Обнаружение заряда или частицы
Иллюстрации
Показать всеВ изобретении предлагается чувствительный прибор (ЧП) для обнаружения заряженных частиц и/или квантов электромагнитного излучения. Технический результат заключается в снижении емкости соединения и упрощении сборки при соединении датчика и усилителя (У). ЧП имеет чувствительное устройство (ЧУ) (12) и схему У (14); (M1, M4). ЧУ (12) подает сигнал на входной узел Vin У (14); (M1, M4), чтобы вызвать изменение уровня Vout на выходном узле У (14). Устройство отрицательной обратной связи (ОС) (T1); (M2) в ответ на изменение уровня на выходном узле изменяет воздействие ОС, чтобы повысить петлевое усиление указанной схемы У (14); (M1, M4). Токовое зеркало (Т2, Т3); (М3, М6) повторно устанавливает входной узел в состояние его начального уровня. В изобретении раскрыт ЧП для обнаружения одиночной частицы и интегрирующий ЧП. 5 н. и 20 з.п. ф-лы, 21 ил.
Реферат
Область применения изобретения
Настоящее изобретение имеет отношение к созданию чувствительного прибора, системы обнаружения, макропикселя и способа обнаружения поступления одной или нескольких заряженных частиц и/или одного или нескольких квантов электромагнитного излучения.
Предпосылки к созданию изобретения
Традиционные пиксельные чувствительные к излучению элементы часто основаны на использовании гибридного подхода, при котором электронную схему, расположенную на ленточном носителе со столбиковыми выводами, соединяют с пиксельным чувствительным элементом.
Существует несколько типов традиционных полупроводниковых устройств формирования сигналов изображения и чувствительных элементов. Один из классов таких устройств основан на использовании гибридного пиксельного чувствительного прибора, предназначенного для обнаружения двумерной одиночной частицы или единственного фотона. В другом классе таких устройств используют монолитные активные пиксельные чувствительные элементы (APS), которые представляют собой твердотельные формирователи сигналов изображения, которые обеспечивают для каждого пикселя прием излучения, преобразование заряда в напряжение и функцию возврата в исходное положение (сброса).
Гибридный пиксельный чувствительный прибор главным образом используют в ИК фокальных плоскостях, а кремниевые пиксельные матрицы используют для обнаружения одиночной частицы, для обнаружения рентгеновского излучения и в медицинских формирователях сигналов изображения. Гибридный пиксельный чувствительный элемент позволяет произвести независимую оптимизацию характеристик детектора излучения и пиксельной электронной схемы считывания, так как они изготовлены на двух отдельных подложках при помощи двух различных процессов изготовления. Однако этот тип пиксельного чувствительного элемента имеет предел минимально достижимых размеров пикселя в результате использования технологии присоединения кристаллов на ленточном носителе со столбиковыми выводами. Удалось получить размеры 50 мкм × 50 мкм, однако это дорого и сопряжено с большими сложностями изготовления. Более того, гибридный пиксельный чувствительный элемент имеет достаточно большую входную емкость (от 100 фФ до 200 фФ), что ограничивает рабочие характеристики и шумовые характеристики.
Монолитные APS устройства главным образом используют для формирования изображений в видимой области спектра, совместно с ПЗС формирователями сигналов изображения, однако их также применяют для обнаружения одиночных частиц. В известных монолитных APS устройствах используют плавающую диффузию для образования пиксельного чувствительного элемента в виде n-диффузия/n-карман в р-легированной кремниевой подложке, причем фоточувствительный затвор или PIN (штырьковый) диод образуют в аморфном Si:H (слое), осажденном поверх интегральной схемы. В этих устройствах пиксельный сигнальный ток проинтегрирован с использованием входного конденсатора в течение периода времени несколько миллисекунд. Проинтегрированный ток считывается при помощи истокового повторителя на MOSFET транзисторе (на полевом транзисторе со структурой металл - оксид - полупроводник) F1, как это показано на фиг.1 (известный уровень техники). Транзистор выбора пикселя F3 подключает выход пикселя к общей нагрузке F4. Плавающий узел, который содержит соединение затвора истокового повторителя на полевом МОП-транзисторе F1, пиксельного чувствительного элемента и стока транзистора F2, последовательно сбрасывается при помощи сброса полевого МОП-транзистора F2. Недостатком такого решения является генерирование kTC или шума при сбросе, намного больших собственных электронных шумов каскада усилителя. Более того, устройство, показанное на фиг.1, не способно различать падающие кванты (соударения) во время периода интегрирования.
Для обнаружения одиночной заряженной частицы в традиционных монолитных APS используют в качестве чувствительного элемента 8-12 Ом эпитаксиальный слой кремниевой пластины, используемой в стандартных промышленных КМОП технологиях, причем этот слой имеет толщину несколько микрон. Накопленный сигнал заряда составляет, например, около 80 е- для минимальной ионизирующей заряженной частицы, проходящей через слой кремния толщиной 1 мкм. Главный недостаток традиционного монолитного кремниевого чувствительного элемента заключается в том, что накопление заряда происходит за счет тепловой диффузии носителей. Это в действительности ограничивает скорость носителей и поэтому накопление заряда происходит медленно. Кроме того, накопленный заряд растекается на соседние пиксели и является неполным.
Для обнаружения единичного фотона используют интегральные APS с лавинным усилением, например с усилением, равным 50, причем накопленный заряд для одного фотона может составлять 50 е-. При таких очень низких уровнях сигнала, традиционные структуры APS могут быть использованы только в самой малой степени, если вообще могут быть использованы, так как требуемое отношение сигнал-шум для обнаружения одного фотона излучения в видимой области спектра, фотона рентгеновского излучения или одной заряженной частицы, должно составлять по меньшей мере 10, чтобы снизить до минимума фоновый шум. Это требует снизить уровень собственных шумов ниже 5 е- rms (среднеквадратических), что не может быть обеспечено при помощи традиционных APS интегрирующих структур. Эти структуры имеют коэффициент преобразования порядка 20 мкВ/е- и уровень шумов при сбросе свыше 10 e-rms.
Более того, интегрирующие APS структуры традиционных устройств не могут производить привязку по времени событий, связанных с поступлением частиц, и не могут производить цифровой подсчет каждой поступающей заряженной частицы, фотона рентгеновского излучения или фотона излучения в видимой области спектра. Традиционные схемные структуры для гибридных пиксельных чувствительных к излучению элементов обычно являются слишком большими, самое лучшее, имеющими размеры 50 мкм × 50 мкм, и потребляют слишком большую мощность, например от 30 до 50 мкВт; поэтому их нельзя применять для монолитной интеграции имеющих высокую плотность пиксельных чувствительных элементов, позволяющих обнаруживать квант излучения. Заявителю неизвестны схемы, которые позволяют производить обработку очень слабых сигналов, что необходимо для обнаружения одиночной частицы и/или единичного фотона (SPD) и формирования изображения в монолитных интегральных схемах.
Задачей настоящего изобретения является главным образом решение указанных выше одной или нескольких проблем или улучшение связанной с ними ситуации.
В частности, варианты настоящего изобретения направлены на решение проблем монолитной интеграции активных кремниевых пикселей при использовании промышленных глубоких субмикронных КМОП технологий. Варианты настоящего изобретения направлены на обнаружение одиночной частицы, на локализацию в пространстве треков одиночной заряженной частицы и на обнаружение единичного фотона, в отличие от обычных APS проектов, в которых интегрируют ток сигнала чувствительного элемента в течение некоторого периода интегрирования.
Краткое изложение изобретения
В соответствии с первым аспектом настоящего изобретения предлагается чувствительный прибор, имеющий чувствительное устройство и схему усиления, причем чувствительное устройство сконструировано и устроено таким образом, что оно вырабатывает сигнал, когда оно получает одну или несколько заряженных частиц и/или один или несколько квантов электромагнитного излучения, а схема усиления имеет входной узел и выходной узел, причем чувствительное устройство подключено к указанному входному узлу для подачи указанного сигнала на него, в результате чего уровень в выходном узле изменяется, и дополнительно имеет цепь обратной связи, соединяющую указанный входной узел и указанный выходной узел, для подачи назад части уровня в выходном узле, для поддержания первого уровня в выходном узле при отсутствии указанного сигнала от указанного чувствительного устройства, причем устройство обратной связи в ответ на изменение уровня в указанном выходном узле изменяет воздействие указанной цепи обратной связи, когда указанный уровень изменяется, чтобы увеличить петлевое усиление указанной схемы усиления.
В соответствии со вторым аспектом настоящего изобретения предлагается чувствительный прибор, имеющий чувствительное устройство и схему усиления, причем чувствительное устройство сконструировано и устроено таким образом, что оно вырабатывает сигнал, когда оно получает одну или несколько заряженных частиц и/или один или несколько квантов электромагнитного излучения, при этом схема усиления имеет входной узел и выходной узел, причем чувствительное устройство подключено к указанному входному узлу, для подачи указанного сигнала на него, в результате чего уровень в выходном узле изменяется и создает выходной сигнал от указанного выходного узла, причем чувствительный прибор дополнительно содержит токовое зеркало, подключенное к указанному входному узлу, которое сконструировано и устроено таким образом, чтобы подавать на него ток для восстановления уровня на входном узле, соответствующего начальному уровню.
В соответствии с еще одним аспектом настоящего изобретения, предлагается чувствительное устройство, которое содержит чувствительный элемент, предназначенный для обнаружения поступления падающего кванта электромагнитного излучения и/или заряженных частиц, и усилитель, подключенный к чувствительному элементу и предназначенный для усиления сигнала от чувствительного элемента, в котором чувствительный элемент и усилитель изготовлены на общей подложке, причем чувствительное устройство устроено так, чтобы различать поступление единственного кванта или множества падающих квантов на чувствительное устройство.
Чувствительный элемент и усилитель могут быть диффундированы в общей подложке, или могут быть осаждены на общей подложке. Чувствительным устройством может быть пиксельная ячейка.
Подложка может содержать монолитную полупроводниковую интегральную схему и чувствительный элемент, который содержит p-n переход, причем чувствительный элемент наложен на подложку, при этом p-n фотодиод и лавинный фотодиод встроены в подложку, или может содержать чувствительный к излучению элемент, предназначенный для обнаружения заряженных частиц и/или рентгеновских фотонов.
В соответствии с первым вариантом подложка содержит кремниевый кристаллический объем, в который введены чувствительный элемент и усилитель.
Чувствительное устройство содержит аморфный Si:H PIN диод, имеющий множество аморфных Si:H слоев, которые содержат N легированный слой, слой с собственной проводимостью и Р легированный слой, причем слои осаждены на подложке. В соответствии с альтернативным вариантом чувствительное устройство дополнительно содержит аморфный селеновый слой, причем аморфный селеновый слой осажден на подложке. Использование аморфного селенового слоя особенно предпочтительно в рентгеновских применениях, таких как получение маммограммы в медицине. Этот слой имеет более высокий коэффициент преобразования для рентгеновских фотонов с энергией свыше 10 кэВ, чем аморфный Si:H слой.
Усилитель может быть выполнен как нелинейный трансрезистивный усилитель.
Чувствительный элемент и усилитель могут быть диффундированы в подложку или осаждены на подложку.
В соответствии с еще одним аспектом настоящего изобретения предлагается устройство для выработки сигнала, соответствующего событию обнаружения, которое содержит одно или несколько чувствительных устройств, определенных выше, и дополнительно содержит схему считывания для приема выходного сигнала от одного или нескольких чувствительных устройств и выработки выходного сигнала, соответствующего событию обнаружения.
Устройство может дополнительно содержать плоскую матрицу чувствительных устройств, определенных выше.
В соответствии с одним из вариантов схема считывания представляет собой комплементарную МОП-структуру, образованную на подложке, причем подложка может быть первого типа проводимости, при этом КМОП схема содержит один или несколько МОП полевых транзисторов первого типа проводимости, область кармана второго типа проводимости в указанной подложке, и один или несколько МОП транзисторов второго типа проводимости, образованных в области кармана.
Схема считывания может иметь первую секцию и вторую секцию. Первая секция может содержать нелинейный трансрезистивный усилитель.
В соответствии с одним из вариантов нелинейный трансрезистивный усилитель содержит усилитель тока, управляемый напряжением, полевой транзистор обратной связи и входной источник тока.
Вторая секция может содержать транзисторный дискриминатор для выработки двоичного сигнала для каждого кванта электромагнитной энергии и/или обнаруженной заряженной частицы.
Устройство может быть устроено таким образом, чтобы осуществлять обнаружение каждого кванта, сталкивающегося с каждым чувствительным устройством, и обеспечивать обнаружение одиночной частицы (SPD).
Устройство может быть устроено таким образом, чтобы интегрировать заряды и последовательно считывать заряды при стандартной работе APS.
Чувствительным элементом может быть р-n чувствительный элемент или p-i-n чувствительный элемент, причем усилитель имеет входной чувствительный узел, при этом входной чувствительный узел подключен к стоку полевого транзистора обратной связи, к электроду чувствительного элемента и к стоку входного источника тока.
Схема считывания может иметь выходной ток, причем схема считывания устроена таким образом, чтобы принимать внешние опорные сигналы, при этом внешние опорные сигналы содержат опорное напряжение, опорный ток и ток смещения, причем внешние опорные сигналы и выходной ток от схемы считывания являются общими для одного или нескольких чувствительных устройств.
Полевой транзистор обратной связи может иметь исток, подключенный к выходу усилителя тока, управляемого напряжением.
В соответствии с одним из вариантов полевой транзистор обратной связи устроен таким образом, что полевой транзистор обратной связи имеет ток стока, равный опорному току, зеркально отражаемому при помощи входного источника тока, когда полевой транзистор обратной связи смещен в область слабой инверсии, причем полевой транзистор образует входной источник тока, а полевой транзистор обратной связи создает смещение постоянного тока для чувствительного элемента.
Полевой транзистор обратной связи может быть устроен таким образом, что когда он смещен малым током, составляющим ориентировочно от 1 до 20 пА, то ток падает, когда появляется входной сигнал на входном чувствительном узле за счет частицы или фотона, сталкивающихся с р-n или p-i-n чувствительным элементом.
Усилитель тока, управляемый напряжением, может иметь замкнутую петлю обратной связи, когда указанный полевой транзистор обратной связи работает в цепи обратной связи и имеет ток стока около нуля.
В соответствии с одним из вариантов усилитель тока, управляемый напряжением, устроен таким образом, чтобы работать аналогично трансрезистивному каскаду с полевым транзистором обратной связи, работающим в цепи обратной связи.
Полевой транзистор обратной связи может быть устроен таким образом, что когда полевой транзистор обратной связи выключается при входном сигнале заряда выше порогового значения, тогда полевой транзистор обратной связи имеет ток стока около нуля.
Квант может создавать входной заряд для чувствительного элемента, причем входной пороговый заряд оставляет ориентировочно от 10 до 15 е- при опорном токе около 10 пА.
Нелинейный трансрезистивный усилитель может быть устроен таким образом, чтобы иметь разомкнутую петлю обратной связи, когда полевой транзистор обратной связи выключается при входном сигнале выше порогового значения.
Нелинейный трансрезистивный усилитель может иметь низкое усиление для малых входных сигналов ниже порогового значения, когда транзистор обратной связи включен, причем нелинейный трансрезистивный усилитель имеет большое усиление для сигналов выше порогового значения, когда транзистор обратной связи выключен.
В соответствии с одним из вариантов затвор транзистора дискриминатора подключен к выходу усилителя, а его сток подключен к выходу чувствительного устройства, причем выходной порт чувствительного устройства подключен к выходному сигналу, при этом выходной сигнал представляет собой ток.
Схема считывания может быть устроена таким образом, чтобы получать опорное напряжение, причем опорное напряжение порождает напряжение выходного узла усилителя тока, управляемого напряжением, за счет напряжения затвор-исток транзистора обратной связи.
Опорное напряжение может быть использовано таким образом, чтобы смещать транзисторный дискриминатор в область слабой инверсии, при токе стока несколько наноампер.
Квант может соударяться с одним или несколькими чувствительными устройствами и возбуждать напряжение на чувствительном элементе, образующее напряжение входного чувствительного узла, причем напряжение входного чувствительного узла снижается, а выходное напряжение усилителя тока, управляемого напряжением, повышается, когда квант соударяться с одним или несколькими чувствительными устройствами.
Устройство может быть устроено таким образом, что когда возрастает напряжение выходного узла усилителя тока, управляемого напряжением, то тогда ток стока транзистора дискриминатора возрастает экспоненциально от изменения напряжения выходного напряжение усилителя тока, управляемого напряжением.
Увеличение тока стока транзистора дискриминатора может быть в 1000 раз (3 декады тока) относительно значения, составляющего ориентировочно от 1 нА до 1 мкА, при возрастании выходного напряжения усилителя тока, управляемого напряжением, составляющем около 250 мВ.
Увеличение тока стока транзисторного дискриминатора может переключать напряжение выходного порта чувствительного устройства и генерировать двоичный сигнал.
Увеличение выходного напряжения на величину около 250 мВ может быть создано за счет входного заряда около 25 е-.
Схема считывания может быть устроена таким образом, чтобы принимать опорное напряжение, задающее значение опорного напряжения, причем значение опорного напряжения определяет ток холостого хода транзистора дискриминатора, обеспечивающий порог разрешения схемы считывания.
Схема считывания может содержать интегрирующий активный пиксельный формирователь сигналов изображения на базе активного пиксельного чувствительного элемента (APS).
Интегрирующий формирователь сигналов изображения может содержать каскад истокового повторителя вместо транзистора дискриминатора.
Интегрирующий формирователь сигналов изображения может иметь входной источник тока, причем входной источник тока выключается на время интегрирования и время считывания.
Входной источник тока может периодически смещаться током около 10 пА в течение времени сброса.
Устройство может быть устроено таким образом, что транзистор обратной связи выключается, когда входной сигнал возрастает выше порогового значения, при этом петля обратной связи усилителя размыкается, что приводит к сильному росту усиления усилителя и, следовательно, к повышению чувствительности одного или нескольких чувствительных устройств.
Усилитель может представлять собой нелинейный усилитель, имеющий выход и вход, причем усилитель имеет минимальную емкость обратной связи, составляющую около 10-17 Ф, что позволяет получить коэффициент преобразования заряд-напряжение, обеспечивающий ориентировочно от 5 мВ до 10 мВ на выходе усилителя, для каждого электрона, поступающего на его вход.
Устройством может быть устройство формирования изображения, предназначенное для выработки выходного сигнала, соответствующего обнаруженному изображению.
В соответствии с еще одним аспектом настоящего изобретения предлагается макропиксель (макропиксел), который содержит матрицу чувствительных устройств, определенных выше, причем выходы чувствительных устройств объединены для создания эффекта большого пикселя. Выходы пикселей могут быть подключены к шине. Макропиксель может быть устроен таким образом, что если чувствительное устройство в макропикселе выходит из строя, то макропиксель сохраняет работоспособность, хотя и с пониженной чувствительностью.
В соответствии с еще одним аспектом настоящего изобретения предлагается матрица макропикселей, определенных выше, предназначенных для обнаружения или формирования изображения.
В соответствии с еще одним аспектом настоящего изобретения, предлагается устройство, которое содержит матрицу макропикселей, определенных выше, причем устройство формирования изображения диффундировано в или осаждено на поверхность подложки.
Один или несколько вариантов настоящего изобретения могут быть применены для создания полупроводниковых устройств формирования изображений и обнаружения излучения, в частности матриц монолитных кремниевых активных пиксельных чувствительных элементов, которые позволяют обнаруживать единичные фотоны или частицы, такие как фотоны излучения в видимой области спектра, фотоны рентгеновского излучения и заряженные частицы, такие как электроны или протоны. Монолитное исполнение позволяет использовать стандартный КМОП процесс изготовления.
В соответствии с одним из вариантов в изобретении предлагается устройство формирования изображений, выполненное как интегральная схема в виде монолитной, комплементарной МОП-структуры за счет использования стандартного промышленного МОП-процесса. Пиксельная интегральная схема может содержать аморфный Si:H PIN диод для улавливания единичного фотона/ частицы, генерирующих заряд, осажденный поверх интегральной схемы на подложке, или n-карман р-n-переход или другой диод в области ниже эпитаксиального слоя и в объеме подложки. Пиксельная интегральная схема также может содержать схему считывания, имеющую по меньшей мере усилитель тока, управляемый напряжением, и N-MOSFET устройство обратной связи в р-легированной подложке. N-MOSFET устройство обратной связи может быть подключено между чувствительным узлом, образованным за счет соединения входного усилителя тока, управляемого напряжением, с электродом пиксельного чувствительного элемента, и выходным узлом усилителя тока, управляемого напряжением.
В соответствии с одним из вариантов усилитель тока, управляемый напряжением, содержит четыре схемы, образованные двумя P-MOSFET транзисторами и двумя N-MOSFET транзисторами. В соответствии с этим вариантом, два P-MOSFET транзистора работают в качестве входной каскодной схемы усилителя с высоким усилением, причем входной затвор подключен к чувствительному элементу, которым может быть электрод N-карман, или PIN аморфный Si:H диод. Два N-MOSFET транзистора работают в качестве каскодного выходного источника тока с высоким импедансом. В этом варианте предусмотрено N-MOSFET устройство обратной связи, которое смещено в глубокую слабую инверсию за счет дополнительного P-MOSFET входного источника тока, который образует, вместе с диодом, подключенным к P-MOSFET, токовое зеркало, которое смещено при помощи внешнего источника тока.
MOSFET транзистор (полевой МОП-транзистор) обратной связи может быть смещен в область относительно малого тока, например от 1 пА до 20 пА, что позволяет его выключать, когда малый входной сигнальный заряд от 1 е- до 20 е- поступает на вход. Содержащий четыре MOSFET транзистора каскодный усилитель может работать с разомкнутой цепью обратной связи, когда MOSFET транзистор обратной связи выключается при помощи входного сигнала. Выходной N-MOSFET транзистор дискриминатора может получать напряжение выходного узла на свой затвор, подключенный к выходному узлу, причем его сток подключен к внешнему источнику тока, а его исток подключен к земле. Внешнее напряжение VREF может управлять напряжением выходного узла каскодного усилителя тока, управляемого напряжением, и определять рабочие условия выходного N-MOSFET транзистора дискриминатора. Напряжение VREF может быть выбрано таким образом, что выход MOSFET транзистора смещен в область ниже порога (что также называется слабой инверсией) и включается, когда приходит входной сигнальный заряд, в результате чего выходной узел транзистора дискриминатора переключается от подачи напряжение VDD на землю. Размеры входных P-MOSFET транзисторов могут быть выбраны таким образом, чтобы снизить до минимума шум, по сравнению с диффузионной емкостью N-кармана или с емкостью PIN аморфного Si:H диода.
Размеры N-MOSFET транзисторов выходного источника тока могут быть выбраны и размещены таким образом, чтобы снизить до минимума емкость стока. Паразитная емкость между входным узлом и выходным узлом усилителя может быть снижена до минимума, чтобы максимально повысить усиление ветви усилителя с разомкнутой цепью обратной связи. Усилитель может быть смещен низким током, чтобы обеспечить потребление мощности пиксельной ячейкой ниже 250 нВт. Схема считывания может дополнительно содержать быстродействующую линию ИЛИ, соединяющую вместе группу пикселей. Группа пикселей образует макропиксель, считывание которого производится за счет периферического считывания интегральной схемы. Каждый макропиксель может иметь схему формирователя, которая соединена с логической схемой считывания конца колонки.
В соответствии с одним из вариантов предусмотрен аналоговый выход для суммирования сигналов внутри макропикселя. В соответствии с другим вариантом настоящего изобретения, предусмотрена интеграция имеющего высокое усиление сигнала для очень чувствительных APS применений, в которых опорный ток задают таким образом, чтобы производить мягкий сброс пикселя без kTC шума сброса.
Краткое описание чертежей
Варианты изобретения будут более ясны из последующего детального описания, данного в качестве примера, не имеющего ограничительного характера и приведенного со ссылкой на сопроводительные чертежи.
На фиг.1 показана принципиальная электрическая схема, иллюстрирующая структуру известной APS схемы.
На фиг.2А показана принципиальная электрическая схема чувствительного устройства в соответствии с настоящим изобретением.
На фиг.2В показана принципиальная электрическая схема устройства, показанного на фиг.2А, но в состоянии с незамкнутой петлей и с инверсией полярности через транзистор обратной связи усилителя.
На фиг.3 показана принципиальная электрическая схема двоичного индивидуального чувствительного устройства в соответствии с настоящим изобретением.
На фиг.4 показана принципиальная электрическая схема устройства для считывания выходных сигналов множества чувствительных устройств.
На фиг.5 показан график колебаний при переходе усилителя фиг.2А, 2В и 3 от работы с замкнутой петлей к работе с разомкнутой петлей обратной связи.
На фиг.6 показан график колебаний на входе чувствительного узла, на выходе узла усилителя тока, управляемого напряжением, и на выходе транзисторного дискриминатора, для пикселя, показанного на фиг.2А, 2В и 3, для входных зарядов 12.5 е-, 25 е-, 50 е- и 100 е-.
На фиг.7 показан график колебаний на выходе усилителя тока, управляемого напряжением, для узла чувствительного элемента, например для пикселя, показанного на фиг.2А-3, для входного заряда 75 е- и входных токов 1 пА, 2 пА, 5 пА, 10 пА и 20 пА.
На фиг.8 показан график изменения напряжения истока при изменении тока стока, при постоянном напряжении на затворе МОП транзистора обратной связи, работающего при слабой инверсии, аналогично показанному на фиг.2А-3.
На фиг.9А показан график расчетного шума в функции емкости входного чувствительного узла, для чувствительного устройства обнаружения одиночной частицы (SPD), такого как пиксельная ячейка, показанная на фиг.2А-3.
На фиг.9B показан график расчетного шума в функции опорного тока SPD чувствительного устройства, показанного на фиг.2А-3.
На фиг.10 показана принципиальная электрическая схема устройства интегрирования заряда в соответствии с настоящим изобретением.
На фиг.11 показан график входного тока, при поступлении одного электрона каждые 500 нс, для входного узла и выходного узла интегрирующего чувствительного устройства фиг.10.
На фиг.12 показан график шума (ENC) в функции рабочей температуры, от 77 К до 297 К, для двоичного чувствительного устройства, например для пиксельной схемы фиг.3.
На фиг.13 показан график для двоичного чувствительного устройства фиг.3, имеющего емкость чувствительного элемента 1.5 фФ, предназначенного для обнаружения заряда 3 (трех) электронов.
На фиг.14 показана компоновка макропикселя, объединяющего 16 пикселей такого же типа, что и пиксель, показанный на фиг.3.
На фиг.15 показано поперечное сечение чувствительного элемента специализированной интегральной схемы, в которую может быть введен при помощи диффузии пиксель фиг.2А-4 и 10, с аморфным Si:H PIN чувствительным элементом, осажденным на поверхности специализированной интегральной схемы.
На фиг.16А показана структурная схема матрицы из 64 пикселей, показанных на фиг.3.
На фиг.16B показана матрица из 64 пикселей, показанных на фиг.3, расположенных в виде матрицы 8×8 и образующих макропиксель, считывание которого может быть осуществлено при помощи аналоговой мультиплексорной APS схемы считывания.
На фиг.17 показан чувствительный элемент с большой площадью, такой как полная подложка, несущая компоновку матрицы, аналогичной показанной на фиг.4, 16А и 16B.
На фиг.18 показана структура лавинного фотодиода, интегрированного на кремниевой подложке с использованием КМОП процесса в соответствии с настоящим изобретением.
Подробное описание изобретения
На всех чертежах аналогичные элементы имеют одинаковые позиционные обозначения.
На фиг.2А показана упрощенная принципиальная электрическая схема чувствительного устройства 10, такого как пиксельная ячейка детектора одиночной частицы (SPD), содержащего планарную матрицу из множества таких устройств или ячеек, образованную в виде интегральной схемы. Чувствительное устройство 10 имеет чувствительный элемент (датчик) 12, инвертирующий усилитель тока 14, управляемый напряжением, токовое зеркало, образованное двумя транзисторами Т2 и Т3, полевой МОП-транзистор обратной связи Т1 и выходной полевой МОП-транзистор дискриминатора Т4. Чувствительный элемент 12 подключен ко входу усилителя 14. Полевой МОП-транзистор обратной связи Т1 имеет свой основной путь тока между входом и выходом усилителя 14, причем выход усилителя 14 подключен к выходу полевого МОП-транзистора дискриминатора Т4, при этом транзистор Т1 обеспечивает отрицательную обратную связь. Транзистор дискриминатора Т4 получает входной сигнал непосредственно от выходного узла усилителя тока 14, управляемого напряжением. Транзистор Т4 работает как ключ, оставаясь выключенным до тех пор, пока напряжение на его затворе не достигнет порогового напряжения включения транзистора, так что выход IOUT остается при нулевом напряжении до тех пор, пока не будет превышен порог; таким образом, обеспечивается двоичный выход. Полная емкость Cf между входным узлом и выходным узлом усилителя 14 является суммой паразитной емкости между входным узлом и выходным узлом и емкости сток-исток транзистора обратной связи Т1.
Может быть использовано множество различных чувствительных элементов и чувствительных элементов различных типов. Среди них следует упомянуть пиксельный чувствительный элемент, который содержит полученный за счет диффузии N-карман, работающий в линейном или лавинном режиме, PIN аморфный кремниевый чувствительный элемент, осажденный на подложку, р-n фотодиод, лавинный фотодиод, интегрированный в подложке, чувствительный к излучению элемент, предназначенный для обнаружения заряженных частиц и/или рентгеновских фотонов, или PIN аморфный Si:H диод (в случае осаждения тонкой аморфной кремниевой пленки поверх интегральной схемы). Чувствительный элемент может содержать любой материал с высоким атомным номером для обнаружения рентгеновского излучения, осажденный на или поверх подложки, специфическими примерами которого являются иодид ртути, иодид свинца и аморфный селен, из которого образован, например, pin диод. Другим альтернативным чувствительным элементом является лавинный фотодиод, интегрированный на подложке, как это показано на фиг.18.
Источник входного тока IREF 18 зеркально отражается при помощи токового зеркала, которое содержит подключенный в виде диода полевой МОП-транзистор Т3 и транзистор Т2.
В соответствии с вариантом, показанным на фиг.2А, источник тока 18 (IREF) впрыскивает ток через токовое зеркало Т2, Т3 в полевой МОП-транзистор обратной связи Т1. Типичный диапазон токов IREF заключен между 1 пА и 20 пА, что позволяет смещать полевой МОП-транзистор обратной связи Т1 глубоко в слабую инверсию. Исток полевого МОП-транзистора обратной связи Т1 позволяет управлять потенциалом выхода VOUT усилителя тока 14, управляемого напряжением, при помощи напряжения на затворе VREF. Точное значение потенциала выходного узла может быть определено по следующей формуле:
Величину опорного напряжения VREF выбирают таким образом, чтобы потенциал VOUT выходного узла удерживался ниже потенциала входного узла VIN. Это создает такое смещение полевого МОП-транзистора обратной связи Т1, которое позволяет иметь положительное напряжение сток-исток, достаточное для его работы в насыщении.
Уровень постоянного входного напряжения VIN определяется рабочими условиями входной схемы усилителя тока 14, управляемого напряжением. Обычно в усилителе входным элементом является полевой МОП-транзистор, и тогда уровень постоянного напряжения обычно равен питающему напряжению VDD минус напряжение затвор-исток полевого МОП-транзистора, служащего в качестве входного транзистора усилителя 14.
Каждый квант электромагнитного излучения, сталкивающийся с подложкой и эпитаксиальным слоем в непосредственной близости от р-n перехода, образованного в чувствительном элементе 12, генерирует пакет пар электрон-дырка (обычно 80 е- h пар для кремниевого слоя толщиной 1 мкм). Пакет электронного заряда ΔQDET затем дрейфует (за счет тепловой диффузии или за счет электрического поля, в случае аморфного кремниевого тонкого слоя, нанесенного поверх интегральной схемы) и накапливается в чувствительном элементе 12, за счет чего создается ступенька отрицательного напряжения -ΔVIN на входе усилителя тока 14, управляемого напряжением, наложенная на его постоянный потенциал VIN.
Величина ступеньки напряжения ΔVIN равна ΔQDET/CIN, где CIN представляет собой полную входную емкость, включающую в себя все емкости, подключенные ко входу чувствительного узла, причем полная входная емкость типично составляет 2 фФ-5 фФ (около 2 фФ для PIN аморфного Si:H диода и 3фФ-5 фФ для диодного чувствительного элемента в объеме материала). Ступенька входного напряжения ΔVIN генерирует ступеньку выходного тока ΔIOUT на выходе усилителя тока, управляемого напряжением 14.
Величина ступеньки тока равна ΔIOUT=-gmΔVIN.
Усилитель 14 за счет транзистора обратной связи Т1 сначала работает как трансрезистивный усилитель, и поэтому опорный входной ток IREF зеркально отражается в ветви обратной связи, образованной полевым МОП-транзистором обратной связи Т1. В установившемся состоянии транзистор обратной связи Т1 работает с заземленным затвором, при этом исток действует как выходной узел, а сток как входной узел.
Когда происходит соударение частицы или фотона, создается ступенька отрицательного напряжения -ΔVIN на входе усилителя тока 14, управляемого напряжением, которая затем приводит к генерации ступеньки выходного тока на его выходе ΔIOUT=-gmΔVIN. Это изменение тока создает нарастающее напряжение ΔVOUT