Выравнивание взаимных помех в системе беспроводной связи

Иллюстрации

Показать все

Настоящее изобретение относится к способу выравнивания распространения взаимных помех между радиоячейками в системе беспроводной связи, содержащей ячейки, в которых для связи используют блоки поднесущих. Некоторое число соседних ячеек составляет кластер ячеек. Кроме того, настоящее изобретение относится к соответствующему способу, применяемому в системе, в которой используют многолучевые антенны или множество антенн. Далее, настоящее изобретение относится к базовым станциям, реализующим упомянутый выше способ, а также к системе связи, содержащей эти базовые станции. Техническим результатом является снижение больших колебаний среднего отношения «сигнала к взаимной помехе» (SIR) без необходимости выполнения дополнительных оценки, измерения и вычисления этого отношения в случае использования управления мощностью. Для этого настоящее изобретение предусматривает группирование блоков поднесущих во множество наборов блоков поднесущих в каждой ячейке кластера ячеек, определение уровней мощности передачи для каждой из ячеек упомянутого кластера ячеек и назначение уровней мощности передачи наборам блоков поднесущих. 5 н. и 27 з.п. ф-лы, 13 ил.

Реферат

Область техники

Настоящее изобретение относится к способу выравнивания распространения взаимных помех между радиоячейками в системе беспроводной связи. Упомянутая система содержит множество радиоячеек, в которых для связи используется множество блоков поднесущих, причем каждый блок поднесущих содержит множество поднесущих. Кроме того, некоторое число соседних радиоячеек составляет кластер ячеек. Настоящее изобретение также относится к соответствующему способу, применяемому в системе, в которой радиоячейки разделены на сектора. Далее, настоящее изобретение относится к базовым станциям, выполняющим указанный выше способ, а также к системе связи, содержащей упомянутые базовые станции.

Уровень техники

В современных сотовых системах мобильной связи на основе пакетной передачи данных широко применяются алгоритмы динамического выделения каналов (DCA), так как они являются эффективным средством увеличения пропускной способности системы (по радиоинтерфейсу). В алгоритмах DCA используются кратковременные флуктуации (быстрое замирание) качества каналов для линий связи между базовыми станциями (BS) и мобильными станциями (MS). В подобной системе так называемый "планировщик" (обычно являющийся частью базовой станции) пытается выделять системные ресурсы предпочтительно мобильным станциям, находящимся в благоприятных условиях с точки зрения качества канала.

Во временной области DCA работает на покадровой основе, причем длительность кадра в типичном случае находится в (суб)миллисекундном диапазоне. Более того, в зависимости от схемы коллективного доступа ресурсы радиоинтерфейса разделяются, например, в кодовой и/или частотной области.

Приведенное ниже описание относится к нисходящей линии связи (базовая станция осуществляет передачу к мобильной станции), однако, без потери общности, алгоритмы DCA могут также применяться для восходящей линии связи (мобильная станция осуществляет передачу к базовой станции). В любом случае планировщику, реализующему алгоритм DCA, необходимо иметь подробную информацию по каналам для линий связи "базовая станция - мобильная станция", которая собирается при помощи оценки качества каналов. Если планировщик находится в сети, и измерение выполняется в мобильной станции, то информация о каналах передается от мобильной станции в базовую станцию. Необходимо, чтобы качество каналов измерялось мгновенно для отражения мгновенной мощности принятого сигнала и мгновенной взаимной помехи.

В системах множественного доступа с частотным разделением каналов (FDMA) алгоритм DCA выполняется в частотно-временной области, так как каналы физического уровня заданы в частотной области. В типичном случае качество каналов значительно изменяется в частотной области (частотно-избирательное замирание). Поэтому в зависимости от характеристик каналов по всем доступным частотам и всем активным мобильным станциям планировщик может выделять каналы динамически при каждом случае планирования для конкретных линий связи "базовая станция - мобильная станция".

В системе OFDMA (множественный доступ с ортогональным частотным разделением) частотный ресурс разделен на узкополосные поднесущие, которые в типичном случае подвержены амплитудному замиранию. Здесь, в общем случае, планировщик динамически выделяет блоки поднесущих (содержащие М соседних или отдельных поднесущих) конкретной мобильной станции, чтобы использовать благоприятные характеристики канала при данном соединении. Пример такой системы известен из публикации: Rohling et al., "Performance of an OFDM-TDMA mobile communication system". IEEE Proceedings on the Conference on Vehicular Technology (VTC 1996), Atlanta, 1996.

В случае стандарта CDMA (Множественный доступ с кодовым разделением каналов) системные ресурсы заданы в кодовой области и, следовательно, планировщик динамически выделяет коды конкретным линиям связи "базовая станция - мобильная станция". В отличие от FDMA для конкретной линии связи качество канала одинаково для всех ресурсов/кодов (замирание не является избирательным по коду), и, следовательно, в кодовой области алгоритм DCA выполняется с учетом числа кодов, выделяемых конкретной мобильной станции, но не с учетом того, какие коды выделяются. Алгоритм DCA ограничивается планированием во временной области с использованием характеристик быстрого замирания. Подобной системой CDMA, использующей алгоритм DCA, является HSDPA (пакетный доступ к высокоскоростной нисходящей линии связи) в рамках стандарта 3GPP (Проект партнерства по развитию сетей третьего поколения).

Система MC-CDMA (CDMA с множеством несущих) может считаться комбинацией CDMA и (O)FDMA. Поэтому алгоритм DCA может выполняться как в частотной, так и в кодовой области.

В общем случае эффективность применения алгоритма DCA увеличивается с ростом числа активных мобильных станций в ячейке, так как это приводит к увеличению числа линий связи с хорошими характеристиками канала и, следовательно, к возрастанию вероятности того, что планирование осуществляется для канала с благоприятными характеристиками (разнесение по множеству пользователей).

В типичном случае алгоритм DCA объединяют с методами адаптации линий связи, например AMC (Адаптивная модуляция и кодирование) и гибридным ARQ (Автоматический запрос на повторение).

Кроме того, алгоритм DCA может быть объединен с алгоритмами управления мощностью, где мощностью, назначаемой конкретному каналу (в кодовой, частотной области), управляют, чтобы компенсировать изменения мощности канала и/или оказать поддержку работе AMC.

Системы без управления мощностью

Как описано в предыдущем разделе, для эффективной работы алгоритма DCA в случае системы без управления мощностью планировщику, находящемуся в базовой станции, необходима подробная информация о мгновенном качестве всех каналов по всем доступным блокам поднесущих и всем участвующим в планировании линиям связи "базовая станция - мобильная станция".

При рассмотрении сценария с множеством ячеек в системе стандарта OFDMA с алгоритмом DCA и коэффициентом повторного использования частот, равным 1, система в типичном случае имеет ограниченную взаимную помеху. То есть качество канала на блок поднесущих определяется, главным образом, отношением "сигнал/взаимная помеха" (SIR), где в качестве взаимной помехи преобладает межсотовая взаимная помеха (внутриканальная помеха), вызванная передачами по соответствующему каналу (на блоке поднесущих) в соседних ячейках (С обозначает совокупность соседних ячеек):

(1)

В случае системы OFDMA с алгоритмом DCA и частотно-избирательным замиранием мгновенное отношение SIR(t) для конкретной линии связи с мобильной станцией m меняется по блокам b поднесущих, так как сигнал и взаимная помеха подвержены замиранию:

(2)

Как упомянуто ранее, производительность системы, использующей алгоритм DCA и технологию AMC, в значительной степени зависит от точности оценки отношения SIR. Поэтому согласно уравнению (2) возникают следующие проблемы:

Все величины в уравнении (2) подвержены быстрому замиранию и будут изменяться между моментом измерения и моментом реальной передачи (после выполнения алгоритма DCA и выбора AMC). Эта задержка обуславливает неточность работы упомянутых DCA и AMC. Данная задержка еще более возрастает, если измерение выполняется в мобильной станции и должно сигнализироваться базовой станции посредством обратной связи.

Число источников помех в знаменателе зависит от реального использования (распределения) блока поднесущих в соседних ячейках. То есть в зависимости от реальной нагрузки в соседних ячейках некоторые блоки поднесущих могут не использоваться. В общем случае на момент измерения информация об использовании блока поднесущих в момент передачи в соседних ячейках отсутствует по следующим причинам.

Измерение качества каналов выполняется на основе устаревших данных о взаимных помехах, обусловленных выделением блоков поднесущих (при планировании) в соседних ячейках (измерение для n-го кадра осуществляется в (n-k)-м кадре, где распределение поднесущих с большой вероятностью отличается).

Далее, существует так называемая проблема распределения "курица и яйцо": в ячейке А распределение блоков поднесущих и метод AMC могут выполняться только после измерения/вычисления отношения SIR в ячейке А, при котором необходима информация о распределении блоков поднесущих в ячейке В (соседние ячейки). Однако, прежде чем в ячейке В может быть выполнено распределение блоков поднесущих, требуется выполнить в этой ячейке измерение/вычисление отношения SIR, при котором необходима информация о распределении блоков поднесущих в ячейке А.

Если появление проблемы "курица и яйцо" можно избежать или ее можно решить при помощи, например, итерационного процесса, то требуется сигнализация, например, о текущем состоянии распределения блоков поднесущих между базовыми станциями. Однако, так как кадры, участвующие в планировании, находятся в миллисекундном диапазоне, то сигнализация будет вводить существенную дополнительную задержку.

В дополнение к этому, при отсутствии какого-либо управления мощностью среднее отношение SIR (если пренебречь влиянием быстрого замирания) для линии связи "базовая станция - мобильная станция" сильно зависит от геометрии (например, расстояния до базовой станции), которой характеризуется мобильная станция, что приводит к следующему.

С увеличением расстояния между базовой и мобильной станциями отношение SIR для соответствующих линий связи уменьшается, так как средняя мощность принимаемого сигнала снижается, а средняя величина принимаемой взаимной помехи увеличивается. Это приводит к значительному уменьшению достижимой скорости передачи данных на один блок поднесущих для линий связи с мобильными станциями, характеризующимися плохой геометрией.

Эта разница в среднем отношении SIR может составлять порядка нескольких десятков дБ, что требует большого динамического диапазона при задании схемы AMC. Это приводит к увеличению объема сигнализации, так как требуемое количество комбинаций схем модуляции и кодовых скоростей возрастает при сохранении дискретности AMC на уровне как для меньших динамических диапазонов.

По сравнению с системами с управлением мощностью в системах без управления мощностью наиболее вероятным является выбор схем многоуровневой модуляции (например, 8-PSK (8-позиционная фазовая манипуляция), 16-QAM (16-позиционная квадратурная амплитудная модуляция), 64-QAM (64-позиционная квадратурная амплитудная модуляция) и т.д.) для линий связи с мобильными станциями, характеризующимися хорошей геометрией. Хотя при этом увеличивается имеющаяся пропускная способность для этих мобильных станций, это может снизить общую пропускную способность системы по сравнению с системой, в которой имеющаяся мощность распределяется таким образом, что используются только схемы модуляции, не являющиеся многоуровневыми (например, QPSK (фазовая манипуляция с четвертичными сигналами). Это обусловлено пониженной эффективностью использования мощности в многоуровневых схемах модуляции.

Кроме того, в отличие от систем с управлением мощностью для систем без управления мощностью наиболее вероятно, что мобильные станции, характеризующиеся плохой геометрией, не могут принимать данные с использованием единственной попытки передачи, и требуется несколько повторных передач. Следовательно, увеличивается среднее число передач (повторных передач ARQ), что, в свою очередь, приводит к увеличению задержки передачи и сигнализации обратной связи, а также к снижению эффективности использования полосы частот.

Передача данных к мобильным станциям, характеризующимся хорошей геометрией, происходит быстрее во временной области, так как в среднем могут быть выбраны схемы модуляции и кодирования более высокого уровня. Это приводит к более быстрому выделению блоков поднесущих. Это будет затруднять оценку отношения SIR по уравнению (2), так как схема выделения блоков поднесущих изменяется чаще.

Системы с управлением мощностью

Алгоритм DCA и технология AMC также могут быть объединены со схемами Управления мощностью (PC). Используя управление мощностью, система пытается компенсировать флуктуации мощности принятого сигнала, обусловленные потерями на трассе распространения сигналов, эффектами затенения (медленное замирание) и/или эффектами быстрого замирания. В общем случае схемы управления мощностью могут быть разделены на две категории: быстрое управление мощностью и медленное управление мощностью.

В отличие от систем без управления мощностью для систем с медленным управлением мощностью среднее отношение SIR не зависит от геометрии, которой характеризуются мобильные станции, при этом предполагается, что имеются только эффекты медленного замирания и неограниченная минимальная и максимальная мощности передачи. В результате достижимые скорости передачи данных на один блок поднесущих не зависят от положения мобильной станции. Однако схемы медленного управления мощностью работоспособны только в определенных пределах (в динамическом диапазоне команд управления), т.е. компенсация мощности может оказаться недостаточной или недостаточно быстрой для какой-либо линии связи.

Быстрое управление мощностью обычно осуществляется совместно с технологией AMC, чтобы адаптировать скорость передачи к кратковременным флуктуациям и оптимизировать общее использование мощности.

При медленном/быстром управлении мощностью проблема оценки/измерения/вычисления мгновенного отношения SIR, которая в общих чертах описана выше в предыдущих разделах, является более серьезной по сравнению с ситуацией, когда управление мощностью отсутствует. А именно: неизвестное число компонентов взаимных помех из суммы в знаменателе уравнения (2) не только подвержены быстрому замиранию, но и в значительной степени меняются по амплитуде из-за управления мощностью в соседних ячейках. То есть межсотовая взаимная помеха для заданного блока поднесущих из заданной соседней ячейки может меняться от кадра к кадру в диапазоне нескольких десятков дБ в зависимости от того, какой мобильной станции при планировании выделяется соответствующий блок поднесущих, так как мощность передачи может значительно изменяться, главным образом, в зависимости от положения мобильной станции. Это особенно сильно проявляется, если взаимные помехи создаются преобладающим образом несколькими источниками помех, так как при этом отсутствует эффект усреднения взаимных помех.

Сущность изобретения

Одной из задач настоящего изобретения является снижение больших колебаний среднего отношения "сигнал/взаимная помеха " (SIR), обусловленных геометрией мобильных станций, без возникновения проблемы дополнительных оценки, измерения и вычисления отношения SIP, обусловленной использованием управления мощностью. Таким образом, настоящее изобретение может быть особенно полезно в системах без управления мощностью.

Эта задача решается согласно сущности изобретения, изложенной в независимых пунктах формулы изобретения. Различные варианты реализации настоящего изобретения представлены зависимыми пунктами формулы изобретения.

Более конкретно, в настоящем изобретении предлагается способ выравнивания распространения взаимных помех между радиоячейками в системе беспроводной связи. Упомянутая система может содержать множество радиоячеек, в которых для связи используется множество блоков поднесущих. Каждый блок поднесущих может содержать множество поднесущих, и некоторое число соседних радиоячеек может составлять кластер ячеек. Кроме того, необходимо отметить, что термин "блок поднесущих" может также обозначать канал (физического уровня) в системе связи с мультиплексированием на основе частотного разделения (FDM), например, если число поднесущих в блоке поднесущих равно единице.

Согласно данному способу, блоки поднесущих могут быть сгруппированы во множество наборов блоков поднесущих (SBS) в каждой радиоячейке кластера ячеек. Далее, для каждой из радиоячеек кластера ячеек может быть определено множество уровней мощности передачи, и упомянутое множество уровней мощности передачи может быть назначено упомянутым наборам блоков поднесущих в радиоячейках кластера ячеек. Согласно данному варианту реализации настоящего изобретения, число уровней мощности передачи и число наборов блоков поднесущих не зависят друг от друга, т.е. необязательно, чтобы их количества совпадали.

Кроме того, каждая из радиоячеек кластера ячеек может содержать соответствующие наборы блоков поднесущих, включающие в себя одни и те же поднесущие.

Множество уровней мощности передачи может назначаться наборам блоков поднесущих радиоячеек кластера ячеек таким образом, что в одной радиоячейке существует отображение каждого из множества уровней мощности передачи на набор блоков поднесущих в этой радиоячейке, и существует отображение каждого из множества уровней мощности передачи на один из соответствующих наборов блоков поднесущих в радиоячейках кластера ячеек. Это правило распределения уровней мощности может оказаться особенно полезным, когда выбирается число доступных уровней мощности передачи, которое больше или равно числу наборов блоков поднесущих.

Кроме того, множество уровней мощности передачи может назначаться наборам блоков поднесущих радиоячеек кластера ячеек таким образом, что в одной радиоячейке существует отображение каждого из множества наборов блоков поднесущих этой радиоячейки на уровень мощности передачи и существует отображение каждого из соответствующих наборов блоков поднесущих в радиоячейках кластера ячеек на один из множества уровней мощности передачи. В отличие от правила распределения, приведенного выше в качестве примера, данное правило распределения уровней мощности может оказаться особенно полезным в ситуациях, когда число доступных наборов блоков поднесущих выбирается большим или равным числу уровней мощности передачи.

Согласно другому варианту реализации настоящего изобретения отображение, используемое в двух приведенных выше правилах распределения, является уникальным отображением. Это означает, что, например, при отображении уровней мощности передачи на наборы блоков поднесущих каждый из уровней мощности передачи отображается на соответствующий один из наборов блоков поднесущих. Если наборы блоков поднесущих отображаются на уровни мощности передачи, то каждый набор блоков поднесущих отображается на соответствующий один из уровней мощности передачи.

Чтобы упростить распределение уровней мощности передачи и наборов блоков поднесущих, их число может определяться, исходя из числа радиоячеек, образующих кластер ячеек. Поэтому согласно следующему варианту реализации настоящего изобретения предлагается способ выравнивания распространения взаимных помех между радиоячейками в системе беспроводной связи, содержащей множество радиоячеек, в которых для связи используется множество блоков поднесущих, причем каждый блок поднесущих содержит множество поднесущих. Кроме того, N соседних радиоячеек могут составлять кластер ячеек, где N - целое число, которое больше или равно 2.

Согласно данному варианту реализации настоящего изобретения блоки поднесущих могут быть сгруппированы в N наборов блоков поднесущих в каждой радиоячейке кластера ячеек. Следовательно, в этом варианте реализации настоящего изобретения число наборов блоков поднесущих соответствует числу радиоячеек в кластере. Далее, для каждой из радиоячеек кластера ячеек может быть определено N уровней мощности передачи, и упомянутые N уровней мощности передачи могут быть назначены упомянутым N наборам блоков поднесущих радиоячеек кластера ячеек таким образом, что каждый из N уровней мощности передачи в радиоячейке назначен одному из N наборов блоков поднесущих этой радиоячейки и каждый из N уровней мощности передачи назначен одному набору блоков поднесущих из соответствующих наборов блоков поднесущих.

При таком выборе числа ячеек в кластере ячеек, числа наборов блоков поднесущих и числа уровней мощности передачи, как предлагается в данном варианте реализации настоящего изобретения, общие правила распределения, описанные выше, могут быть значительно упрощены.

Следующий вариант настоящего изобретения относится к системе, в которой число уровней мощности передачи и число наборов блоков поднесущих представляют собой целые числа, кратные числу радиоячеек в кластере ячеек. Этим вариантом реализации настоящего изобретения также предлагается способ выравнивания распространения взаимных помех между радиоячейками в системе беспроводной связи. Данная система также может содержать множество радиоячеек, в которых для связи используется множество блоков поднесущих, причем каждый блок поднесущих может содержать множество поднесущих. N соседних радиоячеек могут составлять кластер ячеек, где N может представлять собой целое число, которое больше или равно 2.

Согласно данному способу блоки поднесущих могут быть сгруппированы в x·N наборов блоков поднесущих в каждой радиоячейке кластера ячеек, причем каждая из радиоячеек кластера ячеек содержит соответствующие наборы блоков поднесущих, включающие в себя одни и те же поднесущие. Переменная х представляет собой целое число, которое больше или равно 1. Далее, для каждой из радиоячеек кластера ячеек может быть определено y·N уровней мощности передачи, причем y представляет собой целое число, которое больше или равно 1.

Затем y·N уровней мощности передачи могут назначаться x·N наборам блоков поднесущих радиоячеек кластера ячеек таким образом, что каждый из y·N уровней мощности передачи в радиоячейке назначается одному из x·N наборов блоков поднесущих этой радиоячейки, и в среднем y/x уровней мощности передачи назначаются одному набору блоков поднесущих из соответствующих наборов блоков поднесущих.

Отметим, что отношение y/x может также давать в результате нецелое число, в зависимости от выбора параметров х и y. Очевидно, что невозможно назначить половину уровня мощности передачи набору блоков поднесущих. Однако можно распределить целое число уровней мощности передачи по наборам блоков поднесущих таким образом, что каждому набору блоков поднесущих назначаются различные количества уровней мощности передачи. Следовательно, в среднем назначаются уровни мощности в отношении y/x.

Кроме того, необходимо отметить, что различные варианты способа выравнивания взаимных помех в системе беспроводной связи, которые в общих чертах описаны выше, не должны восприниматься как ограничивающие уровни мощности в различных ячейках кластера ячеек идентичными значениями. Отдельные уровни мощности в каждой радиоячейке кластера ячеек могут быть идентичны или могут отличаться друг от друга. Это является преимуществом, обеспечивающим адаптацию к соответствующим характеристикам каналов и/или размерам ячеек, для различных ячеек.

Во всех описанных выше вариантах реализации настоящего изобретения способ может дополнительно содержать этапы измерения потерь на трассе при распространении сигнала от абонентского терминала и потерь на трассе из-за взаимных помех от соседних ячеек. Описанные выше варианты реализации настоящего изобретения могут дополнительно содержать назначение абонентскому терминалу одного или нескольких блоков поднесущих из одного из наборов блоков поднесущих, исходя из упомянутого измерения.

Уровень мощности передачи для абонентского терминала может быть определен на основе упомянутого выше измерения, и абонентскому терминалу может быть назначен, по меньшей мере, один набор блоков поднесущих, исходя из определенного таким образом уровня мощности передачи.

Необходимо отметить, что реальное назначение каналов может осуществляться для блока поднесущих. В этой ситуации назначение набора блоков поднесущих может рассматриваться как предварительный выбор.

В альтернативном варианте реализации настоящего изобретения также можно предусмотреть сначала назначение набора блоков поднесущих абонентскому терминалу и выбор соответствующего уровня мощности передачи, исходя из такого назначения. Следовательно, уровень мощности передачи может быть определен на основе назначенного набора блоков поднесущих.

Уровень мощности передачи для назначенного блока поднесущих может быть не прямо пропорционален отношению измеренных потерь на трассе распространения сигнала и измеренных потерь на трассе взаимных помех. Вследствие этого, для абонентского терминала, который находится близко к базовой станции радиоячейки, результаты измерения могут указать, что для связи между этим абонентским терминалом и базовой станцией может оказаться достаточным низкий уровень мощности передачи. И, наоборот, для абонентского терминала, который находится близко от границ радиоячейки, результаты измерения могут указать, что для связи между этим абонентским терминалом и базовой станцией требуется соответственно высокий уровень мощности передачи.

Кроме того, необходимо отметить, что, например, с ухудшением качества канала не всегда можно бороться путем повышения уровня мощности передачи. Можно только увеличить мощность передачи в пределах установленного низкого уровня или оставить неизменной. С ухудшением качества канала можно бороться путем изменения схемы модуляции (и кодирования), используемой для канала (или для блока поднесущих), или путем смены назначенного набора блоков поднесущих.

Дополнительное преимущество появляется, если уровни мощности передачи в различных радиоячейках кластера ячеек изменяются, в результате чего они могут адаптироваться к характеристикам соответствующих каналов в каждой из радиоячеек кластера ячеек.

Кроме того, для адаптации к изменению характеристик качества каналов можно реконфигурировать наборы блоков поднесущих в радиоячейке. Для этой же цели можно также реконфигурировать уровни мощности передачи в радиоячейке.

Реконфигурирование уровней мощности передачи и/или наборов блоков поднесущих в радиоячейке может выполняться с учетом состояния других радиоячеек ее кластера ячеек. Реконфигурирование может быть основано на измерении качества каналов в радиоячейке и/или других радиоячейках ее кластера ячеек.

Кроме того, служебная информация, касающаяся реконфигурирования наборов блоков поднесущих в радиоячейке, может передаваться из нее в другие радиоячейки ее кластера ячеек или может передаваться из управляющего блока (например, контроллера радиосети) в радиоячейки, образующие кластер ячеек.

Согласно следующему варианту реализации настоящего изобретения служебная информация, касающаяся качества каналов в радиоячейке, может также передаваться из этой радиоячейки в другие радиоячейки ее кластера ячеек. При передаче служебной информации о качестве каналов в радиоячейке в соседние ячейки такая информация может включать сведения о проведении реконфигурирования уровней мощности передачи или наборов блоков поднесущих в соответствующей радиоячейке.

Основная идея, лежащая в основе настоящего изобретения, также применима к системам, в которых радиоячейки разделены на сектора, т.е. к системам, использующим многолучевые антенны или множество антенн. При применении такой компоновки одна ячейка может быть разделена на множество секторов, каждый из которых покрывается лучом антенны. Поэтому, согласно еще одному варианту реализации настоящего изобретения, предлагается способ выравнивания распространения взаимных помех между радиоячейками в системе беспроводной связи. При этом упомянутая система может содержать множество радиоячеек, каждая из которых содержит, по меньшей мере, два сектора, причем в каждом секторе для связи используется множество блоков поднесущих. Каждый блок поднесущих может содержать множество поднесущих, и некоторое число соседних радиоячеек составляет кластер ячеек.

Блоки поднесущих могут быть сгруппированы во множество наборов блоков поднесущих в каждом из секторов каждой радиоячейки кластера. Для каждого сектора каждой из радиоячеек кластера ячеек может быть определено множество уровней мощности передачи. Далее, множество уровней мощности передачи может быть назначено множеству наборов блоков поднесущих сектора радиоячейки и соседних с ним секторов других радиоячеек.

Каждый сектор радиоячейки может иметь соседние сектора в других радиоячейках кластера ячеек. Кроме того, сектор радиоячейки и соседние с ним сектора в других радиоячейках могут составлять кластер секторов, и каждый из них может содержать соответствующий набор блоков поднесущих, включающий одни и те же поднесущие.

Множество уровней мощности передачи может быть назначено наборам блоков поднесущих в радиоячейках кластера ячеек таким образом, что в одном секторе радиоячейки существует отображение каждого из множества уровней мощности передачи на набор блоков поднесущих этого сектора и существует отображение каждого из множества уровней мощности передачи на один из соответствующих наборов блоков поднесущих в кластере секторов.

В качестве альтернативы множество уровней мощности передачи может быть назначено наборам блоков поднесущих радиоячеек кластера ячеек таким образом, что в одном секторе радиоячейки существует отображение каждого из множества наборов блоков поднесущих этого сектора на уровень мощности передачи и существует отображение каждого из множества соответствующих наборов блоков поднесущих в кластере секторов на один уровень мощности передачи.

Как в общих чертах описано выше, отображение может быть уникальным отображением.

Чтобы упростить распределение уровней мощности передачи и наборов блоков поднесущих, их число может быть определено, исходя из числа радиоячеек, образующих кластер ячеек. Поэтому, согласно следующему варианту реализации настоящего изобретения, предлагается способ выравнивания распространения взаимных помех между радиоячейками в системе беспроводной связи. Данная система может содержать множество радиоячеек, каждая из которых содержит, по меньшей мере, два сектора, причем в каждом секторе для связи используется множество блоков поднесущих, где каждый блок поднесущих содержит множество поднесущих. Некоторое число соседних радиоячеек может составлять кластер ячеек.

Блоки поднесущих могут быть сгруппированы в N наборов блоков поднесущих в каждом из секторов каждой радиоячейки кластера, причем каждый сектор радиоячейки может иметь N-1 соседних секторов в других радиоячейках кластера ячеек, причем сектор радиоячейки и соседние с ним сектора в других радиоячейках содержат каждый соответствующий набор блоков поднесущих, включающий в себя одни и те же поднесущие. N может представлять собой целое число, которое больше или равно 2.

Далее, для каждого сектора каждой из радиоячеек кластера ячеек может быть определено N уровней мощности передачи. Упомянутые N уровней мощности передачи могут назначаться упомянутым N наборам блоков поднесущих сектора радиоячейки и соседних с ним секторов других радиоячеек таким образом, что каждый из N уровней мощности передачи в секторе радиоячейки назначается одному из N наборов блоков поднесущих этого сектора и каждый из N уровней мощности передачи назначается одному набору блоков поднесущих соответствующих секторов.

Следующий вариант реализации настоящего изобретения относится к системе, в которой число уровней мощности передачи и число наборов блоков поднесущих представляют собой целые числа, кратные числу радиоячеек в кластере ячеек. Этим вариантом реализации настоящего изобретения также предлагается способ выравнивания распространения взаимных помех между радиоячейками в системе беспроводной связи. Данная система может содержать множество радиоячеек, каждая из которых содержит, по меньшей мере, два сектора, в каждом из которых для связи используется множество блоков поднесущих, причем каждый блок поднесущих содержит множество поднесущих. Некоторое число соседних радиоячеек может составлять кластер ячеек.

В данном варианте реализации настоящего изобретения блоки поднесущих могут быть сгруппированы в x·N наборов блоков поднесущих в каждом из секторов каждой радиоячейки кластера, причем каждый сектор радиоячейки может иметь N-1 соседних секторов в других радиоячейках кластера ячеек, причем сектор радиоячейки и соседние с ним сектора в других радиоячейках содержат каждый соответствующий набор блоков поднесущих, включающий в себя одни и те же поднесущие. Переменная х может представлять собой целое число, которое больше или равно 1. N может представлять собой целое число, которое больше или равно 2.

Далее, для каждого сектора каждой из радиоячеек кластера ячеек может быть определено y·N уровней мощности передачи, причем y может представлять собой целое число, которое больше или равно 1.

y·N уровней мощности передачи могут назначаться x·N наборам блоков поднесущих сектора радиоячейки и соседних с ним секторов в других радиоячейках таким образом, что каждый из y·N уровней мощности передачи в секторе радиоячейки назначается одному из x·N наборов блоков поднесущих этого сектора, и в среднем y/x уровней мощности передачи назначаются одному набору блоков поднесущих соответствующих секторов.

Система связи может дополнительно содержать множество абонентских терминалов, обменивающихся информацией с базовыми станциями, связанными с множеством радиоячеек. Могут быть измерены, например, в базовой станции, потери на трассе распространения сигнала от абонентского терминала и потери на трассе взаимных помех от соседних секторов для упомянутого сигнала, и абонентскому терминалу может быть назначен, по меньшей мере, один блок поднесущих из набора блоков поднесущих в секторе, исходя из упомянутого измерения.

На следующем этапе на основе упомянутого измерения может быть определен уровень мощности передачи для абонентского терминала, и абонентскому терминалу может быть назначен набор блоков поднесущих, исходя из определенного таким образом уровня мощности передачи.

Согласно другому варианту реализации настоящего изобретения также можно предусмотреть сначала назначение набора блока поднесущих абонентскому терминалу и последующий выбор соответствующего уровня мощности передачи, исходя из такого назначения. Следовательно, уровень мощности передачи может быть определен на основе назначенного набора блоков поднесущих.

Уровни мощности передачи в разных секторах могут отличаться так же, как и уровни мощности передачи в секторах одной радиоячейки.

Далее, можно реконфигурировать наборы блоков поднесущих в секторе радиоячейки. Можно также реконфигурировать уровни мощности передачи в секторе.

Реконфигурирование уровней мощности передачи и/или наборов блоков поднесущих в секторе может выполняться с учетом состояния других секторов его кластера секторов. Кроме того, реконфигурирование может быть основано на измерении качества каналов в секторе и/или других секторах его кластера секторов.

В случае реконфигурирования служебная информация, касающаяся реконфигурирования наборов блоков поднесущих в секторе, может передаваться из его радиоячейки в радиоячейки, содержащие сектора, относящиеся к его кластеру секторов. Кроме того, из радиоячейки данного сектора в радиоячейки, содержащие сектора, относящиеся к его кластеру секторов, может передаваться служебная информация, касающаяся качества каналов в этом секторе.

Независимо от архитектуры системы, т.е. использования или неиспользования секторизованных радиоячеек, служебная информация, касающаяся реконфигурирования уровней мощности передачи или наборов блоков поднесущих, может передаваться в блок управления, имеющийся в системе связи. При выборе в качестве примера архитектуры сети UTRAN (Наземная сеть радиодоступа UMTS (Universal Mobile Telecommunications System - Универсальная система мобильной связи)) в редакции 99/4/5 так