C1-симметричные бисфосфиновые лиганды и их применение в асимметрическом синтезе прегабалина

Иллюстрации

Показать все

Настоящее изобретение относится к С1-симметричным бисфосфиновым лигандам и соответствующим катализаторам и к их применению в асимметрических синтезах, включая энантиоселективное гидрирование прохиральных олефинов, с целью получения фармацевтически полезных соединений, в том числе (S)-(+)-3-(аминометил)-5-метилгексановой кислоты, которая известна как прегабалин, и структурно родственных ей соединений. В способах применяют новые хиральные катализаторы или предшественники катализаторов, для их получения, которые включают хиральный лиганд, связанные с родием посредством атомов фосфора, при этом хиральный лиганд имеет структуру, представленную формулой 4. 6 н. и 13 з.п. ф-лы, 7 табл. 2 фиг.

Реферат

УРОВЕНЬ ТЕХНИКИ

Область техники, к которой относится изобретение

Настоящее изобретение относится к С1-симметричным бисфосфиновым лигандам и соответствующим катализаторам и к их применению в асимметрических синтезах, включая энантиоселективное гидрирование прохиральных олефинов, с целью получения фармацевтически полезных соединений, в том числе (S)-(+)-3-(аминометил)-5-метилгексановой кислоты,

которая обычно известна как прегабалин.

Обсуждение

Хиральные фосфиновые лиганды сыграли важную роль в развитии новых асимметрических реакций, катализируемых переходными металлами, применяемых для обеспечения энантиомерного избытка соединений, обладающих требуемой активностью. Первые успешные попытки асимметрического гидрирования енамидных субстратов были осуществлены в конце 1970 годов с использованием хиральных бисфосфинов в качестве лигандов переходных металлов. См., в частности, B.D. Vineyard et al., J. Am. Chem. Soc. 99(18): 5946-52 (1977); W.S. Knowles et al., J. Am. Chem. Soc. 97(9): 2567-68 (1975). После этих первых опубликованных сообщений последовал всплеск исследований, относящихся к синтезу новых хиральных бисфосфиновых лигандов, которые предназначены для проведения асимметрических гидрирований и осуществления других хиральных каталитических превращений. См. I. Ojima, ed., Catalytic Asymmetrical Synthesis (1993); D.J. Ager, ed., Handbook of Chiral Chemicals (1999).

Некоторые из наиболее эффективных и широко используемых лигандов, разработанных для асимметрического гидрирования, включают BPE лиганды (в частности, (R,R)-Et-BPE, или (+)-1,2-бис((2R,5R)-2,5-диэтилфосфолано)этан); DuPhos лиганды (R,R)-Me-DUPHOS или (-)-1,2-бис((2R,5R)-2,5-диметилфосфолано)бензол); и BisP* лиганд ((S,S)-(-)-1,2-бис(трет-бутилметилфосфино)этан). См., в частности, M.J. Burk, Chemtracts 11(11):787-802 (1998); M.J. Burk et al., Angew Chem., Int. Ed. 37(13/14): 1931-33 (1998); M.J. Burk, et al., J. Org. Chem. 63(18):6084-85 (1998); M.J. Burket al., J. Am. Chem. Soc. 120(18):4345-53 (1998); M.J. Burk et al., J. Am. Chem. Soc. 117(15):4423-24 (1995); M.J. Burk et al., J. Am. Chem. Soc. 115(22): 10125-38 (1993); W.A. Nugent et al., Science 259(5094):479-83 (1993); M.J. Burk et al. Tetrahedron: Asymmetry 2(7):569-92 (1991); M.J. Burk, J. Am. Chem. Soc. 113(22):8518-19 (1991); Т. Imamoto et al., J. Am. Chem. Soc. 120(7):1635-36 (1998); G. Zhu et al., J. Am. Chem. Soc. 119(7): 1799-800 (1997).

Успешное применение BPE, DUPHOS, BisP* и других родственных лигандов в реакциях асимметрического гидрирования относили, помимо других факторов, за счет жесткости их С2-симметричной структуры. Как показано на фиг.1, деление пространства, занимаемого структурой фосфинового лиганда, такого как BisP*, на четыре квадранта дает при присоединении к переходному металлу (в частности, Rh) чередование имеющих и не имеющих пространственные затруднения квадрантов. Указанный структурный фрагмент стимулировал разработку бисфосфиновых лигандов и соответствующих катализаторов для асимметрического гидрирования определенных субстратов, включая енамиды, сложные енольные эфиры и сукцинаты, и, вероятно, мог привести к замедлению разработки бисфосфиновых лигандов, которые не являются С2-симметричными (в частности, С1-симметричных бисфосфиновых лигандов).

Исследователями недавно описаны С1-симметричные бисфосфиновые лиганды и соответствующие катализаторы, которые применимы для осуществления асимметрических превращений, включая реакции энантиоселективного гидрирования. См. совместно поданную заявку на патент США № 2002/0143214 А1, опубликованную 3 октября 2002 года, и совместно поданную заявку на патент США № 2003/0073868 А1, опубликованную 17 апреля 2003 года, полные изложения которых для всех целей включены в данное описание в виде ссылки. Как видно из фиг.2, указанные лиганды, представленные (трет-бутилметилфосфанил)-(ди-трет-бутилфосфанил)этаном, дают при присоединении к переходному металлу, такому как Rh, окружение с тремя стерически затрудненными квадрантами. Тем не менее, способные к образованию связей модели С1-симметричных бисфосфиновых лигандов и соответствующих катализаторов, которые преобразуют их стерические затруднения в энантиоселективность при гидрировании, немногочисленны. См., например, H. Blaser et al., Topics in Catalysis 19: 3 (2002); A. Ohashi et al., European Journal of Organic Chemistry 15: 2535 (2002); K. Matsumura et al., Advanced Synthesis & Catalysis 345: 180 (2003).

Прегабалин, (S)-(+)-3-аминометил-5-метилгексановая кислота, связывается с альфа-2-дельта (α2δ) субъединицей кальциевого канала и имеет отношение к эндогенному ингибирующему нейромедиатору - γ-аминомасляной кислоте (GABA), которая принимает участие в регулировании нейронной активности мозга. Прегабалин обладает антиэпилептической активностью, как описано в патенте США № 5563175, выданном на имя R.B. Silverman et al., и, как полагают, может быть пригоден для лечения, помимо прочих состояний, боли, физиологических состояний, связанных с психомоторными стимуляторами, воспалением, поражением желудочно-кишечного тракта, алкоголизмом, инсомнией и различными психическими расстройствами, включая маниакальный синдром и биполярное расстройство. См., соответственно, патент США № 6242488, выданный на имя L. Bueno et al., патент США № 6326374, выданный на имя L. Magnus & C.A.Segal, и патент США № 6001876, выданный на имя L. Singh; патент США № 6194459, выданный на имя H.C. Akunne et al.; патент США № 6329429, выданный на имя D. Schrier et al.; патент США № 6127418, выданный на имя L. Bueno et al.; патент США № 6426368, выданный на имя L. Bueno et al.; патент США № 6306910, выданный на имя L. Magnus & C.A. Segal; и патент США № 6359005, выданный на имя A.C. Pande, которые для всех целей целиком включены в данное описание в виде ссылки.

Прегабалин получали разными способами. Как правило, получают рацемическую смесь 3-(аминометил)-5-метилгексановой кислоты, а затем разделяют ее на R- и S-энантиомеры. В подобных способах могут быть использованы промежуточный азид (в частности, в патенте США № 5563175, выданном на имя R.B. Silverman et al.), промежуточный малонат (патент США № 6046353, выданный на имя T.M. Grote et al., патент США № 5840956, выданный на имя T.M. Grote et al., и патент США № 5637767, выданный на имя T.M. Grote et al.) или синтез по Гофману (патент США № 5629447, выданный на имя B.K. Huckabee & D.M. Sobieray, и патент США № 5616793, выданный на имя B.K. Huckabee & D.M. Sobieray). В каждом из этих способов рацемат взаимодействует с хиральной кислотой (разделяющим агентом) с образованием пары диастереоизомерных кислот, которые разделяют такими известными методами, как дробная кристаллизация и хроматография. Таким образом, указанные способы включают значительную технологическую обработку, помимо получения рацемата, что вместе с разделяющим агентом приводит к увеличению стоимости процесса. Более того, ненужный R-энантиомер часто отбрасывают, поскольку его нельзя эффективно использовать повторно, и поэтому эффективный выход процесса снижается на 50%.

Кроме того, прегабалин был получен прямым синтезом с использованием вспомогательного хирального вещества (4R,5S)-4-метил-5-фенил-2-оксазолидинона. См., в частности, патенты США №№ 6359169, 6028214, 5847151, 5710304, 5684189, 5608090 и 5599973, все выданные на имя Silverman et al. Несмотря на то что указанные способы позволяют получить прегабалин с высокой энантиомерной чистотой, они являются менее предпочтительными для осуществления синтеза в больших масштабах, поскольку в них используют дорогостоящие реагенты (например, вспомогательное хиральное вещество), которые трудны в обращении, а также используют специальное криогенное оборудование, необходимое для получения требуемых рабочих температур, которые могут быть вплоть до -78°С.

В заявке на патент США 2003/0212290 А1 описывается способ приготовления прегабалина асимметрическим гидрированием цианозамещенного олефина с получением хирального цианосодержащего предшественника - (S)-3-(аминометил)-5-метилгексановой кислоты. Цианосодержащий предшественник затем восстанавливают и получают прегабалин. В заявке раскрывается применение различных С2-симметричых лигандов, включая (R,R)-Me-DUPHOS, что приводит к значительному обогащению прегабалина по сравнению с (R)-3-(аминометил)-5-метилгексановой кислотой.

Несмотря на то что способ, раскрытый в заявке на патент США 2003/0212290 А1, представляет собой коммерчески важный метод получения прегабалина, по многим причинам было бы желательно его улучшить. С2-симметричые бисфосфиновые лиганды, включая запатентованный лиганд (R,R)-Me-DUPHOS, часто трудно приготовить, поскольку они содержат два хиральных центра, что увеличивает их стоимость. Кроме того, несмотря на то, что хиральные катализаторы, раскрытые в заявке на патент США 2003/0212290 А1, приводят к получению цианосодержащего предшественника прегабалина с хорошим энантиомерным избытком (в некоторых случаях энантиомерный избыток [ee, ЭИ] составляет около 95% или больше), полезно было бы добиться более высокой энантиоселективности (получить ЭИ, равный приблизительно 98% или больше). Кроме того, были бы полезны хиральные катализаторы, которые можно было бы использовать для достижения большего соотношения субстрат-к-катализатору (s/c), поскольку они позволили бы при заданной загрузке катализатора или заданной концентрации субстрата использовать более значительные концентрации субстрата или меньшие загрузки катализатора. Более значительные концентрации субстрата привели бы к увеличению производительности и, таким образом, снизили производственные затраты на единицу продукции. Аналогично, меньшие загрузки катализатора привели бы к значительному сокращению затрат на единицу продукции.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В настоящем изобретении предлагаются вещества и способы получения прегабалина (формула 1) и структурно родственных ему соединений. Заявленные способы включают использование новых хиральных катализаторов, каждый из которых включает С1-симметричный бисфосфиновый лиганд, связанный с переходным металлом (в частности, родием) посредством атомов фосфора. Заявляемое изобретение обладает множеством преимуществ перед существующими способами получения прегабалина и аналогичных соединений. Например, С1-симметричные бисфосфиновые лиганды имеют единственный стереогенный центр, что должно сделать приготовление лигандов и соответствующих им хиральных катализаторов относительно недорогим. Кроме того, как показано ниже в примерах, заявленное изобретение позволяет получить хиральный цианосодержащий предшественник прегабалина с большей энантиоселективностью (ЭИ приблизительно 98% или больше), чем в известных способах. Как также показано ниже в примерах, новые хиральные катализаторы могут использоваться с большими соотношениями субстрата к катализатору (s/c), чем известные катализаторы, что должно приводить к значительному снижению затрат на единицу продукции.

В соответствии с одним из аспектов настоящего изобретения предлагается способ получения требуемого энантиомера соединения формулы 2

или его фармацевтически приемлемого комплекса, соли, сольвата или гидрата. В формуле 2

R1 обозначает С1-6 алкил, С1-7 алканоиламино, С1-6 алкоксикарбонил,

С1-6 алкоксикарбониламино, амино, амино-С1-6 алкил, С1-6 алкиламино, циано, циано-С1-6 алкил, карбокси или -CO2-Y;

R2 обозначает С1-7 алканоил, С1-6 алкоксикарбонил, карбокси или -CO2-Y;

R3 и R4 независимо обозначают атом водорода, С1-6 алкил, С3-7 циклоалкил, арил или арил-С1-6 алкил, или же R3 и R4 вместе обозначают С2-6 алкандиил;

Х обозначает -NH-, -O-, -CH2- или связь;

Y обозначает катион, а звездочка обозначает стереогенный (хиральный) центр.

Способ включает стадии (а) взаимодействия прохирального субстрата (олефина) формулы 3,

с водородом в присутствии хирального катализатора с образованием соединения формулы 2; и (b) необязательного превращения соединения формулы 2 в фармацевтически приемлемый комплекс, соль, сольват или гидрат. Заместители R1, R2, R3, R4 и Х в формуле 3 те же, что и определенные для формулы 2. Хиральный катализатор включает хиральный лиганд, связанный с переходным металлом посредством атомов фосфора, и имеет структуру, представленную формулой 4,

В общем случае способ может применяться для получения требуемого энантиомера соединения формулы 2 с ЭИ, равным приблизительно 95% или больше, а в некоторых случаях с ЭИ, равным приблизительно 99% или больше. Пригодные к использованию прохиральные субстраты включают 3-циано-5-метилгекс-3-еновую кислоту или ее основно-аддитивные соли, такие как 3-циано-5-метилгекс-3-еноат трет-бутиламмониевая соль. Другие пригодные к использованию прохиральные субстраты включают такие субстраты, в которых Y представляет собой ион металла Группы 1 (щелочной), ион металла Группы 2 (щелочно-земельный), ион первичного аммония или ион вторичного аммония.

Наиболее пригодный к использованию хиральный катализатор включает хиральный лиганд формулы 4, который связан с атомом родия посредством атомов фосфора. Другой наиболее пригодный к использованию хиральный катализатор включает энантиомер бисфосфинового лиганда формулы 4, который имеет структуру, представленную формулой 5,

и ЭИ приблизительно 95% или больше. Наиболее пригодный к использованию хиральный катализатор включает энантиомер бисфосфинового лиганда формулы 4, который имеет структуру, представленную формулой 5, и ЭИ приблизительно 99% или больше.

В соответствии с другим аспектом настоящего изобретения предлагается способ получения прегабалина, или (S)-(+)-3-(аминометил)-5-метилгексановой кислоты (формула 1), или его фармацевтически приемлемого комплекса, соли, сольвата или гидрата. Способ включает стадии (а) взаимодействия соединения формулы 6,

его соответствующего Z-изомера или их смеси, с Н2 (водородом) в присутствии хирального катализатора с получением соединения формулы 7,

где R5 обозначает карбоксильную группу или -CO2-Y, Y обозначает катион, а хиральный катализатор включает хиральный лиганд (формула 4), связанный с переходным металлом посредством атомов фосфора; (b) восстановления цианового фрагмента соединения формулы 7 с получением соединения формулы 8,

(с) необязательной обработки соединения формулы 8 кислотой с получением прегабалина; и (d) необязательного превращения соединения формулы 8 или формулы 1 в фармацевтически приемлемый комплекс, соль, сольват или гидрат.

Способ может применяться для получения прегабалина, имеющего ЭИ приблизительно 95% или больше или имеющего ЭИ 99% или больше, а в некоторых случаях имеющего ЭИ 99,9% или больше. Пригодные к использованию прохиральные субстраты (формула 6) включают такую основно-аддитивную соль 3-циано-5-метилгекс-3-еновой кислоты, как 3-циано-5-метилгекс-3-еноат трет-бутиламмониевая соль. Другие пригодные к применению прохиральные субстраты включают такие субстраты, в которых Y в формуле 6 обозначает ион металла Группы 1, ион металла Группы 2, ион первичного аммония или ион вторичного аммония. Особенно пригодный к применению хиральный катализатор включает хиральный лиганд формулы 4, который связан с родием посредством атомов фосфора. Другой особенно пригодный к применению хиральный катализатор включает энантиомер бисфосфинового лиганда формулы 4, который имеет структуру, представленную формулой 5 (выше) и имеет ЭИ приблизительно 95% или больше. Наиболее пригодный к применению хиральный катализатор включает энантиомер бисфосфинового лиганда формулы 4, который имеет структуру, представленную формулой 5 и имеет ЭИ приблизительно 99% или больше.

Наконец, в соответствии с еще одним аспектом настоящего изобретения предлагается способ получения требуемого энантиомера соединения формулы 4. Способ включает стадии (а) взаимодействия соединения формулы 9,

с соединением формулы 10,

с получением соединения формулы 11,

где соединение формулы 9 обрабатывают основанием перед взаимодействием с соединением формулы 10, Х обозначает уходящую группу, а R6 обозначает ВН3, серу или кислород; (b) взаимодействия соединения формулы 11 с бораном, серой или кислородом с образованием соединения формулы 12,

где R7 такой же, как R6, или отличается от R6 и обозначает ВН3, серу или кислород; и (с) удаления R6 и R7 из соединения формулы 12 с образованием соединения формулы 4.

Заявляемый способ особенно пригоден для получения R-энантиомера соединения формулы 5, имеющего ЭИ, равный приблизительно 80%, приблизительно 90%, приблизительно 95% или приблизительно 99% или больше. Как правило, перед удалением R6 и R7 соединение формулы 12 расщепляют на отдельные энантиомеры. Заместители R6 и R7 могут быть удалены различными путями в зависимости от типов конкретных заместителей. Например, в том случае, когда R6 и R7, оба обозначают ВН3, они могут быть удалены путем взаимодействия соединения формулы 13

с амином или кислотой с получением соединения формулы 4. Так, например, соединение формулы 13 может вступать во взаимодействие с HBF4•Ме2О с последующим основным гидролизом с образованием соединения формулы 4. Аналогично, с целью удаления R6 и R7 соединение формулы 13 может быть обработано с помощью DABCO, TMEDA, DBU или Et2NH или их комбинацией.

В том случае, когда оба заместителя являются атомами серы, R6 и R7 могут быть удалены с помощью различных способов. Один из способов включает стадии (а) взаимодействия соединения формулы 14,

с R8OTf с получением соединения формулы 15,

в котором R8 обозначает С1-4 алкил; (b) взаимодействия соединения формулы 15 с боргидридом с образованием соединения формулы 13; и (с) взаимодействия соединения формулы 13 с амином или кислотой с получением соединения формулы 4. Наиболее пригодным заместителем R8 является метил, а наиболее пригодным боргидридом является LiBH4.

Другой способ включает приведенные выше стадии (а) и (b) и далее включает стадии (с) взаимодействия соединения формулы 13 с HCl с образованием соединения формулы 16,

(d) взаимодействия соединения формулы 16 с амином или кислотой с получением соединения формулы 4. В том случае, когда оба заместителя обозначают серу или кислород, R6 и R7 могут быть удалены обработкой соединения формулы 12 восстановителем, включая такой перхлорполисилан, как гексахлордисилан.

Наконец, в соответствии с еще одним аспектом настоящего изобретения предлагается способ получения катализатора или прекатализатора, образованного хиральным лигандом, который присоединен к переходному металлу посредством атомов фосфора, при этом хиральный лиганд имеет структуру, представленную формулой 4. Способ включает стадии (а) удаления обоих заместителей R9 из соединения формулы 17,

с образованием соединения формулы 4, где R9 обозначает ВН3, серу или кислород; и (b) связывания соединения формулы 4 с переходным металлом (в частности, родием). Стадия (b) может включать взаимодействие соединения формулы 4 с комплексом формулы 18

[Rh(L1)m(L2)n]Ap,
18

в котором

L1 обозначает диен, выбранный из COD, норборнадиена или 2,5-диметилгекса-1,5-диена;

L2 обозначает анионный лиганд, выбранный из Cl, Br, I, CN, OR10 или R10, или нейтральный σ-донорный лиганд, выбранный из NR10R11R12, R10OR11, R10SR11, CO или NCR10, в том случае, когда R10, R11 и R12 независимо обозначают Н или С1-6 алкил;

А обозначает анион, выбранный из OTf, PF6, BF4, SbF6или ClO4;

m обозначает целое число от 0 до 2 включительно;

n обозначает целое число от 0 до 4 включительно; и

p обозначает положительное нечетное число, такое, что 4×m+2×n+p=9.

В соответствии с еще одним аспектом настоящего изобретения предлагаются соединения формулы 19,

в которых R10 и R11 независимо обозначают ВН3, BH2Cl, серу, кислород, С1-4 алкилтио или же отсутствуют, при условии, что R10 и R11 оба не являются ВН3.

Пригодные соединения формулы 19 включают такие соединения, в которых R10 и R11 отсутствуют, и такие соединения, которые имеют R-абсолютную стереохимическую конфигурацию, а ЭИ составляет приблизительно 95%, или же ЭИ составляет 99% или больше. Другие пригодные соединения формулы 19 включают такие соединения, в которых R10 и R11 совпадают и каждый обозначает кислород, серу или С1-4 алкилтио, и такие, которые имеют R-абсолютную стереохимическую конфигурацию, а ЭИ составляет приблизительно 95% или больше или ЭИ составляет приблизительно 99% или больше. Таким образом, наиболее пригодные соединения, представленные формулой 19, включают:

2-{[(ди-трет-бутилфосфанил)метил]метилфосфанил}-2-метилпропан;

(R)-2-{[(ди-трет-бутилфосфанил)метил]метилфосфанил}-2-метилпропан;

(S)-2-{[(ди-трет-бутилфосфанил)метил]метилфосфанил}-2-метилпропан;

2-[(ди-трет-бутилфосфинотиоилметил)метилфосфинотиоил]-2-метилпропан;

(R)-2-[(ди-трет-бутилфосфинотиоилметил)метилфосфинотиоил]-2-метилпропан;

(S)-2-[(ди-трет-бутилфосфинотиоилметил)метилфосфинотиоил]-2-метилпропан;

2-[(ди-трет-бутилфосфиноилметил)метилфосфиноил]-2-метилпропан;

(R)-2-[(ди-трет-бутилфосфиноилметил)метилфосфиноил]-2-метилпропан;

(S)-2-[(ди-трет-бутилфосфиноилметил)метилфосфиноил]-2-метилпропан;

(ди-трет-бутилметилтиофосфониумилметил)-трет-бутилметилметилтиофосфониум;

(R)-(ди-трет-бутилметилтиофосфониумилметил)-трет-бутилметилметилтиофосфониум; или

(S)-(ди-трет-бутилметилтиофосфониумилметил)-трет-бутилметилметилтиофосфониум.

В соответствии с дополнительным аспектом настоящего изобретения предлагается катализатор или предшественник катализатора, включающий хиральный лиганд, соединенный с переходным металлом посредством атомов фосфора. Хиральный лиганд имеет структуру, представленную формулой 4.

Особенно пригодный к применению хиральный катализатор или предшественник катализатора содержит родий, связанный с бисфосфиновым лигандом, который имеет структуру, представленную формулой 5. Другие пригодные к применению хиральные катализаторы или предшественники катализаторов включают бисфосфиновый лиганд, который имеет структуру, представленную формулой 5, и ЭИ, равный приблизительно 95% или больше. Наиболее пригодный к применению хиральный катализатор включает бисфосфиновый лиганд, который имеет структуру, представленную формулой 5, и ЭИ, равный приблизительно 99% или больше. Катализатор или предшественник катализатора может дополнительно включать один или несколько диенов (в частности, COD) или анионов галогенов (в частности, Cl), связанных с переходным металлом, и может включать такой противоион, как OTf, PF6, PF4, SbF6, или ClO4, или их смесь.

В соответствии с еще одним аспектом настоящего изобретения предлагается способ получения требуемого энантиомера соединения формулы 32,

или его фармацевтически приемлемого комплекса, соли, сольвата или гидрата. Способ включает стадии (а) взаимодействия соединения формулы 33,

с водородом в присутствии хирального катализатора с получением соединения формулы 32; и (b) необязательно превращения соединения формулы 32 в фармацевтически приемлемый комплекс, соль, сольват или гидрат. Заместители R1, R2, R3, R4 и Х в формуле 32 и формуле 33 те же, что и определенные в формуле 2; хиральный катализатор включает хиральный лиганд, присоединенный к переходному металлу посредством атомов фосфора, при этом хиральный лиганд имеет структуру, представленную выше формулой 4. Пригодные к применению соединения формулы 32 включают оптически активные β-аминокислоты, которые, подобно прегабалину, связываются с α2δ субъединицей кальциевого канала. Указанные соединения, включая их фармацевтически приемлемые комплексы, соли, сольваты или гидраты, пригодны для лечения боли, фибромиалгии и разнообразных психиатрических расстройств и нарушений сна. См., в частности, заявку на патент США № 2003/0195251 А1, выданную на имя Barta et al, полное изложение которой включено в настоящее описание в качестве ссылки.

В объем настоящего изобретения входят все фармацевтически приемлемые комплексы, соли, сольваты, гидраты, полиморфы, сложные эфиры, амиды и пролекарства заявляемых и раскрываемых соединений, включая соединения формул 1, 2, 8 и 32.

КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ

Фиг.1 показывает пространственное расположение С2-симметричого бисфосфинового лиганда (например, BisP*), когда он соединен с таким переходным металлом, как Rh.

Фиг.2 показывает пространственное расположение С1-симметричого бисфосфинового лиганда (например, (трет-бутилметилфосфанил)-(ди-трет-бутилфосфанил)этана), когда он соединен с таким переходным металлом, как Rh.

ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ

Определения и сокращения

Если не указано иное, в настоящем описании используют приведенные ниже определения. Некоторые определения и формулы могут содержать "-" (тире) для обозначения связи между атомами и места присоединения названного и неназванного атома или группы атомов. Другие определения и формулы могут содержать "=" (знак равенства) или ""(знак идентичности) для обозначения двойной связи или тройной связи соответственно. Некоторые формулы могут также содержать одну или несколько "*" (звездочек) для обозначения стереогенных (хиральных) центров, однако отсутствие звездочек не означает, что в соединении отсутствует один или несколько стереоцентров. Подобные формулы могут относиться к рацематам или к индивидуальным энантиомерам или диастереомерам, которые могут быть или могут не быть практически чистыми. Некоторые формулы могут также включать пересекающуюся двойную связь или удвоение какой-либо связи с целью обозначения Z-изомера, Е-изомера или смеси Z- и Е-изомеров.

"Замещенными" группами являются такие группы, в которых один или несколько атомов водорода заменены одним или несколькими отличными от водорода атомами или группами, при условии, что соблюдены требования валентности и в результате замены получается химически устойчивое соединение.

"Алкил" относится к насыщенным углеводородным группам с прямой или разветвленной цепью, которые в общем случае содержат определенное количество атомов углерода (например, С1-6 алкил относится к алкильной группе, имеющей 1, 2, 3, 4, 5 или 6 атомов углерода). Примеры алкильных групп включают, без ограничений, метил, этил, н-пропил, изопропил, н-бутил, втор-бутил, изобутил, трет-бутил, пент-1-ил, пент-2-ил, пент-3-ил, 3-метилбут-1-ил, 3-метилбут-2-ил, 2-метилбут-2-ил, 2,2,2-триметилэт-1-ил, н-гексил и т.п.

"Алкенил" относится к углеводородным группам с прямой или разветвленной цепью, которые имеют одну или несколько ненасыщенных углерод-углеродных связей и в общем случае содержат определенное количество атомов углерода. Примеры алкенильных групп включают, без ограничений, этенил, 1-пропен-1-ил, 1-пропен-2-ил, 2-пропен-1-ил, 1-бутен-1-ил, 1-бутен-2-ил, 3-бутен-1-ил, 3-бутен-2-ил, 2-бутен-1-ил, 2-бутен-2-ил, 2-метил-1-пропен-1-ил, 2-метил-2-пропен-1-ил, 1,3-бутадиен-1-ил, 1,3-бутадиен-2-ил и т.п.

"Алкинил" относится к углеводородным группам с прямой или разветвленной цепью, которые имеют одну или несколько тройных углерод-углеродных связей и в общем случае содержат определенное количество атомов углерода. Примеры алкинильных групп включают, без ограничений, этинил, 1-пропин-1-ил, 2-пропин-1-ил, 1-бутин-1-ил, 3-бутин-1-ил, 3-бутин-2-ил, 2-бутин-1-ил и т.п.

"Алкандиил" относится к дивалентным насыщенным углеводородным группам с прямой или разветвленной цепью, которые в общем случае содержат определенное количество атомов углерода. Примеры включают, без ограничений, метилен, 1,2-этандиил, 1,3-пропандиил, 1,4-бутандиил, 1,5-пентандиил, 1,6-гександиил и т.п.

"Алканоил" и "алканоиламино" относятся, соответственно, к алкил-С(О)- и алкил-С(О)-NH-, где алкил определен выше, и в общем случае содержат определенное количество атомов углерода, включая карбонильный углерод. Примеры алканоильных групп включают, без ограничений, формил, ацетил, пропионил, бутирил, пентаноил, гексаноил и т.п.

"Циклоалкил" относится к насыщенным моноциклическим и бициклическим углеводородным кольцам, которые в общем случае содержат определенное количество атомов углерода, образующих кольцо (например, С3-7 циклоалкил относится к циклоалкильной группе, содержащей 3, 4, 5, 6 или 7 атомов углерода в качестве членов кольца). Циклоалкил может быть присоединен к родственной группе или к субстрату по любому атому кольца, при условии, что подобное присоединение не нарушает требований валентности. Аналогично, циклоалкильные группы могут включать один или несколько отличных от водорода заместителей, при условии, что подобное замещение не нарушает требований валентности. Пригодные заместители включают, без ограничений, алкил, алкокси, алкоксикарбонил и алканоил, как определено ранее, и гидрокси, меркапто, нитро, галоген и амино.

Примеры моноциклических циклоалкильных групп включают, без ограничений, циклопропил, циклобутил, циклопентил, циклогексил и т.п. Примеры бициклических циклоалкильных групп включают, без ограничений, бицикло[1.1.0]бутил, бицикло[1.1.1]пентил, бицикло[2.1.0]пентил, бицикло[2.1.1]гексил, бицикло[3.1.0]гексил, бицикло[2.2.1]гептил, бицикло[3.2.0]гептил, бицикло[3.1.1]гептил, бицикло[4.1.0]гептил, бицикло[2.2.2]октил, бицикло[3.2.1]октил, бицикло[4.1.1]октил, бицикло[3.3.0]октил, бицикло[4.2.0]октил, бицикло[3.3.1]нонил, бицикло[4.2.1]нонил, бицикло[4.3.0]нонил, бицикло[3.3.2]децил, бицикло[4.2.2]децил, бицикло[4.3.1]децил, бицикло[4.4.0]децил, бицикло[3.3.3]ундецил, бицикло[4.3.2]ундецил, бицикло[4.3.3]додецил и т.п.

"Циклоаланоил" относится к группе циклоалкил-С(О)-, где циклоалкил определен выше, и в общем случае содержит определенное количество атомов углерода, включая карбонильный углерод. Примеры циклоалканоильных групп включают, без ограничений, циклопропаноил, циклобутаноил, циклопентаноил, циклогексаноил, циклогептаноил и т.п.

"Алкокси", "алкоксикарбонил" и "алкоксикарбониламино" относятся, соответственно, к алкил-О-, алкил-О-С(О)- и алкил-О-С(О)-NH-, где алкил определен выше. Примеры алкоксигрупп включают, без ограничений, метокси, этокси, н-пропокси, изопропокси, н-бутокси, втор-бутокси, трет-бутокси, н-пентокси, втор-пентокси и т.п.

"Алкиламино", "алкиламинокарбонил", "диалкиламинокарбонил", "алкилсульфонил", "сульфониламиноалкил" и "алкилсульфониламинокарбонил" относятся, к алкил-NH-, алкил-NH-С(О)-, алкил2-N-С(О)-, алкил-S(O2)-, HS(O2)-NH-алкил- и алкил-S(O)-NH-С(О)-, где алкил определен выше.

"Аминоалкил" и "цианоалкил" относятся, соответственно, к NH2-алкил и NC-алкил, где алкил определен выше.

"Гало", "галоген" или "галогено" могут использоваться взаимозаменяемо и относятся ко фтору, хлору, брому и йоду.

"Галогеналкил" и "галогеналканоил" относятся, соответственно, к алкильным или алканоильным группам, замещенным одним или несколькими атомами галогена, где алкил и алканоил определены выше. Примеры галогеналкильных или галогеналканоильных групп включают, без ограничений, трифторметил, трихлорметил, пентафторэтил, пентахлорэтил, трифторацетил, трихлорацетил, пентафторпропионил, пентахлорпропионил и т.п.

"Гидроксиалкил" и "оксоалкил" относятся, соответственно, к группам НО-алкил и О=алкил, где алкил определен выше. Примеры гидроксиалкильных и оксоалкильных групп включают, без ограничений, гидроксиметил, гидроксиэтил, 3-гидроксипропил, оксометил, оксоэтил, 3-оксопропил и т.п.

"Арил" и "арилен" относятся к моновалентным и дивалентным ароматическим группам соответственно. Примеры арильных групп включают, без ограничений, фенил, нафтил, бифенил, пиренил, антраценил, флуоренил и т.п., которые могут быть незамещены или содержать от 1 до 4 заместителей. Подобные заместители включают алкил, алкокси, алкоксикарбонил, алканоил и циклоалканоил, как определено выше, и гидрокси, меркапто, нитро, галоген и амино.

"Арилалкил" относится к арил-алкилу, где арил и алкил определены выше. Примеры включают, без ограничений, бензил, флуоренилметил и т.п.

"Арилалканоил" относится к алкил-алканоилу, где арил и алканоил определены выше. Примеры включают, без ограничений, бензоил, фенилэтаноил, фенилпропаноил и т.п.

"Арилалкоксикарбонил" относится к арил-алкоксикарбонилу, где арил и алкоксикарбонил определены выше. Примеры включают, без ограничений, феноксикарбонил, бензилоксикарбонил (CBz) и т.п.

"Гетероцикл" и "гетероциклил" относятся к насыщенным, частично ненасыщенным или ненасыщенным моноциклическим или бициклическим кольцам, содержащим от 5 до 7 или от 7 до 11 членов в кольце соответственно. Указанные группы содержат в кольце члены, образованные атомами углерода и от 1 до 4 гетероатомами, которые независимо представляют собой азот, кислород или серу, и могут включать любые бициклические группы, в которых любые из определенных выше моноциклических гетероциклов конденсированы с бензольным кольцом. Гетероатомы азота и серы необязательно могут быть окислены. Гетероциклическое кольцо может быть присоединено к родственной группе или субстрату по любому из гетероатомов или атомов углерода, при условии, что подобное присоединение не нарушает требований валентности. Аналогично, любые из атомов углерода или азота, являющиеся членами кольца, могут включать отличные от водорода заместители, при условии, что подобное замещение не нарушает требований валентности. Пригодные заместители включают, без ограничений, алкил, алкокси, алкоксикарбонил, алканоил и циклоалканоил, как определено выше, и гидрокси, меркапто, нитро, галоген и амино.

Примеры гетероциклов включают, без ограничений, акридинил, азоцинил, бензимидазолил, бензофуранил, бензотиофуранил, бензотиофенил, бензоксазолил, бензтиазолил, бензтриазолил, бензтетразолил, бензизоксазолил, бензизотиазолил, бензимидазолинил, карбазолил, 4аН-карбазолил, карболинил, хроманил, хроменил, циннолинил, декагидрохинолинил, 2Н,6Н-1,5,2-дитиазинил, дигидрофуро[2,3-b]тетрагидрофуран, фуранил, фуразанил, имидазолидинил, имидазолинил, имидазолил, 1Н-индазолил, индоленил, индолинил, индолизинил, индолил, 3Н-индолил, изобензофуранил, изохроманил, изоиндазолил, изоиндолинил, изоиндолил, изохинолинил, изотиазолил, изоксазолил, морфолинил, нафтиридинил, октагидроизохинолинил, оксадиазолил, 1,2,3-оксадиазолил, 1,2,4-оксадиазолил, 1,2,5-оксадиазолил, 1,3,4-оксадиазолил, оксазолидинил, оксазолил, оксазолидинил, пиримидинил, фенанатридинил, фенантролинил, феназинил, фенотиазинил, феноксатиинил, феноксазинил, фталазинил, пиперазинил, пиперидинил, птеридинил, пуринил, пиранил, пиразинил, пиразолидинил, пиразолинил, пиразолил, пиридазинил, пиридооксазол, пиридоимидазол, пиридотиазол, пиридинил, пиридил, пиримидинил, пирролидинил, пирролинил, 2Н-пирролил, пирролил, хиназолинил, хинолинил, 4Н-хинолизинил, хиноксалинил, хинуклидинил, тетрагидрофуранил, тетрагидроизохинолинил, тетрагидрохинолинил, 6Н-1,2,5-тиадиазинил, 1,2,3-тиадиазолил, 1,2,4-тиадиазолил, 1,2,5-тиадиазолил, 1,3,4-тиадиазолил, тиантренил, тиазолил, тиенил, тиенотиазолил, тиенооксазолил, тиеноимидазолил, тиофенил, триазинил, 1,2,3-триазолил, 1,2,4-триазолил, 1,2,5-триазолил, 1,3,4-триазолил и ксантенил.

"Гетероарил" и "гетероарилен" относятся соответственно к моновалентным и дивалентным гетероциклам или гетероциклильным группам, как определено выше, которые являются ароматическими. Гетероарильные и гетероариленовые группы представляют собой подмножество арильных и ариленовых групп соответственно.

Термин "уходящая группа" относится к любой гру