Способы выделения белка, направленные на снижение содержания фитиновой кислоты

Иллюстрации

Показать все

Изобретение относится к способам выделения белка из масличных семян. Экстракции подвергают муку из масличных семян канолы водным раствором хлорида кальция при температуре 45-70°С с целью ингибирования экстракции фитиновой кислоты. Далее образовавшийся водный раствор белка отделяют от остатков муки, концентрируют при поддержании постоянной ионной силы раствора. Затем разбавляют холодной водой и отделяют образовавшуюся мицеллярную белковую массу, при этом содержание белка составляет, по меньшей мере, 90% по весу (N×6,25). Предлагаемый способ позволяет получить изолят белка преимущественно в неденатурированном виде, имеющий сниженное содержание непитательных веществ. 1 з.п. ф-лы, 2 ил, 6 табл.

Реферат

Ссылка на родственные заявки

Настоящая заявка претендует согласно 35 Своду законов США 119(е) на дату приоритета, указанную в совместно рассматривающихся заявках на патенты США №60/568680 с датой подачи 7 мая 2004 г. и №60/605145 с датой подачи 30 августа 2004 г.

Область техники, к которой относится изобретение

Настоящее изобретение относится к производству белковых изолятов, в частности изолята белка канолы, из муки из масличных семян, целью которого является снижение содержания фитиновой кислоты в белковом изоляте.

Предшествующий уровень техники

Изоляты белка канолы можно получать из муки из масличных семян канолы. В совместно рассматривающейся заявке на патент США №10/137391 с датой подачи 3 мая 2002 г. (WO 02/089597), правопреемником которой является автор настоящей заявки и которая включена в перечень ссылок, принятых во внимание при составлении настоящей заявки, описан способ получения изолятов белка канолы из муки из масличных семян канолы, причем эти изоляты имеют содержание белка, по меньшей мере, 100 мас.% (Nx 6,25). Способ включает многостадийный процесс, состоящий из экстрагирования муки из масличных семян канолы с применением солевого раствора, предпочтительно водного раствора хлорида натрия; отделения полученного водного белкового раствора от остаточной муки из масличных семян; повышения концентрации белка в водном растворе, по меньшей мере, примерно до 200 г/л при одновременном поддержании ионной силы раствора в основном постоянной с применением селективной мембранной технологии; разбавления полученного концентрированного белкового раствора в охлажденной воде с целью вызвать образование белковых мицелл; осаждения белковых мицелл отстаиванием с получением аморфной, клейкой, студенистой, похожей на клейковину белковой мицеллярной массы (РММ) и извлечения белковой мицеллярной массы из супернатанта, причем РММ имеет содержание белка, по меньшей мере, примерно 100 мас.% при определении его по Кьельдалю - азот (N) × 6,25. В контексте описания содержание белка определяется в пересчете на сухое вещество. Извлеченная РММ может подвергаться сушке.

В одном из вариантов описанного выше способа и особенно, как описано в заявке №10/137391, супернатант от стадии отстаивания РММ подвергается последующей обработке с целью извлечения белкового изолята, включающего сухой белок из влажной РММ и супернатанта. Эта процедура может осуществляться путем начального концентрирования супернатанта с применением ультрафильтрационных мембран, смешивания концентрированного супернатанта с влажной РММ и сушки смеси. Полученный изолят белка канолы имеет высокую степень чистоты, по меньшей мере, примерно 90 мас.% белка (N×6,25), предпочтительно, по меньшей мере, примерно 100 мас.% белка (N×6,25).

В другом варианте описанного выше способа и особенно, как описано в заявке №10/137391, супернатант от стадии отстаивания РММ подвергается обработке с целью извлечения белка из супернатанта. Эта процедура может осуществляться путем начального концентрирования супернатанта с применением ультрафильтрационных мембран и сушки концентрата. Полученный изолят белка канолы имеет высокую степень чистоты, по меньшей мере, примерно 90 мас.% белка (N×6,25), предпочтительно, по меньшей мере, примерно 100 мас.% белка (N×6,25).

Способы, описанные в вышеупомянутых заявках на патенты США, являются преимущественно периодическими способами. В совместно рассматривающейся заявке на патент США №10/298678 с датой подачи 19 ноября 2002 г. (WO 03/043439), правопреемником которой является автор настоящей заявки и которая включена в перечень ссылок, принятых во внимание при составлении настоящей заявки, описан непрерывный способ получения изолятов белка канолы. В соответствии с этим способом мука из масличных семян канолы непрерывно смешивается с солевым раствором, предпочтительно водным раствором хлорида натрия; смесь транспортируется по трубопроводу с одновременной экстракцией белка из муки из масличных семян канолы с образованием водного белкового раствора; водный белковый раствор непрерывно отделяется от остаточной муки из масличных семян канолы; водный белковый раствор непрерывно пропускается через операцию с селективной мембраной с целью увеличения содержания белка в водном белковом растворе, по меньшей мере, примерно до 200 г/л при одновременном поддержании ионной силы раствора в основном постоянной; полученный концентрированный белковый раствор непрерывно смешивается с охлажденной водой с тем, чтобы вызвать образование белковых мицелл, и белковые мицеллы непрерывно осаждаются отстаиванием, в то время как супернатант непрерывно сливается с осадка до тех пор, пока в отстойнике не накопится требуемое количество РММ. РММ выгружается из отстойника и может подвергаться сушке. РММ имеет содержание белка, по меньшей мере, примерно 90 мас.% при определении его по Кьельдалю - азот (N) × 6,25, предпочтительно, по меньшей мере, примерно 100 мас.% (N×6,25).

Как описано в вышеупомянутой заявке на патент США №10/137391, сливаемый с осадка супернатант может подвергаться обработке с целью извлечения из него изолята белка канолы.

Как описано в совместно рассматривающейся заявке на патент США №10/413371 с датой подачи 15 апреля 2003 г. и соответствующей РСТ публикации №WO 03/088760, правопреемником которых является автор настоящей заявки и которые включены в перечень ссылок, принятых во внимание при составлении настоящей заявки, изолят белка канолы, выделенный из РММ, состоит преимущественно из белка 7S наряду с некоторым количеством белка 12S, в то время как изолят белка канолы, выделенный из супернатанта, состоит главным образом из белка 2S.

Мука из масличных семян, включая муку из масличных семян канолы, содержит антипитательные факторы, включая фитиновую кислоту, зачастую присутствующую в форме солей - фитатов. Термин "фитиновая кислота" в контексте настоящего описания включает и эти формы солей. В зависимости от вида масличных семян содержание фитиновой кислоты в муке из масличных семян может колебаться примерно от 0,3 до 10 мас.% Обычно мука из масличных семян канолы содержит примерно от 2 до 6 мас.% фитиновой кислоты.

Экстракция муки из масличных семян канолы водным раствором хлорида натрия для образования водного белкового раствора солюбилизирует антипитательные факторы, включая фитиновую кислоту, из муки из масличных семян, что приводит к наличию фитиновой кислоты в белковом изоляте, извлеченном из водного белкового раствора. Увеличение количества фитиновой кислоты в белковом изоляте отрицательно сказывается на переваримости белкового изолята. Переваримость белкового изолята имеет важное значение в определенных областях его применения, включая аквакультуру. Поэтому желательно уменьшить содержание фитиновой кислоты в белковом изоляте, предназначенном для такого применения.

Канола известна также как рапс или масличный рапс.

Краткое описание изобретения

Настоящее изобретение касается способов, которые приводят к пониженному содержанию фитиновой кислоты в белковых изолятах, выделенных из муки из масличных семян. Авторами настоящей заявки установлено, что если начальную экстракцию муки из масличных семян, предпочтительно муки из масличных семян канолы, проводить в определенных условиях, то можно получить белковые изоляты с пониженным содержанием фитиновой кислоты и повышенной питательной ценностью.

В одном из вариантов практического осуществления настоящего изобретения установлено, что если экстракцию муки из масличных семян, предпочтительно из масличных семян канолы, водным раствором хлорида натрия проводить при повышенной температуре, то это приведет к получению после отделения от остаточной муки из масличных семян водного белкового раствора, который имеет более низкое содержание фитиновой кислоты, чем водный раствор белка канолы, полученный экстракцией, проведенной при температуре окружающей среды.

Не стремясь связываться с теорией, авторы настоящей заявки выдвинули предположение, что фитиновая кислота, экстрагированная из муки из масличных семян при повышенной температуре, выпадает в осадок из полученного водного белкового раствора и удаляется в процессе фильтрации, применяемой для отделения водного белкового раствора от остаточной муки из масличных семян. Кроме того, фитиновая кислота не может экстрагироваться в водный белковый раствор вследствие обратного эффекта растворимости фитиновой кислоты в водном растворе хлорида натрия при повышенной температуре.

В настоящее время установлено также в соответствии с другим вариантом практического осуществления настоящего изобретения, что если хлорид натрия, предпочтительно используемый на стадии экстракции в способах, описанных в вышеприведенных патентных заявках, заменить хлоридом кальция, то количество фитиновой кислоты, присутствующей в водном белковом растворе, отделенном от остаточной муки из масличных семян канолы, уменьшится.

Не желая останавливаться на теории, авторы настоящей заявки выдвинули предположение, что при этих способах ионы кальция образуют комплексы с фитиновой кислотой в форме нерастворимого осадка, который остается в отработанной муке или удаляется в процессе осветления водного белкового раствора.

Таким образом, в одном аспекте настоящего изобретения обеспечивается способ получения белкового изолята, который включает: (а) экстракцию муки из масличных семян с целью вызвать солюбилизацию белка в указанной муке из масличных семян с образованием водного белкового раствора при одновременном ингибировании экстракции фитиновой кислоты из муки из масличных семян в белковый раствор; (б) отделение водного белкового раствора от остаточной муки из масличных семян; (в) увеличение концентрации белка в водном белковом растворе до концентрации, по меньшей мере, примерно 50 г/л при одновременном поддержании ионной силы раствора в основном постоянной для обеспечения концентрированного белкового раствора; (г) разбавление указанного концентрированного белкового раствора в охлажденной воде, имеющей температуру ниже примерно 15°С, с целью вызвать образование белковых мицелл; (д) осаждение белковых мицелл отстаиванием с получением аморфной, клейкой, студенистой, похожей на клейковину мицеллярной массы и (е) отделение белковой мицеллярной массы от супернатанта, имеющего содержание белка, по меньшей мере, примерно 90 мас.% (N×6,25) в сухом веществе.

Дальнейшее снижение количества фитиновой кислоты в водном белковом растворе от экстракции муки из масличных семян может достигаться путем комбинирования двух вышеописанных вариантов, а именно - проведение экстракции с использованием хлорида кальция при повышенной температуре.

Изоляты белка канолы, полученные согласно описываемому здесь способу, могут применяться в традиционных областях использования белковых изолятов, например, для обогащения белком пищевых продуктов технологической обработки, для эмульгирования масел, в качестве структурообразователя в хлебопекарных изделиях и пенообразователя во взбитых продуктах. В дополнение к этому изоляты белка канолы могут формоваться в виде белковых волокон, пригодных для использования в аналогах мяса; могут использоваться как заменитель яичного белка или как наполнитель, удешевляющий стоимость тех пищевых продуктов, в которых в качестве связующего агента традиционно использовался яичный белок. Изолят белка канолы может использоваться и как питательная добавка. К другим сферам его применения относятся производство кормов для домашних животных, животных кормов, аквакультуры, а также промышленное использование и применение в косметических изделиях и средствах личной гигиены.

Краткое описание фигур

Фиг.1 представляет собой схематическое изображение способа производства изолятов белка канолы с разными белковыми профилями согласно одному варианту практического осуществления изобретения и

Фиг.2 представляет собой схематическое изображение непрерывного способа производства изолятов белка канолы с разными белковыми профилями согласно другому варианту практического осуществления изобретения.

Подробное описание изобретения

Соответствующие изолят белка канолы, полученный из РММ, и изолят белка канолы, полученный из супернатанта, могут выделяться из муки из масличных семян канолы либо периодическим способом, либо непрерывным способом, либо полунепрерывным способом, как описано в общих чертах в вышеупомянутых заявках на патенты США. Хотя настоящее изобретение описывается, главным образом, применительно к каноле, настоящее изобретение применимо также и к муке из семян других масличных культур, в которой фитиновая кислота солюбилизируется на стадии экстракции, включая муку из семян льна, конопли и сои.

Начальная стадия способа обеспечения изолятов белка канолы включает солюбилизацию белкового материала из муки из масличных семян канолы. Белковый материал, извлекаемый из муки из семян канолы, может представлять собой нативный белок семян канолы, либо белковый материал может быть белком, модифицированным генетической манипуляцией, но обладающим характерными для нативного белка гидрофобными и полярными свойствами. Мука канолы может быть любой мукой канолы, полученной от удаления масла канолы из масличных семян канолы, с варьирующими уровнями неденатурированного белка, например, от удаления масла методами экстракции горячим гексаном или холодной экструзии. Удаление масла канолы из масличных семян канолы обычно осуществляется как операция, отдельная от описываемого здесь способа извлечения белкового изолята.

Солюбилизация белка осуществляется таким образом, чтобы обеспечить более низкое количество фитиновой кислоты, присутствующей в водном растворе белка канолы, по сравнению со способами, описанными в вышеупомянутых заявках на патенты США. Солюбилизация белка проводится с использованием водного солевого раствора, который может быть водным раствором хлорида натрия или, в предпочтительном варианте, водным раствором хлорида кальция.

Для того чтобы иметь пониженную концентрацию фитиновой кислоты в водном растворе белка канолы, полученном от экстракции муки из масличных семян канолы, экстракция может осуществляться с использованием водного раствора хлорида кальция в определенном диапазоне температур, либо, в случае если водный хлорид кальция не используется, экстракция проводится скорее при повышенной температуре, чем при температуре окружающей среды.

Такая экстракция при повышенной температуре может осуществляться при температуре примерно от 45°С до 70°С. Предпочтительно такая экстракция проводится с использованием водного раствора хлорида натрия при температуре примерно от 55°С до 65°С.

Водный раствор соли, используемый при экстракции белка, если это не хлорид кальция, а предпочтительно хлорид натрия, может иметь значения ионной силы, рН и концентрации муки, которые обсуждаются ниже для экстракции с хлоридом кальция.

Солюбилизация белка предпочтительно проводится в соответствии с одним вариантом настоящего изобретения с использованием раствора хлорида кальция. Солевой раствор имеет ионную силу, по меньшей мере, примерно 0,05, предпочтительно по меньшей мере, примерно 0,1, с тем чтобы обеспечить солюбилизацию значительных количеств белка. По мере увеличения ионной силы раствора хлорида кальция степень солюбилизации белка в муке из масличных семян первоначально возрастает до тех пор, пока не достигнет максимального значения. Любое последующее увеличение ионной силы не приводит к увеличению общего количества солюбилизированного белка. Ионная сила раствора хлорида кальция, которая вызывает максимальную солюбилизацию белка, варьирует в зависимости от выбранной муки из масличных семян.

С учетом того, что с увеличением ионной силы требуется более высокая степень разбавления для осаждения белка, обычно предпочитается, чтобы значение ионной силы было ниже примерно 0,08 и более предпочтительным является значение примерно от 0,1 до 0,15.

В периодическом способе солюбилизация белка солью осуществляется при температуре, по меньшей мере, примерно от 5°С и предпочтительно до 35°С и предпочтительно сопровождается перемешиванием для сокращения времени солюбилизации, которое обычно составляет примерно от 10 до 60 минут. Предпочтительно солюбилизация проводится так, чтобы экстрагировать в основном максимально возможное на практике количество белка из муки из масличных семян с тем, чтобы обеспечить высокий общий выход продукта.

В качестве нижнего температурного предела выбрана температура примерно 5°С, поскольку при температуре ниже этой солюбилизация замедляется, становясь неэффективной, в то время как в качестве верхнего предпочтительного температурного предела выбрана температура примерно 35°С, поскольку при более высоких температурных уровнях способ становится неэкономичным в периодическом режиме. Однако повышенные температуры могут быть желательными в случае экстракции хлоридом кальция, поскольку способствуют дальнейшему снижению содержания фитиновой кислоты в водном белковом растворе, что обсуждалось выше.

В непрерывном способе экстракция белка из муки из масличных семян канолы проводится любым путем, совместимым с проведением непрерывной экстракции белка из муки из масличных семян канолы. В одном варианте практического осуществления изобретения мука из масличных семян канолы непрерывно смешивается с раствором хлорида кальция и смесь транспортируется по трубопроводу, длина которого и скорость потока в котором обеспечивают время пребывания, достаточное для осуществления требуемой экстракции в соответствии с описанными здесь параметрами. В таком непрерывном способе стадия солюбилизации солью происходит быстро - в течение примерно до 10 минут; предпочтительно солюбилизация осуществляется таким образом, чтобы экстрагировать в основном максимально достижимое на практике количество белка из муки из масличных семян канолы. Солюбилизация в непрерывном способе предпочтительно проводится при повышенных температурах, предпочтительно выше примерно 35°С, в большинстве случаев - примерно до 65°С. Как отмечалось ранее, повышенные температуры приводят к пониженным уровням фитиновой кислоты в водном белковом растворе.

Водный раствор хлорида кальция и мука из масличных семян канолы имеют естественный рН - примерно от 5 до 6,8, что позволяет получать белковый изолят мицеллярным путем, как более подробно описывается ниже.

При предельных и близких к предельным значениях рН образование белкового изолята мицеллярным путем происходит только частично и с более низкими выходами, чем при других значениях указанного диапазона рН. По этим причинам предпочтительными являются значения рН примерно от 5,3 до 6,2.

Величина рН солевого раствора может регулироваться на стадии экстракции до требуемого значения в диапазоне примерно от 5 до 6,8 с помощью любой пригодной для данной цели кислоты, обычно соляной кислоты, или щелочи, обычно гидроксида натрия, в зависимости от требований.

Концентрация муки из масличных семян в растворе хлорида кальция на стадии солюбилизации может варьировать в широких пределах. Типичные значения концентрации составляют примерно от 5 до 15 мас./об.%.

В солевом растворе может присутствовать антиоксидант в течение, по меньшей мере, части стадии экстракции. Антиоксидант может быть любым пригодным для данной цели, антиоксидантом, таким как сульфит натрия или аскорбиновая кислота. Количество антиоксиданта, применяемого на стадии экстракции, зависит от используемых материалов и может варьировать примерно от 0,01 до 1 мас.%, предпочтительно - примерно 0,05 мас.%. Антиоксидант служит для ингибирования окисления фенольных соединений, присутствующих в водном белковом растворе, которые могут отрицательно влиять на цвет готового продукта.

Стадия экстракции белка водным раствором хлорида кальция имеет дополнительный эффект солюбилизации жиров, которые могут присутствовать в муке канолы, а затем перейти в жиры, присутствующие в водной фазе.

Белковый раствор, полученный на стадии экстракции, в большинстве случаев имеет концентрацию белка примерно от 5 до 40 г/л, предпочтительно - примерно от 10 до 30 г/л. Экстракция белка из муки из масличных семян канолы с использованием водного раствора хлорида кальция приводит к присутствию фитиновой кислоты в белковом растворе, но на значительно сниженном уровне по сравнению с белковым раствором, полученным от экстракции муки из масличных семян канолы с использованием водного раствора хлорида натрия при таких же условиях экстракции.

Водная фаза, полученная на стадии экстракции, может затем отделяться от остаточной муки из семян канолы любым пригодным для этой цели способом, например путем применения центрифуги-декантатора с последующим центрифугированием в тарельчатой центрифуге и/или фильтрацией для удаления остаточной муки. Отделенная остаточная мука может подвергаться сушке перед дальнейшим использованием.

Цвет готового изолята белка канолы можно улучшить, т.е. сделать его более светлым и менее интенсивным желтым, путем смешивания активированного угля в порошке или другого агента, адсорбирующего пигменты, с отделенным водным белковым раствором и последующего удаления адсорбента, обычно фильтрацией, для обеспечения белкового раствора. Для удаления пигментов может применяться также диафильтрация.

Указанная стадия удаления пигментов может проводиться в любых удобных для этой цели условиях, в большинстве случаев при комнатной температуре отделенного водного белкового раствора с использованием любого пригодного агента, адсорбирующего пигменты. Активированный уголь в порошке используется в количестве примерно от 0,025% до 5 мас./об.%, предпочтительно - примерно от 0,05% до 2 мас./об.%.

Если мука из семян канолы содержит значительные количества жира, как описано в патентах США №5844086 и 6005076, правопреемником которых является автор настоящей заявки и которые включены в перечень ссылок, принятых во внимание при составлении настоящей заявки, то могут проводиться описанные в указанных патентах стадии обезжиривания отделенного водного белкового раствора и концентрированного водного белкового раствора, что обсуждается ниже. Если проводится стадия улучшения цвета, то эта стадия может осуществляться после первой стадии обезжиривания.

Альтернативным вариантом является экстракция муки из масличных семян с применением водного раствора хлорида кальция при относительно высоком значении рН - выше примерно 6,8, в большинстве случаев - примерно до 9,9. Величина рН раствора хлорида кальция может регулироваться до требуемого значения в щелочной области рН с помощью любой пригодной для данной цели щелочи пищевого качества, такой как водный раствор гидроксида натрия. Альтернативно мука из масличных семян может экстрагироваться раствором хлорида кальция при относительно низком рН - ниже примерно 5, в большинстве случаев - ниже примерно 3. В случае использования такого альтернативного варианта водная фаза, полученная от стадии экстракции муки из масличных семян, отделяется затем от остаточной муки канолы любым удобным способом, например с использованием центрифуги-декантатора с последующим центрифугированием в тарельчатой центрифуге и/или фильтрацией для удаления остаточной муки. Отделенная остаточная мука может подвергаться сушке перед дальнейшим использованием.

Величина рН водного белкового раствора, полученного на стадии экстракции при высоком или низком рН, может устанавливаться в диапазоне рН примерно от 5 до 6,8, предпочтительно - примерно от 5,3 до 6,2, что обсуждалось выше, перед последующей обработкой, что обсуждается ниже. Такое регулирование рН может проводиться с использованием любой пригодной для данной цели кислоты, такой как соляная, или щелочи, такой как гидроксид натрия, в зависимости от потребности.

Затем водный белковый раствор концентрируется с целью повышения концентрации белка в нем при одновременном поддержании его ионной силы в основном постоянной. Указанное концентрирование в большинстве случаев проводится таким образом, чтобы обеспечить концентрированный белковый раствор, имеющий концентрацию белка, по меньшей мере, примерно 50 г/л, предпочтительно, по меньшей мере, примерно 200 г/л, более предпочтительно, по меньшей мере, примерно 250 г/л.

Стадия концентрирования может осуществляться любым удобным образом, совместимым с периодическим или непрерывным режимом, например с применением любой удобной селективной мембранной технологии, такой как ультрафильтрация или диафильтрация, использующей мембраны, например мембраны из полых волокон или спиралеобразные мембраны, с соответствующей молекулярной проницаемостью, например с проницаемостью для веществ с молекулярной массой примерно от 3000 до 100000 дальтон, предпочтительно - примерно от 5000 до 10000 дальтон, в зависимости от различных материалов, из которых изготовлены мембраны, и конфигураций мембран, а в непрерывном способе - с использованием мембран такого размера, который обеспечивает требуемую степень концентрирования водного белкового раствора при пропускании его через мембраны.

Концентрированный белковый раствор может подвергаться затем стадии диафильтрации с использованием водного солевого раствора, который может быть водным раствором хлорида натрия или водным раствором хлорида кальция такой же молярности и с таким же рН, что и экстракционный раствор. Указанная диафильтрация может осуществляться с использованием примерно от 2 до 20 объемов диафильтрационного раствора, предпочтительно - примерно от 5 до 10 объемов диафильтрационного раствора В ходе операции диафильтрации из водного белкового раствора удаляются дополнительные количества загрязняющих веществ, включая фенольные соединения и красящие вещества с заметной окраской, которые проходят через мембрану с пермеатом. Операция диафильтрации может проводиться до тех пор, пока в пермеат не перейдут значительные дополнительные количества фенольных соединений и красящих веществ с заметной окраской. Такая диафильтрация может осуществляться с применением мембраны, проницаемой для веществ с молекулярной массой примерно от 3000 до 100000 дальтон, предпочтительно - примерно от 5000 до 10000 дальтон, в зависимости от различных материалов, из которых изготовлена мембрана, и ее конфигурации.

В диафильтрационной среде может присутствовать антиоксидант, по меньшей мере, на какой-то части стадии диафильтрации. Антиоксидант может быть любым пригодным для данной цели антиоксидантом, таким как сульфит натрия или аскорбиновая кислота. Количество антиоксиданта, используемого в диафильтрационной среде, зависит от используемых материалов и может варьировать примерно от 0,01 до 1 мас.%, предпочтительно - примерно 0,05 мас.% Антиоксидант служит для ингибирования окисления фенольных соединений, присутствующих в концентрированном растворе изолята белка канолы, которые могут отрицательно влиять на цвет готового продукта.

Стадия концентрирования и стадия диафильтрации могут проводиться при любой удобной температуре, в большинстве случаев примерно от 20°С до 60°С, предпочтительно - примерно от 20°С до 30°С, и в течение периода времени, достаточного для достижения требуемой степени концентрирования. Температура и другие применяемые параметры зависят в определенной степени от мембранного оборудования, используемого для осуществления концентрирования, и требуемой концентрации белка в растворе.

Концентрирование белкового раствора до предпочтительной концентрации белка выше примерно 200 г/л на этой стадии не только повышает выход продукта до уровня выше примерно 40% в пределах того относительного количества экстрагированного белка, которое извлекается в виде сухого белкового изолята, предпочтительно - выше примерно 80%, но и снижает концентрацию соли в готовом белковом изоляте после сушки. Возможность контролировать концентрацию соли в изоляте имеет важное значение в рамках практического использования этого изолята, в котором колебания концентраций соли могут отрицательно сказаться на функциональных и сенсорных свойствах изолята в составе тех специфических продуктов, в которых он используется.

Как хорошо известно, ультрафильтрация и аналогичные селективные мембранные технологии обеспечивают прохождение низкомолекулярных веществ при одновременном удерживании на мембране высокомолекулярных веществ. Низкомолекулярные вещества включают не только ионные формы соли, но и низкомолекулярные материалы, экстрагируемые из исходного сырья, такие как углеводы, пигменты и антипитательные факторы, а также низкомолекулярные формы белка. Обычно подбирается мембрана с такой молекулярной проницаемостью, которая гарантирует удержание значительного количества белка в растворе и в то же время обеспечивает прохождение загрязняющих веществ в зависимости от различных материалов, из которых изготовлена мембрана, и ее конфигурации.

Концентрированный и необязательно диафильтрованный белковый раствор может подвергаться последующей операции обезжиривания, если таковая требуется, как описано в патентах США №5844086 и 6005076.

Концентрированный и необязательно диафильтрованный белковый раствор может подвергаться операции удаления красящих веществ как альтернативы описанной выше операции удаления красящих веществ. В этой операции может использоваться активированный уголь в порошке, а также гранулированный активированный уголь (GAC). Другим материалом, который может применяться на этой стадии в качестве агента, адсорбирующего красящие вещества, является поливинилпирролидон.

Стадия обработки агентом, абсорбирующим красящие вещества, может проводиться в любых удобных условиях, в большинстве случаев при температуре окружающей среды раствора белка канолы. В случае применения активированного угля в порошке его количество может составлять примерно от 0,025% до 5 мас./об.%, предпочтительно - примерно от 0,05% до 2 мас./об.%. Если в качестве агента, адсорбирующего красящие вещества, используется поливинилпирролидон, то его количество может составлять примерно от 0,5 до 5 мас./об.%, предпочтительно - примерно от 2% до 3 мас./об.%. Агент, адсорбирующий красящие вещества, может удаляться из раствора белка канолы любым удобным методом, например фильтрацией.

Концентрированный и необязательно диафильтрованный белковый раствор от необязательной стадии удаления красящих веществ может подвергаться пастеризации в целях уничтожения любых бактерий, которые могут присутствовать в исходной муке как следствие ее хранения или т.п., и экстрагироваться из муки в раствор изолята белка канолы на стадии экстракции. Указанная пастеризация может проводиться при любых требуемых режимах пастеризации. В большинстве случаев концентрированный и необязательно диафильтрованный белковый раствор нагревается до температуры примерно от 55°С до 70°С, предпочтительно - примерно от 60°С до 65°С, в течение примерно от 10 до 15 минут, предпочтительно - в течение примерно 10 минут. Затем пастеризованный концентрированный белковый раствор может охлаждаться для последующей обработки, как описано ниже, предпочтительно до температуры примерно от 25°до 40°С.

В зависимости от температуры, применяемой на стадии концентрирования и необязательной стадии диафильтрации, и независимо от того, проводилась стадия пастеризации или нет, концентрированный белковый раствор может подогреваться до температуры, по меньшей мере, примерно от 20°С до 60°С, предпочтительно - примерно от 25°С до 40°С, в целях снижения вязкости концентрированного белкового раствора для облегчения проведения последующей стадии разбавления и образования мицелл. Концентрированный белковый раствор не следует нагревать до температуры выше указанной, поскольку при такой температуре не будет происходить образования мицелл при разбавлении охлажденной водой.

Затем концентрированный белковый раствор, полученный от стадии концентрирования, необязательной стадии диафильтрации, необязательной стадии удаления красящих веществ, необязательной стадии пастеризации и необязательной стадии обезжиривания, разбавляется с тем, чтобы вызвать образование мицелл при смешивании концентрированного белкового раствора с охлажденной водой, взятой в объеме, требуемом для достижения требуемой степени разбавления. Степень разбавления концентрированного белкового раствора может варьировать в зависимости от количества белка канолы, которое требуется получить мицеллярным путем, и количества белка канолы, выделенного из супернатанта. В большинстве случаев чем выше уровни разбавления, тем большее количество белка канолы остается в водной фазе.

Если желательно обеспечить максимальное количество белка мицеллярным путем, то в этом случае концентрированный белковый раствор разбавляется примерно в 15 раз или менее, предпочтительно - примерно в 10 раз или менее.

Охлажденная вода, с которой смешивается концентрированный белковый раствор, имеет температуру ниже примерно 15°С, в большинстве случаев - примерно от 3°С до 15°С, предпочтительно ниже примерно 10°С, поскольку именно при этих более холодных температурах достигается повышенный выход белкового изолята в форме белковой мицеллярной массы при используемых факторах разбавления.

В периодическом способе партия концентрированного белкового раствора добавляется в статическую массу охлажденной воды, имеющей требуемый объем, что обсуждалось выше. Разбавление концентрированного белкового раствора и, как следствие этого, уменьшение его ионной силы вызывает образование в виде помутнения массы высокоассоциированных белковых молекул в форме дискретных белковых капель в мицеллярной форме. В периодическом способе белковые мицеллы осаждаются отстаиванием в толще охлажденной воды с образованием агрегированной, коалесцентной, плотной, аморфной, клейкой, похожей на клейковину белковой мицеллярной массы (РММ). Осаждение можно ускорить, например, центрифугированием. Такое индуцируемое осаждение снижает содержание жидкости в белковой мицеллярной массе, уменьшая, тем самым, ее влагосодержание обычно примерно с 70 мас.% - 95 мас.% до значения, составляющего в большинстве случаев примерно 50 мас.% - 80 мас.% общей мицеллярной массы. Уменьшение влагосодержания мицеллярной массы таким путем способствует также снижению содержания окклюдированной соли в мицеллярной массе и, следовательно, содержания соли в сухом изоляте.

Альтернативно операция разбавления может проводиться непрерывно путем непрерывной подачи концентрированного белкового раствора через одно входное отверстие Т-образного трубопровода, а воды для разбавления - через другое входное отверстие Т-образного трубопровода, благодаря чему смешивание осуществляется в трубопроводе. Вода для разбавления подается в Т-образный трубопровод в количестве, достаточном для достижения требуемой степени разбавления концентрированного белкового раствора.

Смешивание концентрированного белкового раствора с водой для разбавления в трубопроводе инициирует образование белковых мицелл; полученная смесь непрерывно выгружается из выходного отверстия Т-образного трубопровода в отстойник, из которого при его наполнении сливается супернатант. Смесь предпочтительно подается в толщу жидкости в отстойнике таким образом, чтобы минимизировать турбулентность в толще жидкости.

В непрерывном способе белковые мицеллы оставляются в покое для осаждения в отстойнике с образованием агрегированной, коалесцентной, плотной, аморфной, клейкой, похожей на клейковину белковой мицеллярной массы (РММ), и процедура продолжается до тех пор, пока на дне отстойника не накопится требуемое количество РММ, после чего накопленная РММ выгружается из отстойника. Вместо осаждения седиментацией РММ может отделяться непрерывно путем центрифугирования.

Комбинация параметров процесса концентрирования белкового раствора до предпочтительного содержания белка, по меньшей мере, примерно 200 г/л, и применение фактора разбавления ниже примерно 15 обеспечивают более высокий выход, зачастую значительно более высокий выход, в пределах коли