Способ и устройство компенсации для кориолисова расходомера

Иллюстрации

Показать все

Изобретение позволяет обеспечить температурную компенсацию значения массового расхода для Кориолисова расходомера. Температурная компенсация выходных сигналов расходомера осуществляется путем использования частоты F возбуждения в качестве индикатора изменений температуры расходомерной трубки и не требует использования датчиков температуры. Компенсация проводится в электронной измерительной схеме Кориолисова расходомера и компенсирует как коэффициент калибровки потока, так и номинальную задержку времени, обычно называемую в данной области техники "нулем". После того как Кориолисов расходомер будет установлен, его требуется обнулять только один раз в течение всего срока службы. Изобретение повышает точность измерения массового расхода. 2 н. и 25 з.п. ф-лы, 1 табл., 15 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к способу и устройству компенсации для Кориолисова расходомера.

Уровень техники

Известно использование измерителей массового расхода, работающих с использованием эффекта Кориолиса, для измерения массового расхода и получения другой информации о материалах, протекающих по трубопроводу, как описано в патентах США №№4491025, выданном J.E.Smith и др. 1 января 1985 г., и Re. 31450 J.E.Smith от 11 февраля 1982 г. Кориолисовы расходомеры имеют одну или несколько расходомерных трубок, каждая из которых имеет набор мод собственных колебаний, которые могут представлять собой моды простого типа изгибных колебаний, торсионных колебаний или крутильных колебаний. В каждой из расходомерных трубок, заполненных материалом, возбуждают колебания на частоте резонанса на одной из этих мод собственных колебаний. Моды собственных колебаний частично определяются комбинированной массой расходомерных трубок и материалом, находящимся в этих расходомерных трубках. Материал протекает в расходомер из подключенного трубопровода на стороне входного отверстия. Материал затем направляют через расходомерную трубку или расходомерные трубки и передают в трубопровод, соединенный со стороной выходного отверстия.

Возбудитель прикладывает силу для возбуждения колебаний в расходомерной трубке. Когда поток через Кориолисов расходомер отсутствует, все точки вдоль расходомерной трубки колеблются с идентичной фазой. Когда начинается протекание материала, ускорения Кориолиса создают в каждой точке вдоль расходомерной трубки разную фазу относительно других точек вдоль расходомерной трубки. Фаза на стороне входного отверстия расходомерной трубки запаздывает относительно возбудителя; фаза на стороне выходного отверстия опережает возбудитель. Измерительные датчики в расходомерной трубке формируют синусоидальные сигналы, представляющие движение в расходомерной трубке. Разность фаз между двумя сигналами датчиков пропорциональна массовому расходу материала, протекающего через расходомерную трубку или расходомерные трубки.

Известно использование Кориолисовых расходомеров, имеющих разную конфигурацию расходомерной трубки. Среди этих конфигураций используют одну трубку, две трубки, прямую трубку, изогнутую трубку и расходомерные трубки с неоднородной конфигурацией. Большинство Кориолисовых расходомеров изготовлены из металла, такого как алюминий, сталь, нержавеющая сталь и титан. Также известны стеклянные расходомерные трубки. Большинство Кориолисовых расходомеров с прямым последовательным потоком в настоящее время в данной области техники изготавливают из металла, в частности из титана.

Известно, что изменение рабочих факторов может оказывать влияние на характеристики Кориолисова расходомера. Эти факторы могут представлять собой внутренние эффекты, такие как дрейф характеристик электронных компонентов, используемых в передатчике Кориолисова расходомера, или они могут представлять собой внешние эффекты, такие как флуктуации давления в линии, плотности, вязкости или изменения окружающей температуры и частоты возбуждения Кориолисова расходомера. По большей части в предшествующем уровне техники обращали внимание на компенсацию этих изменений путем обновления или модификации схем или путем выполнения регулировок коэффициента калибровки потока. Примеры этих способов представлены в патенте США №5231884 автора Zolock и заявке №09/343836 на патент США авторов Van Cleve и др.

Кориолисовы расходомеры могут работать в контролируемых условиях, в которых поддерживаются постоянные значения давления, плотности и вязкости для устранения сложной компенсации флуктуации этих параметров. Однако такой подход не всегда выполним на практике, поскольку часто бывает трудно предотвратить флуктуации температуры обрабатываемого материала или окружающей среды, в которой работает Кориолисов расходомер. Когда давление, плотность и вязкость можно поддерживать постоянными, температурная компенсация Кориолисова расходомера может быть произведена с использованием датчиков температуры (обычно называемых RTD (резистивный датчик температуры (РДТ)), установленных на одном или нескольких участках Кориолисова расходомера. РДТ измеряет рабочую температуру на участке расходомера, на котором он установлен. Информацию РДТ и информацию о частоте возбуждения подают в электронную измерительную схему, которая генерирует выходное значение массового расхода с температурной компенсацией. Сигналы, снимаемые в расходомерной трубке, представляют собой некомпенсированный сигнал массового расхода, который подают в электронную измерительную схему, который изменяет некомпенсированный принятый сигнал массового расхода для получения выходного сигнала массового расхода, компенсированного по частоте возбуждения.

Существуют недостатки, связанные с использованием датчиков температуры РДТ для температурной компенсации. Первый недостаток состоит в том, что датчик температуры невозможно прикрепить на участке вибрации расходомерной трубки, поскольку добавленный вес датчика может изменить характеристики вибрации расходомерной трубки и снизить точность выходного сигнала. Датчик температуры поэтому должен быть закреплен в другом месте в Кориолисове расходомере или во входной или выходной линии Кориолисова расходомера. В связи с этим датчик температуры невозможно использовать для непосредственного измерения температуры обрабатываемого материала на вибрирующем участке расходомерной трубки. Поскольку для точной температурной компенсации требуется измерять температуру материала в пределах активного участка расходомерной трубки, использование других мест установки, таких как входная или выходная линия расходомера, приводит к получению другого значения температуры, вместо требуемого значения температуры. В результате возникают неточности компенсированного выходного сигнала массового расхода, генерируемого электронной измерительной схемой.

Второй недостаток использования датчиков температуры состоит в том, что, поскольку они не установлены на активном участке вибрирующей расходомерной трубки, неизбежно присутствует разность во времени между временем, когда датчик температуры детектирует изменение температуры, и временем, когда изменяется температура материала в расходомерной трубке. Эта разность во времени приводит к дополнительным неточностям в компенсированном выходном сигнале массового расхода, генерируемом расходомером.

Предшествующий уровень техники включает в себя патент США 6502466 под названием "Система и способ компенсации сжимаемости текучей среды в массовом Кориолисовом расходомере", в котором раскрыт массовый Кориолисов расходомер, имеющий расходомерную трубку и схему возбуждения, соединенную с расходомерной трубкой, которая может возбуждать расходомерную трубку на разных частотах вибрации, и способ его использования для компенсации эффекта сжимаемости текучей среды. В одном варианте выполнения массовый Кориолисов расходомер включает в себя (1) схему измерения расхода, соединенную с расходомерной трубкой, которая измеряет первый удельный массовый расход текучей среды, протекающей через расходомерную трубку, на первой частоте колебаний и второй удельный массовый расход текучей среды на второй частоте колебаний, и (2) схему компенсации сжимаемости текучей среды, соединенную со схемой измерения удельного массового расхода, в которой первое и второе значения удельного массового расхода используются для определения частотного отклика текучей среды и регулировки для компенсации сжимаемости текучей среды по частотному отклику.

Предшествующий уровень техники включает в себя документ WO 00/71979 под названием "Измеритель на основе вибрирующей трубки", в котором раскрыто, что в измерителе на основе вибрирующей трубки, таком как измеритель Кориолиса, точное измерение параметра текучей среды, такого как плотность, может быть получено, по существу, независимо от напряжения путем измерения характеристик вибрации, в частности, резонансной частоты двух разных мод колебаний. Напряжение или другие переменные можно определять по результатам измерения. Поскольку измерения или компенсация напряжения основаны непосредственно на характеристиках колебаний, может быть получена более высокая точность, чем при использовании обычного тензометрического датчика для измерения напряжения. Раскрытые методики позволяют получить точные результаты без конкретных ограничений конструкции измерителя.

Предшествующий уровень техники включает в себя документ EP 0701107 А под названием "Вибрационный измерительный инструмент", в котором раскрыта точность разности фаз, получаемой с помощью модуля расчета разности фаз, которая улучшена путем коррекции пропускной способности модуля расчета отношения частот и модуля расчета температуры, учитывая, что фаза или разность во времени каждого выходного сигнала датчика вибрации, обозначающего массовый расход или плотность текучей среды, представляет собой функцию от температуры и осевой силы, приложенной к измерительной трубке, или что осевая сила представляет собой функцию отношения между двумя резонансными частотами.

Сущность изобретения

В настоящем изобретении решаются указанные выше и другие проблемы и достигается усовершенствование в данной области техники, благодаря разработке способа и устройства, предназначенных для температурной компенсации Кориолисовых расходомеров, в которых исключается использование датчиков температуры. Способ и устройство в соответствии с настоящим изобретением отслеживают частоту возбуждения расходомерной трубки для обеспечения температурной компенсации. Кориолисов расходомер работает в окружающей среде, в которой все параметры, за исключением температуры, влияющие на частоту расходомерной трубки, поддерживают постоянными. Эти факторы включают в себя такие параметры, как жесткость или чувствительность коэффициента калибровки, причем все они могут влиять на частоту возбуждения. Другие такие параметры включают в себя плотность материала, вязкость и давление. В таких управляемых условиях изменение частоты вибрации должно происходить в результате изменений температуры, которая изменяет модуль Юнга и жесткость вибрирующей расходомерной трубки.

Кориолисов расходомер, разработанный в соответствии с предпочтительным вариантом выполнения настоящего изобретения, имеет преимущества в области компенсации. Настоящее изобретение компенсирует не только калибровку потока, но также регулирует номинальную задержку времени Δt0, обычно называемую в данной области техники "нулем". Это означает, что после того как Кориолисов расходомер будет подключен к процессу для калибровки или собственно для использования в процессе, его требуется обнулить только один раз после установки. Это представляет собой существенное улучшение по сравнению с Кориолисовыми расходомерами, которые требуется повторно обнулять после незначительных изменений давления или температуры.

Во время калибровки измерителя влияние температуры на расходомерную трубку характеризуется частотой отслеживания и изменениями температуры, поскольку поток материала и действительная температура изменяются. Калибровочные константы, используемые для компенсации потока, затем определяют и сохраняют в электронной измерительной схеме. Во время работы поток материала и частоту вибраций отслеживают с помощью расходомерной трубки. Полученные в результате изменения температуры и информацию о частоте из измерителя передают в электронную измерительную схему, которая использует сохраненные калибровочные константы для расчета компенсированного по температуре массового расхода .

Использование частоты расходомерной трубки для получения компенсированного по температуре массового расхода является предпочтительным по сравнению с использованием датчиков температуры, поскольку изменения частоты детектируют для получения изменений в компенсированном сигнале массового расхода непосредственно при детектировании изменений частоты. Мгновенное изменение частоты в расходомерной трубке передают в электронную измерительную схему, которая генерирует скорректированный, компенсированный сигнал массового расхода с повышенной точностью, соответствующий изменению температуры расходомерной трубки.

Один аспект изобретения включает в себя способ обеспечения температурной компенсации Кориолисова расходомера, имеющего, по меньшей мере, одну расходомерную трубку; причем указанный способ содержит следующие этапы:

генерирования первого сигнала, представляющего Кориолисовы отклонения указанной расходомерной трубки;

генерирования второго сигнала, представляющего характеристики указанного расходомера, в котором указанные характеристики включают в себя частоту F возбуждения указанного Кориолисова расходомера, а также индуцированную задержку Δt времени;

отличающийся наличием электронной измерительной схемы для использования указанного первого и указанного второго сигналов для обеспечения температурной компенсации указанных выходных сигналов указанного Кориолисова расходомера.

Предпочтительно способ дополнительно содержит указанный этап обеспечения температурной компенсации, включающий в себя этапы:

приема калиброванного значения массового расхода из эталонного Кориолисова расходомера,

использования указанного первого и указанного второго сигналов, и указанного калиброванного значения массового расхода для обеспечения указанной температурной компенсации для указанного Кориолисова расходомера.

Предпочтительно способ дополнительно содержит указанный этап обеспечения температурной компенсации, который включает в себя следующие этапы:

использования указанного первого и указанного второго сигналов, и указанного калиброванного значения массового расхода для получения калибровочных констант для указанного Кориолисова расходомера; и

использования указанных калибровочных констант для обеспечения указанной температурной компенсации для указанного Кориолисова расходомера.

Предпочтительно способ дополнительно содержит дополнительный этап определения компенсированного по температуре значения массового расхода для указанного Кориолисова расходомера в ответ на указанное генерирование указанного первого и второго сигналов и указанное обеспечение указанной температурной компенсации для указанного Кориолисова расходомера.

Предпочтительно способ дополнительно содержит следующие этапы:

приема третьего сигнала, представляющего калибровочные константы указанного Кориолисова расходомера; и

использования указанного первого и указанного второго, и указанного третьего сигналов, и указанных калибровочных констант для определения компенсированного по температуре значения расхода для указанного Кориолисова расходомера.

Предпочтительно способ дополнительно содержит дополнительные этапы:

определения частоты F возбуждения из указанного второго сигнала;

получения калибровочной константы αF линейной частоты для нуля; и

использования указанной частоты F возбуждения и указанной калибровочной константы αF линейной частоты для нуля для получения указанного компенсированного по температуре значения массового расхода.

Предпочтительно способ дополнительно содержит компенсированный массовый расход, включающий в себя следующие этапы:

получения коэффициента для потока; и

использования указанной частоты F возбуждения и указанной калибровочной константы αF линейной частоты возбуждения для нуля, и указанной константы для потока для получения компенсированного по температуре значения массового расхода.

Предпочтительно способ дополнительно содержит дополнительные этапы:

получения константы линейной частоты (температуры) для потока; и

использования указанной частоты F возбуждения и указанной калибровочной константы αF линейной частоты возбуждения для нуля и указанной константы для потока, и указанной константы линейной частоты (температуры) для потока для получения компенсированного по температуре значения массового расхода.

Предпочтительно способ дополнительно содержит указанный этап получения указанных калибровочных констант и содержит следующие этапы:

приема значения массового расхода из эталонного Кориолисова расходомера; и

использования указанного значения массового расхода и указанного второго сигнала для получения указанных калибровочных констант указанного Кориолисова расходомера.

Предпочтительно способ дополнительно содержит указанный этап генерирования указанных калибровочных констант, и содержит следующие этапы:

приема указанного второго сигнала для получения индуцированной потоком задержки Δt времени и указанной частоты F возбуждения Кориолисова расходомера; и

использования указанного первого сигнала и указанной индуцированной потоком задержки Δt времени, и указанной частоты F возбуждения для получения указанных калибровочных констант указанного Кориолисова расходомера.

Предпочтительно способ дополнительно содержит указанный этап генерирования указанных калибровочных констант, содержащий дополнительные этапы:

получения константы αF линейной частоты возбуждения для номинальной задержки Δt0 времени; и

использования указанной частоты F возбуждения и указанной константы αF линейной частоты возбуждения для указанной номинальной задержки Δt0 времени для получения указанных калибровочных констант.

Предпочтительно способ дополнительно содержит указанные калибровочные константы:

Δt0, αF, ,

Предпочтительно способ дополнительно содержит указанный этап получения указанных калибровочных констант и включает в себя этап решения выражения:

где

Δt - индуцированная потоком задержка времени,

Δt0 - номинальная задержка времени,

- массовый расход,

F - частота возбуждения,

F0 - частота возбуждения для номинального нулевого потока,

αF - константа линейной частоты для нуля,

- константа, связанная с FCF (ККП, коэффициент калибровки потока),

- константа линейной частоты (температуры).

Предпочтительно способ дополнительно содержит указанный этап определения указанного компенсированного по температуре значения массового расхода и содержит этап решения выражения:

где

Δt - индуцированная потоком задержка времени задержки,

Δt0 - номинальная задержка времени,

- массовый расход,

F - частота возбуждения,

F0 - нулевая частота возбуждения,

αF - константа линейной частоты для нуля,

- константа, связанная с ККП,

- константа линейной ККП частоты (температуры).

Другой аспект настоящего изобретения содержит устройство, которое обеспечивает температурную компенсацию для Кориолисова расходомера, имеющего, по меньшей мере, одну расходомерную трубку; причем указанное устройство содержит:

устройство, которое генерирует первый сигнал, представляющий Кориолисово отклонение для указанной расходомерной трубки;

устройство, которое генерирует второй сигнал, представляющий характеристики указанного расходомера, в котором указанные характеристики включают в себя частоту F возбуждения указанного Кориолисова расходомера, а также индуцированную задержку Δt времени;

отличающееся наличием электронной измерительной схемы, в которой указанный первый и указанный второй сигналы используются для обеспечения температурной компенсации выходных сигналов указанного Кориолисова расходомера.

Предпочтительно указанное устройство, которое обеспечивает температурную компенсацию, включает в себя:

устройство, которое принимает калиброванное значение массового расхода из эталонного Кориолисова расходомера, и

устройство, в котором указанный первый и указанный второй сигналы, и указанное калиброванное значение массового расхода используются для обеспечения указанной температурной компенсации для указанного Кориолисова расходомера.

Предпочтительно указанное устройство, которое обеспечивает указанную температурную компенсацию, дополнительно включает в себя:

устройство, в котором указанный первый и указанный второй сигналы, и указанное калиброванное значение массового расхода используются для обеспечения калибровочных констант для указанного Кориолисова расходомера; и

устройство, в котором указанные калибровочные константы, и указанный первый, и указанный второй сигналы, и указанное калиброванное значение массового расхода используются для обеспечения указанной температурной компенсации для указанного Кориолисова расходомера.

Предпочтительно устройство, которое определяет компенсированное по температуре значение массового расхода для указанного Кориолисова расходомера в ответ на указанное генерирование указанных первого и второго сигналов и указанное обеспечение указанной температурной компенсации для указанного Кориолисова расходомера.

Предпочтительно устройство, которое принимает третий сигнал, представляющий калибровочные константы указанного Кориолисова расходомера; и

устройство, в котором указанный первый и указанный второй, и указанный третий сигналы, и указанные калибровочные константы используются для определения компенсированного по температуре значения массового расхода для указанного Кориолисова расходомера.

Предпочтительно устройство, которое определяет частоту F возбуждения из указанного второго сигнала;

устройство, которое получает константу αF калибровки линейной частоты для нуля;

устройство, которое получает коэффициент для потока;

устройство, которое получает константу линейной частоты (температуры) для потока; и

устройство, в котором указанная частота F возбуждения и указанная константа αF линейной частоты возбуждения для нуля, и указанная константа для потока, и указанная константа линейной частоты (температуры) для потока используются для получения компенсированного по температуре значения массового расхода.

Предпочтительно указанное устройство, которое получает указанные калибровочные константы, содержит:

устройство, которое принимает значение массового расхода из эталонного Кориолисова расходомера;

устройство, которое принимает указанный второй сигнал для получения индуцированной потоком задержки Δt времени и указанной частоты F возбуждения Кориолисова расходомера;

устройство, которое получает константу αF линейной частоты возбуждения для номинальной задержки Δt0 времени; и

устройство, в котором указанная частота F возбуждения, и указанная константаαF линейной частоты возбуждения для указанной номинальной задержки Δt0 времени, и указанное значение массового расхода используются для получения указанных калибровочных констант.

Предпочтительно указанные калибровочные константы представляют собой:

Δt0, αF, , .

Предпочтительно указанное устройство, которое получает указанные калибровочные константы, включает в себя устройство, которое решает выражение:

где

Δt - индуцированная потоком задержка времени,

Δt0 - номинальная задержка времени,

- массовый расход,

F - частота возбуждения,

F0 - частота возбуждения для номинального нулевого потока,

αF - константа линейной частоты для нуля,

- константа, связанная с ККП,

- константа линейной частоты (температуры).

Предпочтительно указанное устройство, которое получает указанное компенсированное по температуре значение массового расхода, решает следующее выражение:

где

Δt - индуцированная потоком задержка времени задержки,

Δt0 - номинальная задержка времени,

- массовый расход,

F - частота возбуждения,

F0 - нулевая частота возбуждения,

αF - константа линейной частоты для нуля,

- константа, связанная с ККП,

- константа линейной ККП частоты (температуры).

Краткое описание чертежей

Эти и другие преимущества и свойства настоящего изобретения будут более понятны при чтении следующего подробного его описания совместно с прилагаемыми чертежами.

На фиг.1 раскрыт вид в перспективе первого примера Кориолисова расходомера в соответствии с вариантом выполнения настоящего изобретения.

На фиг.2 показан вид сверху варианта выполнения по фиг.1.

На фиг.3 показан вид спереди варианта выполнения по фиг.1.

На фиг.4 показан вид в разрезе вдоль линии 4-4, обозначенной на фиг.2.

На фиг.5 показан график, представляющий взаимозависимость между частотой возбуждения и температурой расходомерной трубки.

На фиг.6 показан график, представляющий взаимозависимость между частотой возбуждения и плотностью материала.

На фиг.7-9 показаны графики, представляющие сбор данных во время калибровки.

На фиг.10-11 показаны блок-схемы последовательности операций способа, используемого для калибровки Кориолисова расходомера и для определения массового расхода .

На фиг.12 иллюстрируется получение калибровочных констант.

На фиг.13 и 14 представлены иллюстрации сравнительных значений точности использования изменений частоты в сравнении с РДТ для получения температурной компенсации.

На фиг.15 дополнительно представлена электронная измерительная схема 121 по фиг.1.

Подробное описание изобретения

Условные обозначения

ККП - коэффициент калибровки потока в соответствии с предшествующим уровнем техники;

α - коэффициент температуры ККП предшествующего уровня техники;

Δt - индуцированная потоком задержка времени;

Δt0 - номинальная задержка времени при нулевом потоке;

- массовый расход;

F - рабочая частота возбуждения;

F0 - номинальная частота возбуждения (при нормальных условиях температуры), выбранная изготовителем;

ZERO(F) - член, описывающий влияние частоты на номинальную задержку времени Δt0. Равен Δt0+(F-F0F;

αF - константа линейной частоты для нуля;

- коэффициент пропорциональности, сопоставляющий Δt с массовым расходом. Аналогичен ККП в предшествующем уровне техники.

константа линейной частоты (температуры) для Аналогична α в предшествующем уровне техники;

FMUT - испытуемый расходомер (ИРМ).

Описание фиг.1

На фиг.1 показан вид в перспективе первого возможного примерного варианта выполнения Кориолисова расходомера в соответствии с вариантом выполнения изобретения. Здесь представлен измеритель 100 потока, имеющий расходомерную трубку 102, которая пропущена через стойки 117, 118 основания 101. Датчики LP0 и RP0, а также возбудитель D соединены с расходомерной трубкой 102. Обрабатываемый материал поступает в измеритель 100 потока через трубку 104 подачи, после чего поток поступает через соединитель 108 обработки в расходомерную трубку 102. В трубке 102 возбуждают вибрацию на частоте ее собственного резонанса, в то время как по ней протекает материал, с помощью возбудителя D. Полученные в результате Кориолисова отклонения детектируют с помощью датчиков LP0 и RP0, которые передают сигналы через проводники 112 и 114 в электронную измерительную схему 121 Кориолиса. Электронная измерительная схема 121 Кориолиса принимает сигналы датчиков, определяет разность фазы между ними, определяет частоту вибрации и передает выходную информацию, относящуюся к потоку материала, через выходную цепь 122 в схему использования этой информации (не показана). Электронная измерительная схема 121 более подробно показана на фиг.15.

Поток материала протекает через расходомерную трубку 102 и через трубку 106, которая направляет поток материала обратно через возвратную трубку 103, через соединитель 107 обработки, в выходную трубку 105, по которой поток материала подают для использования пользователем.

Соединители 107, 108, 109 и 110 обработки соединяют трубки 104, 105 и 106 с концами расходомерной трубки 102 и возвратной трубки. Соединители обработки имеют фиксированный участок 111, на котором сформирована резьба 124. В фиксирующих отверстиях 130 установлены фиксирующие винты 411 для прочного соединения элемента 111 с основанием 101, как показано на фиг.4. Подвижные участки соединителей 107-110 обработки навинчены на внешнюю резьбу 124 для соединения их соответствующих трубок с неподвижным корпусом соединителей обработки, на части которого образован участок 111 шестигранной гайки. Такие соединители обработки работают аналогично хорошо известным соединителям обработки развальцованных медных трубок для соединения трубок 104, 105 и 106 с концами расходомерной трубки 102 и возвратной трубки 103. Подробно соединители обработки дополнительно показаны на фиг.4.

Описание фиг.2

На фиг.2 показан вид сверху расходомера 100 по фиг.1. Каждый из датчиков LP0 и RP0, а также возбудитель D включает в себя катушку C. Каждый из этих элементов дополнительно включает в себя магнит, который закреплен на нижнем участке расходомерной трубки 102, как показано на фиг.3. Каждый из этих элементов дополнительно включает в себя основание, такое как 143 для возбудителя D, а также тонкую полоску материала, такую как 133 для возбудителя D. Тонкая полоска материала может содержать печатную плату, на которой закреплены катушка C и выводы ее обмотки. Датчики LP0 и RP0 также имеют соответствующий элемент основания и тонкую полоску, закрепленную в верхней части этого элемента основания. Такая компоновка обеспечивает установку возбудителя или датчиков в соответствии с этапами приклеивания магнита М к нижней стороне расходомерной трубки, приклеивания катушки C к печатной плате 133 (для возбудителя D), установки отверстия катушки C вокруг магнита М, перемещения катушки C вверх так, что при этом магнит М полностью располагается внутри отверстия катушки C, последующую установку элемента основания 143 под печатной платой 133 и склеивание этих элементов вместе, в результате чего нижняя часть основания 143 закрепляется с помощью клея на поверхности массивного основания 116.

Внешняя резьба 124 соединителей 107-110 обработки показана на фиг.2. Внутренние детали каждого из этих элементов показаны на фиг.4. В отверстии 132 проложены проводники 112, 113 и 114. Электронная измерительная схема 121 Кориолисова расходомера по фиг.1 не показана на фиг.2 для упрощения чертежа. Однако следует понимать, что проводники 112, 113 и 114 продолжаются через отверстие 132 и далее продолжаются по цепи 123, показанной на фиг.1, до электронной измерительной схемы Кориолисова расходомера, показанной на фиг.1.

Описание фиг.3 и 4

На фиг.3 показаны датчики LP0, RP0 и возбудитель D, который содержит магнит М, закрепленный на нижнем участке расходомерной трубки 102, и катушку C, закрепленную на основании каждого из элементов LP0, RP0 и возбудителя D.

На фиг.4 показан вид в разрезе вдоль линии 4-4, обозначенной на фиг.2. На фиг.4 представлены все элементы фиг.3 и дополнительные детали соединителей 108 и 109, а также кольцевые прокладки 430. Кольцевые прокладки 430 труб соединяют расходомерную трубку 102 с основанием 401. На фиг.4 дополнительно представлены отверстия 402, 403 и 404 в основании 101. Верхняя часть каждого из этих отверстий продолжается до нижней поверхности основания датчиков LP0, RP0 и возбудителя D. Катушка C и магнит М, связанные с каждым из этих элементов, также показаны на фиг.4. Электронная измерительная схема 121 Кориолисова расходомера по фиг.1 не показана на фиг.3 и 4 для упрощения чертежей. Элемент 405 соединителя 108 обработки представляет собой входное отверстие расходомерной трубки 102; элемент 406 соединителя 109 обработки представляет собой выходное отверстие расходомерной трубки 102.

Неподвижный участок 111 соединителя 108 обработки включает в себя внешнюю резьбу 409, которая завинчена в соответствующую резьбу в приемном отверстия 420, расположенном в основании 401, для соединения неподвижного участка 111 с сегментом 401 основания 101. Неподвижный участок соединителя 109 обработки с правой стороны оборудован и закреплен аналогично с помощью резьбы 409 в приемном отверстии 420, сформированном в элементе 401 основания 101.

Неподвижный элемент 111 соединителя 108 обработки дополнительно включает в себя резьбовой участок 124, на резьбу которого установлен подвижный участок 415 соединителя 108 обработки. Соединитель 109 обработки выполнен аналогично. Неподвижный элемент 111 соединителя 108 обработки дополнительно включает в себя с его левой стороны конический участок 413, который вместе с подвижным элементом 415 действует как фитинг для развальцовки, для прижима правого конца входной трубки 104 к коническому участку 413 неподвижного участка 111. Это создает уплотненный фитинг, который герметично закрепляет развальцованное отверстие трубки 104 подачи на коническом участке 413 неподвижного участка 111 соединителя обработки. Входное отверстие расходомерной трубки 102 установлено на неподвижном участке 111 соединителя обработки и заподлицо с поверхностью 425 участка 413. Благодаря этому материал обработки, подаваемый по трубке 104 подачи, поступает во входное отверстие 405 расходомерной трубки 102. Материал обработки протекает вправо через расходомерную трубку 102 к неподвижному участку 111 соединителя 109 обработки, где выходное отверстие 406 расходомерной трубки 102 соединено заподлицо с поверхностью 425 участка 413. В результате выходное отверстие расходомерной трубки 102 герметично соединено с соединителем 109. Другие соединители 107 и 110 обработки по фиг.1 выполнены идентично подробно описанным соединителям 108 и 109 обработки по фиг.4.

Общее описание фиг.5-12

В настоящем изобретении температурная компенсация выходных показаний Кориолисова расходомера, представляющих собой массовый расход, обеспечивается путем использования частоты возбуждения в качестве индикатора изменений температуры расходомерной трубки. Кориолисовы расходомеры измеряют массовый расход непосредственно путем расчета задержки (Δt) времени между входным и выходным ко