соединения, в соответствии с которым количество соединения, достаточное для осуществления желаемого ответа конкретного типа, подтипа, класса или подкласса рецептора, вызывает значительно меньшее действие или не оказывает воздействия на активность других типов рецептора.

Термины ″селективность″ или ″селективный″, в отношении обратного агониста, понимают как свойство соединения по изобретению, в соответствии с которым количество соединения, оказывающее эффективное воздействие обратного агониста на 5-HT2A рецептор и, таким образом, снижающее его активность, вызывает незначительную или вообще не вызывает обратноагонистическую или антагонистическую активность на другие, родственные или неродственные рецепторы. В частности, определенные соединения по изобретению, как было обнаружено, по существу не взаимодействуют с другими серотониновыми рецепторами (5-HT 1A, 1B, 1D, 1E, 1F, 2B, 2C, 4A, 6 и 7) при концентрациях, при которых передача сигнала 5-HT2A рецептором сильно или полностью подавлена. Предпочтительно соединения по изобретению также являются селективными по отношению к другим моноаминсвязывающим рецепторам, таким как допаминергические, гистаминергические, адренергические и мускариновые рецепторы. Соединения, которые являются высокоселективными по отношению к 5-HT2A рецепторам, могут обладать целебным действием при лечении психоза, шизофрении или аналогичных психоневрологических расстройств, в то же время избегая неблагоприятных эффектов, вызванных лекарствами, предлагаемыми для этой цели до настоящего времени.

EC50 для агониста означает концентрацию соединения, необходимую для достижения 50% от максимального ответа, видимого в R-SAT. Для обратных агонистов EC50 означает концентрацию соединения, необходимую для достижения 50% ингибирования R-SAT ответа от базальных уровней в отсутствие соединения.

Используемый в данном описании термин ″совместное введение″ фармакологически активных соединений относится к доставке двух или более различных химических веществ in vitro или in vivo. Совместное введение относится к одновременной доставке различных веществ, к одновременной доставке смеси веществ, а также к доставке одного вещества, после чего следует доставка второго вещества или дополнительных веществ. Во всех случаях вещества, которые вводятся совместно, предназначены для работы в сочетании друг с другом.

В настоящем контексте термин ″арил″ означает карбоциклическое ароматическое кольцо или циклическую систему. Кроме того, термин ″арил″ включает конденсированные циклические системы, в которых, по меньшей мере, два арильных кольца или, по меньшей мере, один арил и, по меньшей мере, один C3-8-циклоалкил имеют, по меньшей мере, одну общую химическую связь. Некоторые примеры ″арильных″ колец включают необязательно замещенный фенил, нафталинил, фенантренил, антраценил, тетралинил, флуоренил, инденил и инданил. Термин ″арил″ относится к ароматическим, предпочтительно бензольным группам, присоединенным через один из атомов углерода, образующего кольцо, и необязательно несущим один или несколько заместителей, выбранных из гетероциклила, гетероарила, галогена, гидрокси, амино, циано, нитро, алкиламидо, ацила, C1-6-алкокси, C1-6-алкила, C1-6-гидроксиалкила, C1-6-аминоалкила, C1-6-алкиламино, алкилсульфенила, алкилсульфинила, алкилсульфонила, сульфамоила или трифторметила. Арильная группа может быть замещена в пара- и/или мета-положении. Типичные примеры арильных групп включают, но не ограничиваются ими, фенил, 3-галогенфенил, 4-галогенфенил, 3-гидроксифенил, 4-гидроксифенил, 3-аминофенил, 4-аминофенил, 3-метилфенил, 4-метилфенил, 3-метоксифенил, 4-метоксифенил, 4-трифторметоксифенил, 3-цианофенил, 4-цианофенил, диметилфенил, нафтил, гидроксинафтил, гидроксиметилфенил, трифторметилфенил, алкоксифенил, 4-морфолин-4-илфенил, 4-пирролидин-1-илфенил, 4-пиразолилфенил, 4-триазолилфенил и 4-(2-оксопирролидин-1-ил)фенил.

В настоящем контексте термин ″гетероарил″ означает гетероциклическую ароматическую группу, в которой один или несколько атомов углерода в ароматическом кольце заменены одним или несколькими гетероатомами, выбранными из группы, включающей азот, серу, фосфор и кислород.

Кроме того, в настоящем контексте термин ″гетероарил″ включает конденсированные циклические системы, в которых, по меньшей мере, одно арильное кольцо и, по меньшей мере, одно гетероарильное кольцо, по меньшей мере, два гетероарильных кольца, по меньшей мере, одно гетероарильное кольцо и, по меньшей мере, одно гетероциклическое кольцо или, по меньшей мере, одно гетероарильное кольцо и, по меньшей мере, одно C3-8-циклоалкильное кольцо имеют, по меньшей мере, одну общую химическую связь.

Имеется в виду, что термин ″гетероарил″ относится к ароматическим, C3-8-циклическим группам, дополнительно содержащим один атом кислорода или серы или вплоть до четырех атомов азота, или комбинацию одного атома кислорода или серы с одним или двумя атомами азота, и их замещенным соединениям, а также к бензо- и пиридо-конденсированным производным, предпочтительно присоединенным через один из образующих кольцо атомов углерода. Гетероарильные группы могут содержать один или несколько заместителей, выбранных из галогена, гидрокси, амино, циано, нитро, алкиламидо, ацила, C1-6-алкокси, C1-6-алкила, C1-6-гидроксиалкила, C1-6-аминоалкила, C1-6-алкиламино, алкилсульфенила, алкилсульфинила, алкилсульфонила, сульфамоила или трифторметила. В некоторых вариантах осуществления гетероарильные группы могут представлять собой пяти- или шестичленные ароматические гетероциклические системы, содержащие 0, 1 или 2 заместителя, которые могут быть одинаковыми или отличными друг от друга, выбранными из указанного выше списка. Типичные примеры гетероарильных групп включают, но не ограничиваются ими, незамещенные, моно- или дизамещенные производные фурана, бензофурана, тиофена, бензотиофена, пиррола, пиридина, индола, оксазола, бензоксазола, изоксазола, бензизоксазола, тиазола, бензотиазола, изотиазола, имидазола, бензимидазола, пиразола, индазола, тетразола, хинолина, изохинолина, пиридазина, пиримидина, пурина и пиразина, каждое из которых является предпочтительным, а также фуразана, 1,2,3-оксадиазола, 1,2,3-тиадиазола, 1,2,4-тиадиазола, триазола, бензотриазола, птеридина, феноксазола, оксадиазола, бензопиразола, хинолизина, циннолина, фталазина, хиназолина и хиноксалина. В некоторых вариантах осуществления заместители представляют собой галоген, гидрокси, циано, O-C1-6-алкил, C1-6-алкил, гидрокси-C1-6-алкил, амино-C1-6-алкил.

Имеется в виду, что в настоящем контексте термин ″алкил″ и ″C1-6-алкил″ означает прямую или разветвленную насыщенную углеводородную цепь, в которой наиболее длинная цепь имеет от одного до шести атомов углерода, например метил, этил, н-пропил, изопропил, н-бутил, изобутил, втор-бутил, трет-бутил, пентил, изопентил, неопентил и гексил. Алкильная цепь необязательно может быть замещенной.

Имеется в виду, что термин ″гетероциклил″ означает трех-, четырех-, пяти-, шести-, семи- и восьмичленные кольца, в которых атомы углерода вместе с 1-3 гетероатомами составляют указанное кольцо. Гетероциклил необязательно может содержать одну или несколько ненасыщенных связей, расположенных, однако, таким образом, что ароматическая π-электронная система не возникает. Гетероатомы независимо выбраны из кислорода, серы и азота.

Гетероциклил может дополнительно содержать одну или несколько карбонильных или тиокарбонильных функциональных групп с тем, чтобы данное определение включало оксо-системы и тио-системы, такие как лактамы, лактоны, циклические имиды, циклические тиоимиды, циклические карбаматы и т.п.

Гетероциклильные кольца необязательно могут быть конденсированы с арильными кольцами так, что данное определение включает бициклические структуры. Предпочтительными являются такие конденсированные гетероциклильные группы, которые имеют одну общую связь с необязательно замещенным бензольным кольцом. Примеры гетероциклильных групп, конденсированных с бензольным кольцом, включают, но не ограничиваются ими, бензимидазолидинон, тетрагидрохинолин и метилендиоксибензольные кольцевые структуры.

Некоторые примеры ″гетероциклилов″ включают, но не ограничиваются ими, тетрагидротиопиран, 4H-пиран, тетрагидропиран, пиперидин, 1,3-диоксин, 1,3-диоксан, 1,4-диоксин, 1,4-диоксан, пиперазин, 1,3-оксатиан, 1,4-оксатиин, 1,4-оксатиан, тетрагидро-1,4-тиазин, 2H-1,2-оксазин, малеимид, сукцинимид, барбитуровую кислоту, тиобарбитуровую кислоту, диоксопиперазин, гидантоин, дигидроурацил, морфолин, триоксан, гексагидро-1,3,5-триазин, тетрагидротиофен, тетрагидрофуран, пирролин, пирролидин, пирролидон, пирролидинон, пиразолин, пиразолидин, имидазолин, имидазолидин, 1,3-диоксол, 1,3-диоксолан, 1,3-дитиол, 1,3-дитиолан, изоксазолин, изоксазолидин, оксазолин, оксазолидин, оксазолидинон, тиазолин, тиазолидин и 1,3-оксатиолан. Связь с гетероциклом может быть в положении гетероатома или посредством атома углерода гетероцикла, или, для производных, конденсированных с бензольным кольцом, посредством атома углерода бензольного кольца.

Термин ″(гетероциклил)C1-6-алкил″ означает гетероциклильные группы, соединенные как заместители через алкильные группы, каждая из которых является такой, как определено в настоящем описании. Гетероциклильные группы (гетероциклил)C1-6-алкильных групп могут быть замещенными или незамещенными. Имеется в виду, что термин ″(гетероциклил)C1-6-алкил″ означает алкильную цепь, замещенную, по меньшей мере, один раз гетероциклильной группой, обычно в положении конца алкильной цепи.

В настоящем контексте термин ″C2-8-алкенил″ означает углеводородную группу с прямой или разветвленной цепью, имеющую от двух до восьми атомов углерода и содержащую одну или несколько двойных связей. Некоторые примеры C2-8-алкенильных групп включают аллил, гомоаллил, винил, кротил, бутенил, пентенил, гексенил, гептенил и октенил. Некоторые примеры C2-8-алкенильных групп, содержащих более одной двойной связи, включают бутадиенильную, пентадиенильную, гексадиенильную, гептадиенильную, гептатриенильную и октатриенильную группы, а также их разветвленные формы. Положение ненасыщенности (двойной связи) может находиться в любом положении углеродной цепи.

В настоящем контексте термин ″C2-8-алкинил″ означает углеводородную группу с прямой или разветвленной цепью, имеющую от двух до восьми атомов углерода и содержащую одну или несколько тройных связей. Некоторые примеры C2-8-алкинильных групп включают этинил, пропинил, бутинил, пентинил, гексинил, гептинил и октинил, а также их разветвленные формы. Положение ненасыщенности (тройной связи) может находиться в любом положении цепи. Ненасыщенной может быть больше чем одна связь, так что ″C2-8-алкинил″ представляет собой диин или ендиин, как известно специалисту в данной области.

В настоящем контексте термин ″C3-8-циклоалкил″ означает трех- четырех-, пяти-, шести-, семи- и восьмичленные кольца, включающие только атомы углерода. C3-8-циклоалкил необязательно может содержать одну или несколько ненасыщенных связей, расположенных, однако, таким образом, что ароматическая π-электронная система не возникает.

Некоторыми примерами предпочтительного ″C3-8-циклоалкила″ являются циклопропановый, циклобутановый, циклопентановый, циклопентеновый, циклопентадиеновый, циклогексановый, циклогексеновый, 1,3-циклогексадиеновый, 1,4-циклогексадиеновый, циклогептановый, циклогептеновый карбоциклы.

Термины ″(арил)C1-6-алкил″ означают арильную группу, соединенную как заместитель через C1-6-алкильную группу, каждая из которых является такой, как определено в настоящем описании. Арильные группы (арил)C1-6-алкила могут быть замещенными или незамещенными. Примеры включают бензил, замещенный бензил, 2-фенилэтил, 3-фенилпропил и нафтилалкил.

Термины ″(циклоалкил)C1-6-алкил″ означают циклоалкильные группы, соединенные как заместители через алкильную группу, каждая из которых является такой, как определено в настоящем описании.

При использовании в настоящем описании термин ″O-C1-6-алкил″ означает C1-6-алкилокси или алкокси, такие как метокси, этокси, н-пропокси, изопропокси, н-бутокси, изобутокси, втор-бутокси, трет-бутокси, пентилокси, изопентилокси, неопентилокси и гексилокси.

Термин ″галоген″ включает фтор, хлор, бром и иод.

В настоящем контексте, т.е. в связи с терминами ″C1-6-алкил″, ″арил″, ″гетероарил″, ″гетероциклил″, ″C3-8-циклоалкил″, ″гетероциклил(C1-6-алкил)″, ″(циклоалкил)алкил″, ″O-C1-6-алкил″, ″C2-8-алкенил″ и ″C2-8-алкинил″, термин ″необязательно замещенный″ означает то, что рассматриваемая группа может быть замещенной один или несколько раз, например 1-5 раз или 1-3 раза или 1-2 раза, одной или несколькими группами, выбранными из C1-6-алкила, C1-6-алкокси, оксогруппы (которая может быть представлена в таутомерной енольной форме), карбоксила, амино, гидрокси (которая, когда присутствует в енольной системе, может быть представлена в таутомерной кетоформе), нитро, алкилсульфонила, алкилсульфенила, алкилсульфинила, C1-6-алкоксикарбонила, C1-6-алкилкарбонила, формила, амино, моно- и ди(C1-6-алкил)амино, карбамоила, моно- и ди(C1-6-алкил)аминокарбонила, амино-C1-6-алкиламинокарбонила, моно- и ди(C1-6-алкил)амино-C1-6-алкиламинокарбонила, C1-6-алкилкарбониламино, C1-6-алкилгидроксиимино, циано, гуанидино, карбамидо, C1-6-алканоилокси, C1-6-алкилсульфонилокси, дигалоген-C1-6-алкила, тригалоген-C1-6-алкила, гетероциклила, гетероарила и галогена. В общем, вышеуказанные заместители могут быть восприимчивыми к дополнительному необязательному замещению.

Термин ″соли″ означает фармацевтически приемлемые кислотно-аддитивные соли, получаемые обработкой основной формы функциональной группы, такой как амин, соответствующими кислотами, такими как неорганические кислоты, например, галогеноводородными кислотами, обычно хлористоводородной, бромистоводородной, фтористоводородной или иодистоводородной кислотой, серной кислотой, азотной кислотой, фосфорной кислотой и т.п., или органическими кислотами, например уксусной, пропионовой, гидроксиуксусной, 2-гидроксипропионовой, 2-оксопропионовой, этандиовой, пропандиовой, бутандиовой, (Z)-2-бутендиовой, (Е)-бутендиовой, 2-гидроксибутандиовой, 2,3-дигидроксибутандиовой, 2-гидрокси-1,2,3-пропантрикарбоновой, метансульфоновой, этансульфоновой, бензолсульфоновой, 4-метилбензолсульфоновой кислотой, циклогексансульфаминовой, 2-гидроксибензойной, 4-амино-2-гидроксибензойной и другими кислотами, известными специалисту в данной области.

Настоящее изобретение включает в объем своих притязаний пролекарства соединений по данному изобретению. В общем, такие пролекарства являются неактивными производными соединений по данному изобретению, которые легко превращаются in vivo в желаемое соединение. Традиционные методики выбора и получения подходящих пролекарственных производных описаны, например, в Design of Prodrugs (ed. H. Bundgaard, Elsevier, 1985). Метаболиты данных соединений включают активные частицы, которые получаются при введении соединений по данному изобретению в биологическую среду.

Когда соединения по изобретению имеют, по меньшей мере, один хиральный центр, они могут существовать в виде рацемата или энантиомеров. Необходимо отметить, что все такие изомеры и их смеси включены в объем настоящего изобретения. Более того, некоторые кристаллические формы соединений по настоящему изобретению могут существовать в виде полиморфов, и подразумевается, что они как таковые включены в настоящее изобретение. Кроме того, некоторые из соединений по настоящему изобретению могут образовывать сольваты с водой (т.е. гидраты) или обычными органическими растворителями. Такие сольваты также включены в объем притязаний настоящего изобретения.

Когда способы получения соединений по данному изобретению приводят к смеси стереоизомеров, такие изомеры можно разделить обычными методами, такими как препаративная хиральная хроматография. Соединения можно получить в рацемической форме или индивидуальные энантиомеры можно получить стереоселективным синтезом или разделением. Соединения можно разделить на энантиомеры стандартными методами, такими как образование диастереоизомерных пар путем образования соли с оптически активной кислотой, такой как (-)-ди-п-толуоил-d-виннная кислота и/или (+)-ди-п-толуоил-l-виннная кислота, после чего следует фракционированная кристаллизация и регенерация свободного основания. Соединения можно также разделить, используя хиральные вспомогательные соединения, путем образования диастереомерных производных, таких как сложные эфиры, амиды или кетали, после чего следует хроматографическое разделение и удаление хиральных вспомогательных соединений.

Соединения по настоящему изобретению являются эффективными при оральном введении. Эксперименты in vivo, проведенные на грызунах, показали, что более низкая доза соединений по настоящему изобретению приводит к равной или к улучшенной поведенческой реакции на животных моделях психоза. Данные результаты свидетельствуют о более высокой биодоступности соединений по настоящему изобретению по сравнению с соединениями, описанными в предшествующем уровне техники. Улучшенная биодоступность подтверждается наблюдением, что новые соединения, представленные в настоящем описании, не являются значительно более эффективными при анализе их действия на серотониновые рецепторы in vitro и, помимо этого, представляют значительное улучшение при оральном введении. Весьма улучшенная эффективность, наблюдаемая после оральной дозы, вероятно, является результатом увеличенной метаболической стабильности, улучшенных физико-химических свойств, таких как растворимость или химическая стойкость, или различных фармакокинетических характеристик, таких как распределение, проницаемость или т.п. Не связывая себя с конкретной теорией, разумно приписать такие различия присутствию гетероциклического заместителя на атоме азота пиперидинового кольца данных соединений. Присутствие такого гетероциклического заместителя может повлиять на поведение данных производных с точки зрения растворимости и/или метаболической лабильности. Присутствие гетероатомов в заместителях, близких к атому азота, как предполагается, также влияет на основность атома азота, которая, в свою очередь, может воздействовать на такие свойства, как распределение (LogD) или метаболизм.

Обычно высокая степень биодоступности любого фармацевтического препарата считается весьма полезной. Это относится, прежде всего, к способности вводить эффективную и еще и безопасную дозу лекарства всем субъектам независимо от их потенциальной предрасположенности к зависящему от полиморфизма метаболизму лекарства. Примеры таких многочисленных полиморфизмов хорошо известны в данной области. Таким образом, лекарство, которое подвергается значительному метаболизму в течение своего первого прохождения через печень, либо в желудочно-кишечном тракте, будет показывать относительно низкую и иногда зависящую от дозы биодоступность, измеряемую в виде концентрации в плазме, достигаемой после перорального распределения. Различия между индивидуумами в воздействии лекарства, как правило, являются более сильными, когда лекарство трудно метаболизируется и, как следствие, показывает низкую оральную биодоступность. Субъекты с полиморфизмом, приводящим к изменениям в активности метаболизирующих лекарство ферментов, вероятно, станут подвергаться действию существенно различающихся (обычно более высоких) уровней в плазме, по сравнению с субъектами, показываю