Способ получения водных дисперсий

Иллюстрации

Показать все

Настоящее изобретение относится к способу получения в водной дисперсии ядерно-оболочечных частиц, которые могут быть использованы для модифицирования ударной вязкости поли(мет)акрилатных формовочных масс. В соответствии со способом а) берут воду и эмульгатор, б) прибавляют от 25,0 до 45,0 частей массы первого состава, содержащего А) от 50,0 до 99,9 частей массы алкилметакрилатов, Б) от 0,0 до 40 частей массы алкилакрилатов, В) от 0,1 до 10,0 частей массы мономеров, образующих межмолекулярные связи, и Г) от 0,0 до 8,0 частей массы стирольных мономеров, и полимеризуют, в) прибавляют от 35,0 до 55,0 частей массы второго состава, содержащего Д) от 80,0 до 100,0 частей массы (мет)акрилатов, Е) от 0,05 до 10,0 частей массы мономеров, образующих межмолекулярные связи, и Ж) от 0,0 до 20,0 частей массы стирольных мономеров, и полимеризуют, г) прибавляют от 10,0 до 30,0 частей массы третьего состава, содержащего 3) от 50,0 до 100,0 частей массы алкилметакрилатов, И) от 0,0 до 40,0 частей массы алкилакрилатов и К) от 0,0 до 10,0 частей массы стирольных мономеров, и полимеризуют. Способ отличается тем, что д) каждую полимеризацию проводят в интервале температур от 60 до 90°С и е) относительное содержание всех веществ выбирают так, чтобы общая масса компонент от А) до К) из расчета на общую массу водной дисперсии составляла более 50,0 мас.%. Представленным способом получили модификаторы ударной вязкости, которые при минимальном содержании приводят к достаточному улучшению ударной вязкости на образцах формовочной массы с надрезом, не ухудшая одновременно другие важные свойства формовочной массы. 4 н. и 13 з.п. ф-лы, 8 табл.

Реферат

Настоящее изобретение относится к способу получения водных дисперсий. В частности, изобретение относится к способу получения в водной дисперсии ядерно-оболочечных частиц, которые могут быть использованы для модифицирования ударной вязкости поли(мет)акрилатных формовочных масс.

Уже давно известно, что ударная вязкость формовочных масс, в частности поли(мет)акрилатных формовочных масс, может быть улучшена путем прибавления к формовочной массе определенного количества так называемых модификаторов ударной вязкости. Для этого в технике получило распространение использование ядерно-оболочечных частиц и/или частиц из ядра с двойной оболочкой. В общем случае они включают эластомерную фазу, причем в ядерно-оболочечной структуре эластомерная фаза чаще всего составляет ядро, а в структуре из ядра с двойной оболочкой эластомерная фаза обычно представлена оболочкой, привитой к ядру.

Так, например, патент США №3793402 относится к ударновязким формовочным массам, в частности на поли(мет)акрилатной основе, которые содержат от 90 до 4 мас.% многослойных ядерно-оболочечных частиц с твердым ядром, эластомерной первой оболочкой и твердой второй оболочкой. Типичные основные составляющие части ядра и второй оболочки представлены алкилметакрилатами с числом атомов углерода в алкильном остатке от одного до четырех, в частности метилметакрилатом. Первая оболочка состоит в основном из бутадиена, замещенных бутадиенов и/или алкилакрилатов с числом атомов углерода в алкильном остатке от одного до восьми. Однако, она может также содержать от 0 до 49,9 мас.%, в частности от 0,5 до 30 мас.%, таких сополимеризующихся мономерных структурных единиц, как, например, сополимеризующиеся мономерные структурные единицы с одной этиленовой ненасыщенной связью. При этом в соответствии с патентом США №3793402 особое предпочтение отдается присутствию от 10 до 25 мас.% сополимеризующихся мономерных структурных единиц с одной этиленовой ненасыщенной связью, в частности стирола.

Общий диаметр ядерно-оболочечных частиц лежит в пределах от 100 до 300 нм.

Получение ядерно-оболочечных частиц проводят с помощью многоступенчатой эмульсионной полимеризации, используя при этом такие термические инициаторы, как персульфаты или окислительно-восстановительные инициирующие системы. При этом полимеризация должна протекать в интервале температур от 0 до 125°С, в частности в пределах от 30 до 95°С.

По аналогии с этим в заявке на патент ФРГ №4121652 А1 описываются модификаторы ударной вязкости для таких термопластичных пластмасс, как полиметилметакрилат, состоящие из по крайней мере одного трехфазного продукта эмульсионной полимерзации, содержащие

А) твердое ядро из продукта с сетчатой молекулярной структурой, получаемого гомо- или сополимеризацией полимеризующихся по радикальному механизму мономеров с этиленовыми ненасыщенными связями,

Б) полученную в присутствии ядерного материала эластомерную фазу с температурой стеклования не более 10°С, состоящую из

а) алкилового эфира акриловой кислоты с числом атомов углерода в алкильном остатке от 1 до 8,

б) по крайней мере одного образующего межмолекулярные связи сомономера с двумя или с несколькими полимеризующимися двойными связями в молекуле,

в) арилалкил-акрилата или -метакрилата,

г) твердой фазы, полученной в присутствии эластомерной фазы из продукта гомо- или сополимеризации полимеризующихся по радикальному механизму мономеров с этиленовыми ненасыщенными связями с температурой стеклования не менее 50°С.

В этой публикации в качестве примера приводится формовочная масса (пример 3), показывающая при комнатной температуре ударную вязкость (по Изоду) на образце с надрезом, равную 6,2 кДж/м, при -10°С - 4,7 кДж/м и при -20°С - 3,7 кДж/м. Викат-температура размягчения формовочной массы при этом равна 97°С.

Получение ядерно-оболочечных частиц осуществляют также с помощью многоступенчатой эмульсионной полимеризации, используя при этом в качестве инициатора пероксодисульфат щелочного металла или аммония, и проводят полимеризацию в интервале температур от 20 до 100°С, например при 50°С.

Заявка на патент ФРГ №4136993 А1 относится к модифицированным по ударной вязкости формовочным массам, которые содержат от 10 до 96 мас.% продукта полимеризации на основе полиметилметакрилата и от 4 до 90 мас.% многоступенчатых частиц из ядра с двойной оболочкой, причем для получения ядра и второй оболочки в каждом отдельном случае используют смесь мономеров, содержащую преимущественно метилметакрилат. Смесь мономеров для первой оболочки включает от 60 до 89,99 мас.% алкиловых эфиров акриловой кислоты с числом атомов углерода в алкильных остатках от одного до двадцати и/или циклоалкилакрилатов с числом атомов углерода в циклоалкильных остатках от пяти до восьми и включает от 10 до 39,99 мас.% фенил-алкиловых эфиров акриловой кислоты с числом атомов углерода в алкильных остатках от одного до четырех, а также может включать другие составляющие части. Средний диаметр частиц из ядра с двойной оболочкой лежит в пределах от 50 до 1000 нм, в частности в пределах от 150 до 400 нм.

В соответствии с этой публикацией ядерно-оболочечные частицы получают многоступенчатым затравочно-латексным способом, при котором в качестве инициаторов используют пероксодисульфаты аммония или щелочных металлов, например пероксодисульфат калия, или комбинированные системы инициаторов, причем в случае термически активируемых пероксодисульфатов аммония и щелочных металлов температура полимеризации должна лежать в пределах от 50 до 100°С.

В заявке на европейский патент №0828772 В1 описывается модифицирование ударной вязкости поли(мет)акрилатов с помощью многоступенчатых ядерно-оболочечных частиц, которые состоят из ядра, первой оболочки и, в некоторых случаях, второй оболочки, и которые не содержат винильных ненасыщенных соединений с не менее чем двумя двойными связями с одинаковой реакционной способностью. При этом ядро содержит первоначально (мет)акрилатный полимер. Первая оболочка состоит из полимера с низкой температурой стеклования, который включает от 0 до 25 мас.%, в частности от 5 до 26 мас.% стирольного мономера, и от 75 до 100 мас.% (мет)акрилатного мономера, образующего гомополимер с температурой стеклования от -75 до -5°С. Вторая оболочка, если она имеется, содержит второй (мет)акрилатный полимер, который может соответствовать первому (мет)акрилатному полимеру или отличаться от него. Общий диаметр ядерно-оболочечных частиц лежит в пределах от 250 до 320 нм.

Получение ядерно-оболочечных частиц и в этом случае происходит при многоступенчатой эмульсионной полимеризации при 80°С, причем в качестве инициатора используют персульфат калия.

Чаще всего для получения ядерно-оболочечных частиц используют представленные выше способы, однако все они имеют недостаток, состоящий в том, что полимеризацию приходится проводить при сравнительно низкой, то есть не превышающей 50,0 мас.%, концентрации мономера для того, чтобы получить желаемый размер частиц с узким распределением по размеру частиц. В отличие от этого, полимеризация при высокой концентрации мономера приводит к более широкому разбросу в распределении частиц по размеру и к образованию больших количеств коагулята, который значительно ухудшает свойства материала ядерно-оболочечных частиц.

При практическом использовании, в частности при модифицировании ударной вязкости формовочных масс, ядерно-оболочечные частицы не могут быть использованы в виде водной дисперсии, их приходится выделять из водной дисперсии. В результате этого низкое содержание твердого вещества в водной дисперсии непосредственно сказывается отрицательным образом на возможном применении представленных выше ядерно-оболочечных частиц, поскольку для их отделения требуется большой расход энергии и других ресурсов. В соответствии с изложенным существует потребность в более эффективных способах получения ядерно-оболочечных частиц.

Для модифицирования ударной вязкости формовочных масс наряду с продуктами эмульсионной полимеризации в отдельных случаях использовались также продукты суспензионной полимеризации. К ним относится, например, каучук с привитым полиметилметакрилатом, сравнительно тонко распределенным в матрице формовочной массы, например, полиметилметакрилата. Эластомерная фаза состоит из продукта сополимеризации с сетчатой молекулярной структурой с низкой температурой стеклования, ниже 25°С, который обычно содержит в качестве основной компоненты алкилакрилатные структурные единицы с числом атомов углерода в алкильных остатках от одного до восьми, в частности бутилакрилатные структурные единицы. В отдельных случаях в качестве вязкой фазы используются также полибутадиен или сополимеры бутадиена.

Хотя за счет применения представленных выше модификаторов ударной вязкости уже может быть достигнуто заметное улучшение ударной вязкости на образцах с надрезом, это улучшение все же не полностью удовлетворяет требования многих областей применения. Так, в частности, для модифицирования ударной вязкости при комнатной температуре (23°С) требуется сравнительно большое количество этих модификаторов ударной вязкости, что в свою очередь приводит к значительному ухудшению других важных для практического применения свойств формовочной массы, в частности модуля упругости, вязкости расплава, Викат-температуры и способности к вытягиванию.

В соответствии с этим техника нуждается в модификаторах ударной вязкости, которые при минимальных количествах модификаторов ударной вязкости приводят к достаточному улучшению ударной вязкости на образцах формовочной массы с надрезом, в частности, при комнатной температуре, не ухудшая одновременно другие важные свойства формовочной массы, в частности, модуль упругости, вязкость расплава, Викат-температуру и способность к вытягиванию. При этом формовочная масса должна иметь ударную вязкость на образцах с надрезом по Шарпи (ISO 179) при 23°С в предпочтительном случае по крайней мере равную 6,0 кДж/м2 и при -10°С в предпочтительном случае не менее 2,5 кДж/м2, модуль упругости (ISO 527-2) в предпочтительном случае более 1500 МПа, белесоватость по ASTM D 1003 (1997) в предпочтительном случае не более 2,5%, вязкость расплава в предпочтительном случае более 2000 Па·с и желательно не более 4500 Па·с, Викат-температуру размягчения в предпочтительном случае не менее 85°С, желательно не менее 93°С, пропускание (D 65/10°) по ДИН 5033/5036 в предпочтительном случае не менее 88,5%, а также способность к вытягиванию в предпочтительном случае в пределах от 0 до 20%.

Принимая во внимание уровень техники, задача настоящего изобретения состояла в том, чтобы разработать модификаторы ударной вязкости для формовочных масс, в частности, для поли(мет)акрилатных формовочных масс, которые позволяют улучшать ударную вязкость на образце с надрезом из формовочных масс, в частности при комнатной температуре, не приводя при этом к заметному ухудшению других важных для практического применения свойств формовочной массы, в частности модуля упругости, вязкости расплава, Викат-температуры и способности образца к вытягиванию. При этом формовочные массы должны в предпочтительном случае иметь ударную вязкость на образце с надрезом по Шарпи (ISO 179) при 23°С не ниже 6,0 кДж/м2 и при -10°С в предпочтительном случае не ниже 2,5 кДж/м2, модуль упругости (ISO 527-2) в предпочтительном случае более 1500 МПа, белесоватость по ASTM D 1003 (1997) в предпочтительном случае не более 2,5%, вязкость расплава в предпочтительном случае более 2000 Па·с и желательно не более 4500 Па·с, Викат-температуру размягчения в предпочтительном случае не менее 85°С, желательно не менее 90°С, в частности не менее 93°С, пропускание (D 65/10°) по DIN 5033/5036 в предпочтительном случае не менее 88,5%, а также способность к вытягиванию в предпочтительном случае в пределах от 0 до 20%.

Еще одна задача настоящего изобретения состояла в том, чтобы разработать эффективный способ получения ядерно-оболочечных частиц, который, в частности, позволяет проводить менее трудоемкое выделение ядерно-оболочечных частиц.

Задача настоящего изобретения состояла также в том, чтобы наметить способ получения ядерно-оболочечных частиц, который может быть легко и с небольшими капиталовложениями реализован в промышленном масштабе.

Кроме того, в основе настоящего изобретения лежала задача по разработке способа получения ядерно-оболочечных частиц с как можно более узким распределением по размерам частиц, в предпочтительном случае со значением U80 менее 0,22.

Задача настоящего изобретения состояла также в обнаружении способа получения ядерно-оболочечных частиц, в ходе которого образуется как можно меньше, в предпочтительном случае менее 5,0 мас.%, коагулята.

Кроме того, еще одна задача настоящего изобретения состояла в том, чтобы представить способ получения ядерно-оболочечных частиц с радиусом, измеренным по Коултеру, в пределах от 150,0 до менее 250,0 нм. Поскольку такие ядерно-оболочечные частицы лучше всего подходят для модифицирования ударной вязкости формовочных масс, в частности полиалкил(мет)акрилатных формовочных масс.

Эти задачи, а также другие не оговоренные особо задачи, которые, однако, легко и просто выводятся на основании обсуждавшихся во вводной части взаимосвязей, решаются способом получения водной дисперсии со всеми признаками, приведенными в п.1 формулы изобретения. Целесообразные варианты соответствующего изобретению способа реализации защищаются подпунктами, ссылающимися на п.1. Относящийся к продукту п.11 предназначен для защиты получаемых с помощью этого способа ядерно-оболочечных частиц. Кроме того, изобретение относится к модифицированным по ударной вязкости поли(мет)акрилатным формовочным массам, которые содержат соответствующие изобретению ядерно-оболочечные частицы, а также к предпочтительным областям применения этих формовочных масс.

Благодаря тому, что был разработан способ получения водной дисперсии, в соответствии с которым

а) берут воду и эмульгатор,

б) прибавляют от 25,0 до 45,0 частей массы первого состава, содержащего

А) от 50,0 до 99,9 частей массы из расчета на В) различных алкилметакрилатов с числом атомов углерода в алкильном остатке от одного до двадцати,

Б) от 0,0 до 40 частей массы из расчета на В) различных алкилакрилатов с числом атомов углерода в алкильном остатке от одного до двадцати,

В) от 0,1 до 10,0 частей массы мономеров, образующих межмолекулярные связи,

и

Г) от 0,0 до 8,0 частей массы стирольных мономеров общей формулы (I)

причем остатки от R1 до R5 в каждом отдельном случае независимо друг от друга означают атом водорода, галогена, алкильную группу с числом атомов углерода от одного до шести или алкенильную группу с числом атомов углерода от двух до шести и остаток R6 означает атом водорода или алкильную группу с числом атомов углерода от одного до шести,

и полимеризуют до степени превращения не менее 85,0 мас.% из расчета на общую массу компонент А), Б), В) и Г),

в) прибавляют от 35,0 до 55,0 частей массы второго состава, содержащего

Д) от 80,0 до 100,0 частей массы (мет)акрилатов,

Е) от 0,05 до 10,0 частей массы мономеров, образующих межмолекулярные связи, и

Ж) от 0,0 до 20,0 частей массы стирольных мономеров общей формулы (I),

и полимеризуют до степени превращения не менее 85,0 мас.% из расчета на общую массу компонент Д), Е) и Ж),

г) прибавляют от 10,0 до 30,0 частей массы третьего состава, содержащего

З) от 50,0 до 100,0 частей массы алкилметакрилатов с числом атомов углерода в алкильном остатке от одного до двадцати,

И) от 0,0 до 40,0 частей массы алкилакрилатов с числом атомов углерода в алкильном остатке от одного до двадцати и

К) от 0,0 до 10,0 частей массы стирольных мономеров общей формулы (I),

и полимеризуют до степени превращения не менее 85,0 мас.% из расчета на общую массу компонент 3), И) и К),

при этом указанные части массы составов б), в) и г) в сумме составляют 100,0 частей массы, причем

способ отличается тем, что

д) каждую полимеризацию проводят в интервале температур от более 60°С до менее 90°С и

е) относительное содержание всех веществ выбирают таким, чтобы общая масса компонент от А) до К) из расчета на общую массу водной дисперсии была более 50,0 мас.%,

удается путем, который нельзя было легко представить себе заранее, сделать доступным способ, который позволяет проводить эффективное получение ядерно-оболочечных частиц в водной дисперсии. При этом благодаря высокому содержанию твердого вещества в водной дисперсии значительно облегчается выделение ядерно-оболочечных частиц по сравнению с обычно используемыми способами.

Кроме того, благодаря соответствующему изобретению способу проведения процесса достигается ряд других преимуществ. К ним, наряду с другими, относятся перечисляемые далее преимущества:

→ Возможность реализации соответствующего изобретению способа в промышленном масштабе с небольшими капиталовложениями без особых осложнений.

→ Получаемые с помощью соответствующего изобретению способа ядерно-оболочечные частицы отличаются узким распределением частиц по размеру, в предпочтительном случае со значением U80 менее 0,22.

→ Образование коагулята при реализации соответствующего изобретению способа практически полностью подавлено.

→ В частности, соответствующий изобретению способ подходит для получения ядерно-оболочечных частиц с радиусом частиц, определенным способом Коултера, в пределах от 150,0 до менее 250,0 нм.

→ Благодаря соответствующему изобретению способу получают средство, модифицирующее ударную вязкость формовочных масс, в частности, поли(мет)акриалатных формовочных масс, которое делает возможным улучшение ударной вязкости формовочных масс на образце с надрезом, в частности при комнатной температуре, не приводя при этом к заметному ухудшению других важных для практического применения свойств формовочной массы, в частности модуля упругости, вязкости расплава, Викат-температуры, и к вытягиванию. При этом особо удачные соответствующие изобретению формовочные массы имеют ударную вязкость на образце с надрезом по Шарпи (ISO 179) при 23°С в предпочтительном случае не ниже 6,0 кДж/м2 и при -10°С в предпочтительном случае не ниже 2,5 кДж/м2, модуль упругости (ISO 527-2) в предпочтительном случае более 1500 МПа, белесоватость по ASTM D 1003 (1997) в предпочтительном случае не более 2,5%, вязкость расплава в предпочтительном случае более 2000 Па·с и желательно не более 4500 Па·с, Викат-температуру размягчения в предпочтительном случае не менее 85°С, в более предпочтительном случае не менее 90°С, желательно не менее 93°С, пропускание (D 65/10°) по DIN 5033/5036 в предпочтительном случае не менее 88,5%, а также способность к вытягиванию в предпочтительном случае в пределах от 0 до 20%.

→ Благодаря применению соответствующих изобретению ядерно-оболочечных частиц становятся доступными формовочные массы с заметно улучшенными показателями ударной вязкости на образце с надрезом, в частности при низких температурах, менее 0°С, в лучшем случае это формовочные массы с ударной вязкостью на образце с надрезом по Изоду в соответствии с ISO 180 не менее 3,5 кДж/м2 при -10°С.

→ В сравнении с обычными модификаторами ударной вязкости для получения формовочных масс со сравнимыми показателями ударной вязкости на образцах с надрезом при комнатной температуре, в частности при 23°С, достаточно заметно меньших количеств соответствующих изобретению ядерно-оболочечных частиц.

→ Формовочные массы с модифицированной соответствующим изобретению способом ударной вязкостью отличаются заметно улучшенным комплексом свойств при комнатной температуре, в частности при 23°С. Это предопределяет их использование при таких температурах, в частности в интервале температур от 0 до 50°С.

В соответствии с настоящим изобретением осуществляется получение водной дисперсии способом, в основе которого лежат вода и эмульгатор. При их загрузке берут в предпочтительном случае от 90,00 до 99,99 частей массы воды и от 0,01 до 10,00 частей массы эмульгатора, причем указанные части массы в оптимальном случае составляют в сумме 100,00 частей массы.

Затем к этой загрузке последовательно прибавляют в приведенном далее порядке:

б) от 25,0 до 45,0 частей массы первого состава и проводят полимеризацию до степени превращения не менее 85 мас.%, в предпочтительном случае не менее 90,0 мас.%, в более предпочтительном случае не менее 95,0 мас.%, в частности не менее 99 мас.%, в каждом случае из расчета на общую массу компонент А), Б), В) и Г);

в) от 35,0 до 55,0 частей массы второго состава и проводят полимеризацию до степени превращения не менее 85 мас.%, в предпочтительном случае не менее 90,0 мас.%, в более предпочтительном случае не менее 95,0 мас.%, в частности не менее 99 мас.%, в каждом случае из расчета на общую массу компонент Д), Е) и Ж);

г) от 10,0 до 30,0 частей массы третьего состава и проводят полимеризацию до степени превращения не менее 85 мас.%, в предпочтительном случае не менее 90,0 мас.%, в более предпочтительном случае не менее 95,0 мас.%, в частности не менее 99 мас.%, в каждом случае из расчета на общую массу компонент Ж), З) и К);

причем указанные части массы в сумме составляют 100,0 частей массы.

Понятие полимеров по сути настоящего изобретения относится к соединениям, которые в сравнении с каждым отдельным исходным соединением от А) до К), так называемым мономером, имеют не менее чем десятикратную молекулярную массу.

Контроль за ходом реакции полимеризации на каждой стадии может осуществляться известными способами, например гравиметрически или с помощью газовой хроматографии.

Первый состав содержит

A) от 50,0 до 99,9 частей массы, в целесообразном случае от 60,0 до 99,9 частей массы, в предпочтительном случае от 75,0 до 99,9 частей массы, в частности от 85,0 до 99,5 частей массы, алкилметакрилатов с числом атомов углерода в алкильном остатке от одного до двадцати, в предпочтительном случае от одного до двенадцати, в частности от одного до восьми;

Б) от 0,0 до 40 частей массы, в предпочтительном случае от 0,0 до 24,9 частей массы, в частности от 0,1 до 14,9 частей массы алкилакрилатов с числом атомов углерода в алкильном остатке от одного до двадцати, в предпочтительном случае от одного до двенадцати, в частности от одного до восьми;

B) от 0,1 до 10,0 частей массы, в предпочтительном случае от 0,1 до 5,0 частей массы, в частности от 0,1 до 2,0 частей массы, мономеров, образующих межмолекулярные связи, и

Г) от 0,0 до 8,0 частей массы стирольных мономеров общей формулы (I)

причем указанные части массы в сумме составляют 100,0 частей массы.

При этом, конечно, соединения А), Б), В) и Г) отличаются друг от друга, в частности соединения А) и Б) не включают мономеры В), образующие межмолекулярные связи.

Остатки от R1 до R5 в каждом отдельном случае независимо друг от друга означают атом водорода, галогена, в частности атомы фтора, хлора или брома, или алкильную группу с числом атомов углерода от одного до шести, в предпочтительном случае означают атом водорода. Остаток R6 означает атом водорода или алкильную группу с числом атомов углерода от одного до шести, в предпочтительном случае атом водорода. Наиболее подходящими алкильными группами с числом атомов углерода от одного до шести являются метильная, этильная, н-пропильная, изопропильная, н-бутильная, втор-бутильная, трет-бутильная, н-пентильная, н-гексильная группы, а также циклопентильная и циклогексильная группы.

В то же время в число стирольных мономеров общей формулы (I) входят стирол, замещенные стиролы с одним алкильным заместителем в боковой цепи, например α-метилстирол и α-этилстирол, замещенные стиролы с одним алкильным заместителем в кольце, например винилтолуол и n-метилстирол, галогензамещенные стиролы, например монохлорстиролы, дихлорстиролы, трибромстиролы и тетрабромстиролы.

В число упоминавшихся выше алкилметакрилатов (А) входят сложные эфиры метакриловой кислоты, например метилметакрилат, этилметакрилат, пропилметакрилат, изопропилметакрилат, н-бутилметакрилат, втор-бутилметакрилат, трет-бутилметакрилат, пентилметакрилат, гексилметакрилат, гептилметакрилат, октилметакрилат, 2-октилметакрилат, этилгексилметакрилат, нонилметакрилат, 2-метилоктилметакрилат, 2-трет-бутилгептилметакрилат, 3-изопропилгептилметакрилат, децилметакрилат, ундецилметакрилат, 5-метилундецилметакрилат, додецилметакрилат, 2-метилдодецилметакрилат, тридецилметакрилат, 5-метилтридецилметакрилат, тетрадецилметакрилат, пентадецилметакрилат, гексадецилметакрилат, 2-метилгексадецилметакрилат, гептадецилметакрилат, 5-изопропилгептадецилметакрилат, 5-этилоктадецилметакрилат, октадецилметакрилат, нонадецилметакрилат, эйкозилметакрилат, такие циклоалкилметакрилаты, как, например циклопентилметакрилат, циклогексилметакрилат, 3-винил-2-бутил-циклогексилметакрилат, циклогептилметакрилат, циклооктилметакрилат, борнилметакрилат и изоборнилметакрилат.

В соответствии с наиболее предпочтительным вариантом реализации настоящего изобретения первый состав содержит не менее 50 мас.%, в целесообразном случае не менее 60 мас.%, в предпочтительном случае не менее 75 мас.%, в частности не менее 85 мас.% метилметакрилата из расчета на общую массу компонент от А) до Г).

В число упоминавшихся выше алкилакрилатов (Б) входят сложные эфиры акриловой кислоты, например метилакрилат, этилакрилат, пропилакрилат, изопропилакрилат, н-бутилакрилат, втор-бутилакрилат, трет-бутилакрилат, пентилакрилат, гексилакрилат, гептилакрилат, октилакрилат, 2-октилакрилат, этилгексилакрилат, нонилакрилат, 2-метилоктилакрилат, 2-трет-бутилгептилакрилат, 3-изопропилгептилакрилат, децилакрилат, ундецилакрилат, 5-метилундецилакрилат, додецилакрилат, 2-метилдодецилакри- лат, тридецилакрилат, 5-метилтридецилакрилат, тетрадецилакрилат, пентадецилакрилат, гексадецилакрилат, 2-метилгексадецилакрилат, гептадецилакрилат, 5-изопропил-гептадецилакрилат, 5-этилоктадецилакрилат, октадецилакрилат, нонадецилакрилат, эйкозилакрилат, такие циклоалкилакрилаты, как, например, циклопентилакрилат, циклогексилакрилат, 3-винил-2-бутил-циклогексилакрилат, циклогептилакрилат, циклооктилакрилат, борнилакрилат и изоборнилакрилат.

В число образующих межмолекулярные связи мономеров (В) входят все соединения, которые в соответствующих процессу полимеризации условиях могут приводить к образованию сетчатой структуры. К ним, в частности, относятся

а) дифункциональные (мет)акрилаты, в предпочтительном случае соединения общей формулы

где R означает атом водорода или метильную группу и n означает целое положительное число, равное двум или большее двух, в предпочтительном случае оно принимает значения от 3 до 20, в частности, это ди(мет)акрилаты пропандиола, бутандиола, гександиола, октандиола, нонандиола, декандиола и эйкозандиола;

соединения общей формулы

где R означает атом водорода или метальную группу и n означает целое положительное число от 1 до 14, в частности это ди(мет)акрилаты этиленгликоля, диэтиленгликоля, триэтиленгликоля, тетраэтиленгликоля, додекаэтиленгликоля, тетрадекаэтиленгликоля, пропиленгликоля, дипропиленгликоля и тетрадекапропиленгликоля;

ди(мет)акрилат глицерина, 2,2'-бис[n-(γ-метакрилокси-β-гидроксипропокси)фенил-пропан] или бис-ГМА, диметакрилат бисфенола А, ди(мет)акрилат неопентилгликоля, 2,2'-ди-(4-метакрилоксиполиэтоксифенил)пропан с числом этоксигрупп в молекуле от двух до десяти и 1,2-бис(3-метакрилокси-2-гидроксипропокси)бутан;

б) три- или полифункциональные (мет)акрилаты, в частности три(мет)акрилат триметилолпропана и тетра(мет)акрилат пентаэритрита;

в) соединения, образующие сетчатую структуру в процессе привитой сополимеризации, содержащие не менее двух двойных С-С-связей с различной реакционной способностью, в частности аллилметакриалат и аллилакрилат;

г) ароматические соединения, используемые для образования сетчатой структуры, в частности 1,2-дивинилбензол, 1,3-дивинилбензол и 1,4-дивинилбензол.

В предпочтительном случае выбор мономеров или, соответственно, выбор соотношения частей масс мономеров от А) до Г) первого состава проводят так, чтобы полимер, образующийся при полимеризации первой смеси мономеров, имел температуру стеклования Tg не менее 10°С, в предпочтительном случае не менее 30°С. При этом температура стеклования продукта полимеризации Tg может быть определена известным способом с помощью дифференциальной сканирующей калориметрии. Кроме того, примерное значение температуры стеклования Tg может быть также предварительно рассчитано с помощью уравнения Фокса. Это уравнение (Fox Т.G., Bull. Am. Physics Soc. 1, 3, стр. 123 (1956)) имеет вид

где xn означает массовую долю (мас.%/100) мономера n и Tg означает температуру стеклования в Кельвинах гомополимера на основе мономера n. Другие полезные указания специалист может получить из Polymer Handbook, 2-е изд., J. Wiley & Sons, Нью-Йорк (1975), где приведены значения Tg для самых разных продуктов гомополимеризации.

Вторая смесь мономеров содержит

Д) от 80,0 до 100,0 частей массы, в предпочтительном случае от 92,0 до 98,0 частей массы, по отношению к Е) различных (мет)акрилатов,

Е) от 0,05 до 10 частей массы, в предпочтительном случае от 0,1 до 2,0 частей массы мономеров, образующих межмолекулярные связи, и

Ж) от 0,0 до 20,0 частей массы, в предпочтительном случае от 8,0 до 20,0 частей массы стирольных мономеров общей формулы (I),

причем в предпочтительном случае указанные части массы в сумме составляют 100,0 частей массы.

При этом, конечно, соединения Д), Е) и Ж) отличаются друг от друга, в частности соединения Д) не включают образующие межмолекулярные связи мономеры Е).

В рамках настоящего изобретения понятие (мет)акрилатов включает акрилаты, метакрилаты, а также их смеси. В соответствии с этим в их число входят соединения, которые включают по крайней мере одну группу формулы

причем R означает атом водорода или метальный остаток. К ним относятся, в частности, названные выше алкилакрилаты и алкилметакрилаты. Кроме того, очень полезными для реализации поставленных в настоящем изобретении целей оказались также арилалкилакрилаты, в частности бензил-, фенилэтил-, фенилпропил-, фенилпентил- и/или фенилгексил-акрилат. В предпочтительном случае их используют в количестве от 0,1 до 40,0 мас.% из расчета на общую массу компонент Д) и Е).

Образующие межмолекулярные связи мономеры (Е) в соответствии с изобретением включают названные выше образующие межмолекулярные связи мономеры В).

В рамках наиболее предпочтительного варианта реализации настоящего изобретения вторая смесь мономеров содержит

Д) от 90,0 до 97,9 частей массы алкилакрилатов с числом атомов углерода в алкильном остатке от трех до восьми и/или алкилметакрилатов с числом атомов углерода в алкильном остатке от семи до четырнадцати, в частности бутилакрилат и/или додецилметакрилат,

Е) от 0,1 до 2,0 частей массы мономеров, образующих межмолекулярные связи, и

Ж) от 0,0 до 20,0 частей массы, в предпочтительном случае от 8,0 до 20,0 частей массы стирольных мономеров общей формулы (I),

причем в предпочтительном случае указанные части массы в сумме составляют 100,0 частей массы.

Кроме того, выбор мономеров или, соответственно, выбор соотношения частей масс мономеров Д), Е) и Ж) второго состава в оптимальном случае проводят так, чтобы полимер, образующийся при полимеризации второго состава, имел температуру стеклования Tg менее 30°С, в предпочтительном случае менее 10°С, в частности в пределах от 0 до -75°С. При этом температура стеклования Tg продукта полимеризации может быть определена, как упоминалось выше, с помощью дифференциальной сканирующей калориметрии и/или предварительно приближенно вычислена с помощью уравнения Фокса.

Третий состав содержит

З) от 50,0 до 100,0 частей массы, в предпочтительном случае от 60,0 до 100,0 частей массы, в более предпочтительном случае от 75,0 до 100,0 частей массы, в частности от 85,0 до 99,5 частей массы, алкилметакрилатов с числом атомов углерода в алкильном остатке от одного до двадцати, в предпочтительном случае от одного до двенадцати, в частности от одного до восьми,

И) от 0,0 до 40,0 частей массы, в предпочтительном случае от 0,0 до 25,0 частей массы, в частности от 0,1 до 15,0 частей массы, алкилакрилатов с числом атомов углерода в алкильном остатке от одного до двадцати, в предпочтительном случае от одного до двенадцати, в частности от одного до восьми, и

К) от 0,0 до 10,0 частей массы, в предпочтительном случае от 0,0 до 8,0 мас.%, стирольных мономеров общей формулы (I),

причем в предпочтительном случае указанные части массы в сумме составляют 100,0 частей массы.

В соответствии с наиболее предпочтительным вариантом реализации настоящего изобретения третий состав содержит не менее 50 мас.%, в целесообразном случае не менее 60 мас.%, в предпочтительном случае не 75 мас.%, в частности не менее 85 мас.%, метилметакрилата, из расчета на общую массу компонент от З) до К).

Кроме того, выбор мономеров или, соответственно, выбор соотношения частей масс мономеров З), И) и К) третьего состава в оптимальном случае проводят так, чтобы полимер, образующийся при полимеризации третьего состава, имел температуру стеклования Tg не менее 10°С, в предпочтительном случае не менее 30°С. При этом температура стеклования Tg продукта полимеризации может быть определена, как упоминалось выше, с помощью дифференциальной сканирующей калориметрии и/или предварительно приближенно вычислена с помощью уравнения Фокса.

Согласно соответствующему изобретению способу полимеризация на стадиях от б) до г) протекает в температурном интервале от более 60 до менее 90°С, в целесообразном случае в пределах от более 70 до менее 85°С, в предпочтительном случае в пределах от более 75 до менее 85°С.

Инициирование осуществляется за счет обычно используемых для эмульсионной полимеризации инициаторов. Подходящими органическими инициаторами являются, например, такие гидропероксиды, как трет-бутилгидропероксид или гидропероксид кумола. Подходящими неорганическими инициаторами являются пероксид водорода, а также соли пероксодисерной кислоты со щелочными металлами и ее аммонийные соли, в частности пероксодисульфат натрия и калия. Названные инициаторы могут быть использованы в качестве единственных инициаторов или в виде их смеси. В предпочтительном случае их используют в количестве от 0,05 до 3,0 мас.% из расчета на общую массу мономеров на соответствующей стадии.

Стабилизацию реакционной массы осуществляют с помощью эмульгаторов и/или защитных коллоидов. Предпочтение отдается стабилизации с помощью эмульгаторов для того, чтобы получить дисперсию с невысокой вязкостью. В предпочтительном случае общее количество эмульгатора составляет от 0,1 до 5 мас.%, в частности от 0,5 до 3 мас.%, из расчета на общую массу мономеров от А) до К). Особое предпочтение отдается анионным или неионогенным эмульгаторам и их смесям, в частности

- алкилсульфатам, в предпочтительном случае алкилсульфатам с числом атомов углерода в алкильном остатке от восьми до восемнадцати, сульфатам оксиэтилированных спиртов и оксиэтилированных алкилфенолов с числом атомов углерода в алкильном остатке от восьми до восемнадцати и с числом этиленоксидных структурных единиц от одной до пятидесяти;

- сульфонатам, в предпочтительном случае алкилсульфонатам с числом атомов углерода в алкильном остатке от восьми до восемнадцати, алкиларилсульфонатам с числом атомов углерода в алкильном остатке от восьми до восемнадцати, эфирам и неполным эфирам сульфоянтарной кислоты с одноатомными спиртами или с алкилфенолами с числом атомов углерода в алкильном остатке от четырех до пятнадцати; в соответствующих случаях эти спирты или алкилфенолы могут быть также оксиэтили