Способ и система для регулирования плотности продукта

Иллюстрации

Показать все

Измерение плотности пищевого аэрированного продукта во время его изготовления осуществляется на аэрированном продукте, в месте по существу после узла сдвиговой обработки, используемого для образования аэрированного материала, причем достаточно далеко от этого узла, чтобы продукт находился в уравновешенном состоянии. После этого может устанавливаться скорость введения аэрационного газа в месте перед узлом сдвиговой обработки для устранения разницы между заданной и измеренной плотностями продукта. Кроме того, может использоваться инжектирование газа с пониженной растворимостью с тем, чтобы плотность продукта могла быстрее достичь равновесия. Возмущения плотности исходного материала рецептуры выше по ходу также могут отслеживаться и компенсироваться посредством регулировок скорости потока газа, чтобы содействовать поддержанию желаемой плотности продукта. Способ и система для регулирования до заданного уровня плотности пищевого аэрированного продукта во время его изготовления обеспечивают надежный мониторинг плотности изготавливаемого продукта. 4 н. и 16 з.п. ф-лы, 8 ил., 2 табл.

Реферат

Настоящее изобретение относится к способу и системе для регулирования плотности продукта, в частности к способу и системе для регулирования конечной плотности в аэрированных пищевых продуктах.

При непрерывном изготовлении таких эмульгированных пищевых продуктов, как майонез и приправы для салатов, является желательным создание продукта, имеющего однородные и приятные органолептические свойства. Например, постоянство вкуса, текстура и послевкусие в эмульсионных продуктах могут быть важны для поддержания удовлетворения потребителя.

Для приготовления вязких эмульгированных продуктов, таких как майонез и приправы для салатов, используют процедуры смешивания и гомогенизации. Майонез представляет собой хорошо известную эмульсию типа масло-в-воде. Рецептуру майонеза составляют из определенных ингредиентов, которые включают растительное масло, яичный желток, воду и сахар. В рецептуру включают также различные другие ингредиенты, например приправы (например, специи, соль, сахар, ароматизаторы) и/или консерванты. Майонез традиционно имеет содержание растительного масла, по меньшей мере, 65 вес.%. Однако известны варианты основной рецептуры, которые могут обеспечивать майонезные продукты с пониженным содержанием масла. Приправы для салатов также приготавливают в виде эмульсии растительного масла в меньшем количестве, чем в майонезе, яичного желтка, воды и сахара, которые могут быть скомбинированы с крахмальной основой и могут содержать другие ингредиенты, такие как специи и ароматизаторы.

Варианты рецептов майонеза и приправ для салатов также известны. Например, производились аналоги майонеза или легкие приправы, в которых часть или все содержание растительного масла заменяется основой из крахмала и/или декстрина, и/или некоторая часть яичного желтка заменяется яичными белками, альбумином или эмульсификаторами, не содержащими яичного материала.

В настоящее время известны и широко используются многочисленные виды смесителей для смешивания и гомогенизации различных типов пищевых вязких эмульсий и подобной обработки текучих пищевых продуктов. В одной из предыдущих систем для непрерывного приготовления больших количеств пищевых вязких эмульсий с высокими скоростями выхода, компоненты, составляющие основную предварительную смесь для эмульсии, вводят в непрерывное смесительное устройство с начальной стадией обработки ротором/статором и вторичной стадией обработки штыревым ротором. Например, в патенте США № 5114732, основная предварительная смесь для эмульсии перемешивается в ступени ротора/статора высокого усилия сдвига, с последующей обработкой эмульсии в ступени штыревого ротора, которая обеспечивает мягкое смешивающее действие с низким усилием сдвига для перемешивания и гомогенизации основной эмульсии, которая покидает начальную ступень ротора/статора, вместе с дополнительным ингредиентом и/или воздухом. Воздух вводится в такие пищевые эмульсии для модифицирования текстуры и внешнего вида желаемым образом.

Ранее, физические свойства пищевых эмульгированных продуктов отслеживали на основе измерений, осуществлявшихся на образцах готового упакованного продукта. Однако отбор образцов готового продукта имеет тот недостаток, что производственная линия работает и вырабатывает продукт в течение еще некоторого времени, после того как произошедшее ранее нарушение условий процесса может быть обнаружено посредством отбора образцов готового продукта.

Настоящее изобретение относится к способу регулирования до заданного уровня плотности пищевого аэрированного пищевого продукта во время его изготовления. В предпочтительных вариантах осуществления, измерение плотности осуществляется на продукте в месте достаточно дальше по ходу после узла сдвиговой обработки, используемого для образцов аэрированного материала, чтобы продукт находился в уравновешенном состоянии, когда измеряется его плотность. Как следствие, может быть осуществлено регулирование скорости введения аэрационного газа в месте выше (раньше) по ходу от узла сдвиговой обработки, которое рассчитывают для уменьшения любого различия между заданной и измеренной плотностями продукта, точным и надежным способом. В предпочтительном варианте, стадии измерения плотности и регулирования скорости потока газа осуществляют повторяющимся образом в ходе данного процесса, например, через регулярные интервалы времени. Настоящее изобретение также относится к системе для осуществления настоящего способа.

Обнаружено, что пищевые продукты, которые аэрируют газом под давлением, имеют нестабильную плотность, когда покидают узел сдвиговой обработки, используемый для образцов аэрированного продукта, если только продукту не дать достаточно времени для уравновешивания и стабилизации газового расширения. В одном из аспектов, аэрированный продукт не может уравновеситься до тех пор, пока давление аэрированного продукта не сможет понизиться приблизительно до атмосферного давления. Только после того, как аэрированный продукт был достаточно выдержан для уравновешивания после выхода из узла сдвиговой обработки, возможен надежный мониторинг его плотности для целей регулирования способа. В другом аспекте, газ, выбранный для аэрирования пищевого продукта, предпочтительно имеет растворимость в данном пищевом продукте, меньше, чем у воздуха, позволяет пищевому продукту быстрее уравновешиваться, тем самым улучшая возможности управления процессом.

В другом аспекте, управление процесса может быть дополнительно улучшено посредством измерения возмущений свойств плотности одного или нескольких исходных материалов рецептуры выше по ходу, до того как они объединяются с газом или вводятся в узел сдвиговой обработки, и осуществления соответствующих регулировок скорости введения газа, которые являются эффективными при компенсации или, по меньшей мере, уменьшении воздействий на плотность продукта, которые в другом случае могут, как ожидается, возникнуть в нем от возмущений выше (раньше) по ходу, которые происходят в одном или нескольких исходных материалах рецептуры.

Предпочтительный способ уменьшает разброс плотности аэрированных пищевых продуктов и, таким образом, улучшает их качество и постоянство свойств. Также возможно увеличение выхода продукта и улучшение постоянства заполнения упаковок. Аэрированные продукты некоторых вариантов осуществления имеют более постоянный внешний вид и текстуру, поддерживаемую в течение непрерывного процесса производства. Способ и система по изобретению могут использоваться при производстве пищевых аэрированных продуктов, включая, например, майонез, аналоги майонеза, приправы для салатов, соусы, кремовые начинки, кондитерские изделия, плавленый сыр и мягкий сыр.

Другие признаки и преимущества настоящего изобретения будут понятны из нижеследующего подробного описания предпочтительных вариантов выполнения настоящего изобретения со ссылкой на чертежи, на которых:

Фиг.1 - блок-схема процесса получения аэрированной пищевой дисперсии, имеющей динамически контролируемую плотность, в соответствии с вариантом осуществления способа по изобретению.

Фиг.2 - блок-схема процесса получения аэрированной пищевой дисперсии с динамически регулируемой плотностью, в соответствии с другим вариантом осуществления способа по изобретению.

Фиг.3A - алгоритм системы управления с обратной связью для регулирования плотности продукта в соответствии с вариантом осуществления способа по изобретению.

Фиг.3B - алгоритм системы управления с обратной связью для регулирования плотности продукта в соответствии с другим вариантом осуществления способа по изобретению.

Фиг.4A - алгоритм системы управления с прогнозирующей моделью для регулирования плотности продукта в соответствии с другим вариантом осуществления способа по изобретению.

Фиг.4B - алгоритм системы управления с прогнозирующей моделью регулирования плотности продукта в соответствии с еще одним вариантом осуществления способа по изобретению.

Фиг.4C - алгоритм подпрограммы, используемой в системе управления с прогнозирующей моделью регулирования плотности продукта согласно любому из вариантов осуществления способа по фиг.4A и фиг.4B.

Фиг.5 - блок-схема способа получения аэрированной пищевой дисперсии, с динамически регулируемой плотностью, в соответствии с еще одним вариантом осуществления способа по изобретению.

Фиг.6 - график плотности продукта и скорости потока вводимого газа по времени, полученный в контрольном эксперименте, описанном в примере 1, в котором денситометр для продукта был установлен на выходе узла сдвиговой обработки в варианте схемы, представленной на фиг.1.

Фиг.7 - график плотности продукта и скорости потока вводимого воздуха по времени, полученный в эксперименте, описанном в примере 2, в котором денситометр для продукта был установлен дальше по ходу за узлом сдвиговой обработки, в месте, где достигнуто равновесие продукта, в системе, подобной показанной на фиг.1.

Фиг.8 - график плотности крахмальной основы, плотности предварительной смеси, плотности продукта и скорости потока вводимого воздуха по времени, полученный в эксперименте, описанном в примере 4, в котором, в линии для введения крахмальной основы был также установлен отдельный денситометр, связанный с контроллером процесса, который осуществлял регулирование скорости потока газа на основе измерений крахмальной основы. Одинаковые позиции на чертежах означают сходные признаки, если не указано другое.

Подробное описание предпочтительных вариантов

На фиг.1 схематично представлен в целом способ 100 непрерывного производства аэрированного пищевого продукта, в котором плотность продукта регулируется динамическим, точным и надежным образом.

Поток первого компонента А пищевого продукта подается по трубопроводу 10.

Поток первого компонента А пищевого продукта закачивается по трубопроводу 21 в диспергирующее или смесительное устройство 12, которое может служить в качестве узла сдвиговой обработки, для эмульгирования. Далее по ходу поток A объединяется с газом 30 в месте 36, где газ инжектируется в текущий поток посредством управляемого газового клапана 13.

Перед инжекцией газа, поток первого компонента А пищевого продукта проходит через поточный денситометр 11, где осуществляется измерение плотности, для целей, которые будут понятны из последующего описания. В этом неограничивающем варианте второй компонент B для изготовления пищевого продукта, подаваемый по линии 17, примешивают в аэрированную дисперсию в узле сдвиговой обработки 12. Поток компонента B пищевого продукта проходит через поточный денситометр 18, по пути к узлу сдвиговой обработки 12.

Понятно, что показанные входные потоки A и B компонентов пищевого продукта, с точки зрения их количества и состава, а также типа смесительного оборудования, являются только иллюстративными. Со ссылкой на фиг.2, настоящее изобретение является также применимым в другом аспекте для обработки аэрированного пищевого продукта в производственной системе 101, имеющей только один входной поток A пищевого продукта. Альтернативно, оно может применяться к системе аэрации пищевого продукта, включающей более двух входных потоков пищевых компонентов, подаваемых в смесительный узел или узел сдвиговой обработки, при этом один или более из этих компонентов принимают инжектируемый газ. Настоящее изобретение также может использовать любой тип диспергирующего устройства или устройства для сдвиговой обработки, пригодного для диспергирования газа в текучем материале или композиции пищевого продукта. Кроме того, указанное положение и единственное указанное положение для инжекции газа на фиг.1 и 2 являются только иллюстративными. Газ может инжектироваться в другом положении, выше по ходу от узла сдвиговой обработки, и/или во множестве положений выше по ходу от этого узла, вместо единственного показанного места.

При обработке в узле сдвиговой обработки 12, структура аэрированного пищевого продукта создается посредством по существу гомогенного распределения пузырьков газа по всей эмульсии или по всей пищевой дисперсии другого типа. Пузырьки могут быть различных размеров, включая размеры, которые могут быть менее и/или более 10 микрон. В одном из вариантов осуществления, получаемая аэрированная структура является пищевой дисперсией. В конкретном варианте осуществления, аэрированная структура производится в виде аэрированной эмульсии жирового вещества в водной среде, то есть, в виде эмульсии типа масло-в-воде, такой как майонез, приправы для салатов, и тому подобное.

Полученный аэрированный диспергированный продукт поступает по трубопроводу 22 в первый накопительный резервуар 14. После пребывания в накопительном резервуаре 14, продукт поступает по трубопроводу 23 в заполняющий накопительный резервуар 24, который снабжает станцию 32 заполнения по трубопроводу 25. Продукт проходит от первого накопительного резервуара 14 через поточный денситометр 15, на пути, к заполняющему накопительному резервуару 24.

В одном из аспектов, управление с обратной связью предусмотрено в системе 100 производства аэрированного пищевого продукта посредством возврата информации о регулируемой переменной, например о плотности, измеренной дальше по ходу за узлом сдвиговой обработки 12. Это измерение осуществляют в положении, достаточно удаленном от узла сдвиговой обработки 12, для того, чтобы осуществилось уравновешивание продукта, и эта информация используется в качестве основы для регулирования переменной плотности процесса выше по ходу в системе 100 до сдвиговой обработки посредством регулировки скорости поступления газа с помощью контрольного клапана 13. Обратная связь может осуществляться посредством использования оборудования (автоматический контроль), посредством контроллера 26, или посредством оператора (ручной контроль). Место установки денситометра 15, в котором уже произошло уравновешивание продукта, в противоположность расположенным выше по ходу местам относительно узла сдвиговой обработки, в которых плотность продукта по-прежнему подвергается воздействию условий давления, может быть определено эмпирически для данной системы обработки и для заданного набора параметров способа.

Также понятно, что диспергирующий узел или узел сдвиговой обработки 12 может и не потребоваться во всех рабочих операциях аэрирования пищевых продуктов для формирования эмульсии или микропузырьков, или диспергирования пузырьков инжектируемого газа в пищевом продукте. В этих ситуациях, как показано на фиг.1, узел сдвиговой обработки 12 может отсутствовать, и поток компонента А пищевого продукта, содержащий инжектируемый газ, может направляться по трубопроводу 210 непосредственно в трубопровод 22. В этом альтернативном варианте, измерение плотности продукта, вместо этого, осуществляется в месте, достаточно удаленном от места 36 инжектирования газа, чтобы произошло уравновешивание продукта, и эта информация используется в качестве основы для регулирования плотности как переменной процесса выше по ходу в системе 100, посредством регулировки скорости введения газа с помощью контрольного клапана 13.

Для целей настоящего изобретения, "уравновешивание" или "уравновешенный" относится к состоянию продукта, при котором плотность продукта не подвергается значительному изменению из-за влияния давления в продукте и/или растворения газа в продукте после того, как продукт покидает узел сдвиговой обработки. Авторы настоящего изобретения установили, что плотность аэрированного текучего пищевого продукта, такого как аэрированная эмульсия, который закачивается в узел сдвиговой обработки 12 и выходит из него при положительном давлении, является нестабильной и подвергается изменению при выходе из узла сдвиговой обработки до тех пор, пока положительное давление, действующее в продукте, не рассеется в достаточной степени и не стабилизируется в месте, находящемся достаточно далеко по ходу за узлом сдвиговой обработки. В одном из вариантов измерение плотности продукта осуществляется в таком месте в канале дальше по ходу за узлом сдвиговой обработки, в котором продукт дисперсии находится под давлением в пределах +1 фунт/кв.дюйм (от атмосферного) перед измерением плотности, хотя, в зависимости от композиции газа и пищевого продукта, и давление выше 1 фунт/кв.дюйм может дать приемлемый результат.

Это система для получения данных о плотности продукта, в соответствии с вариантами осуществления настоящего изобретения, находится в противоречии с интуитивными представлениями, поскольку наиболее очевидная точка измерения, видимо, должна непосредственно следовать за точкой инжектирования газа, выше по ходу от узла сдвиговой обработки, или, альтернативно, непосредственно после получения аэрированного продукта в узле сдвиговой обработки. Обычно полагают, что температура может оказывать значительное воздействие на измерения плотности, осуществляемые в жидких продуктах, в то время как влияние давления на них обычно считают пренебрежимо малым. Кроме того степень растворения газа в жидкой части продукта также не может стабилизироваться непосредственно при эмульгировании ингредиентов препарата в узле сдвиговой обработки, так что должны быть созданы условия для осуществления такой возможности, так же как и при выборе места для осуществления измерения плотности продукта достаточно дальше по ходу за узлом сдвиговой обработки.

Эксперименты, проведенные авторами настоящего изобретения и описанные ниже в примерах, показывают, что не наблюдается значимой корреляции между скоростью введения газа и измеряемой плотностью продукта, когда измерение плотности осуществляют слишком близко к выходу из узла сдвиговой обработки, где влияние давления и растворимости газа на плотность продукта еще не рассеялось полностью, то есть продукт не является уравновешенным. По этой причине, положение, которое находится достаточно далеко по ходу за узлом сдвиговой обработки для осуществления измерений плотности продукта, в котором только другие переменные процесса, но не давление или растворимость газа, еще могут воздействовать на плотность продукта, следует определять эмпирически, с учетом конкретных параметров и условий процесса.

Для автоматического регулирования, денситометр 15 устанавливают на продуктовом трубопроводе в месте достаточно дальше по ходу за узлом сдвиговой обработки, если его используют, так чтобы в потоке продукта произошло уравновешивание продукта. Денситометр производит сигнал (электрический, цифровой, пневматический, и т.п.), который является показателем измеренной плотности уравновешенного продукта. Денситометр соединен линией 16 связи с контроллером 26 для взаимного сообщения. Контроллер 26, в свою очередь, соединен линией 20 связи со средством управления газовым клапаном 13. Денситометр может программироваться для осуществления измерений через регулярные интервалы времени или для непрерывного измерения. Альтернативно, линия связи 16 может позволить командным сигналам от контроллера 26 определять, когда и через какой интервал осуществлять измерения плотности денситометром.

В одном из вариантов осуществления, может применяться пропорциональный интегрально-дифференциальный (PID) контроль с использованием выходного сигнала денситометра для продукта, с целью непосредственного регулирования скорости инжектирования газа без сравнения с плотностями предварительной смеси и крахмальной основы выше по ходу. Схемы контроллеров PID, как правило, выполняются так, чтобы устранить необходимость в постоянном внимании оператора. Контроллер используется для автоматического регулирования скорости инжектирования газа как регулируемой переменной процесса для поддерживания измерений плотности продукта на заданном значении. Отклонение представляет собой разность между заданным значением и измерением переменной процесса в реальном времени. Регулируемая переменная, например, скорость инжектирования газа, обычно определяется по выходному сигналу контроллера. Выходной сигнал контроллера будет изменяться в ответ на изменение измерения или заданного значения. В зависимости от производителя контроллера, интегральное действие или действие сброса устанавливается либо с повторением по времени, либо с заданным временем повторения, поскольку эти действия просто чередуются друг с другом. Как известно, три режима работы PID контроллера обычно имеют следующие особенности: в пропорциональном диапазоне выходной сигнал контроллера пропорционален отклонению или изменению измерения; при интегральном действии выходной сигнал контроллера пропорционален величине времени, в течение которого присутствует отклонение, устраняемое интегральным действием; и при производном действии выходной сигнал контроллера пропорционален скорости изменения измерения или отклонения, и выходной сигнал контроллера вычисляется, исходя из скорости изменения измерения по времени.

Ссылаясь на фиг.3A, например, денситометр 15 для PID регулирования детектирует плотность и передает сигнал, указывающий плотность продукта, в контроллер 26, который обрабатывает и анализирует сигнал, то есть преобразует его и сравнивает измеренное значение плотности с заданным желаемым или целевым значением или так называемым установленным значением («установкой»). Если существует различие между измеренным реальным значением плотности и установкой, контроллер посылает командный сигнал по линии 35 связи средству управления газовым клапаном 13, которое автоматически изменяет регулировку газового клапана, так чтобы прогнозируемым образом осуществить соответствующую регулировку плотности продукта в сторону целевого значения. На основе сигнала, полученного от контроллера 26, газовый клапан 13 способен регулировать количество газа, протекающего через входной трубопровод 30 для газа в трубопровод 21, через который предварительная смесь вводится в узел сдвиговой обработки 12. Специалисту в данной области известны разнообразные средства, пригодные для использования в качестве средств регулирования объемной скорости потока газа, и эти средства не ограничены управляемыми клапанами.

Контроллер 26 также может преобразовывать сигнал, полученный от денситометра 15, в выводимые на дисплей данные о плотности, которые могут отображаться на денситометре (посредством обратного сигнала), контроллере и/или графическом интерфейсе пользователя, включающем монитор компьютера (не показан), соединенный с контроллером для их связи между собой.

Для ручного управления по обратной связи оператор периодически измеряет мгновенную плотность продукта на денситометре 15, например, посредством считывания данных о плотности, полученных посредством датчика, установленного на продуктовом трубопроводе 23 для продукта, который может измерять и генерировать значения плотности или сигналы, показывающие значения плотности, в реальном времени. Денситометр 15, опять же, установлен на продуктовом трубопроводе достаточно далеко по ходу за узлом сдвиговой обработки, чтобы уравновешивание продукта уже произошло.

В одном из предпочтительных вариантов, для автоматического или для ручного режима регулирования процесса, измерения плотности осуществляют с промежутками через равные интервалы времени в течение процесса, так что регулировки плотности могут осуществляться регулярно, если требуется, посредством управляющей системы с обратной связью.

Обращаясь к фиг.3B, контрольная система 300, применяемая к указанному выше автоматическому или к ручному режиму регулирования процесса, используется для динамического регулирования плотности продукта и непрерывного поддержания ее на указанном целевом значении в течение процесса. Заданные значения предварительно устанавливают для целевой плотности продукта и интервала Δt времени измерения плотности в ходе процесса. Понятно, что эти входные данные не только предварительно устанавливают до осуществления процесса, но они также могут быть изменены и в ходе данного процесса. Газ оказывает снижение общей плотности продукта. По этой причине, если измеренная в ходе процесса плотность продукта согласно измерениям является более высокой, чем заданное целевое значение, контроллер (или оператор, если используется ручной режим) увеличивает поток газа, подаваемый выше по ходу, посредством открывания газового клапана на предсказанную величину, изменяющую плотность продукта в степени, достаточной для изменения (то есть уменьшения) разности между самым последним измеренным значением плотности и заданным значением целевой плотности продукта.

Альтернативно, если плотность продукта согласно измерениям является более низкой, чем желаемое целевое значение, контроллер (или оператор, если используется ручной режим) уменьшает поток газа посредством закрывания клапана на предсказанную величину, устраняющую разницу между самым последним измеренным значением и заданным целевым значением. Следующее измерение продукта, осуществляемое через интервал времени Δt, определит, насколько хорошо была осуществлена последняя регулировка скорости потока газа, по сглаживанию отклонения детектируемой плотности продукта, по сравнению с предыдущим измерением. Если при самом последнем измерении будет обнаружено другое отклонение, то будет осуществляться следующая регулировка скорости потока газа, которая согласно прогнозу должна устранить отклонение, определенное в последний раз, и так далее, в ходе всей остальной продолжительности данного процесса или другого общего желаемого периода мониторинга. Таким образом, отклонения измеренной плотности продукта могут идентифицироваться и компенсироваться повторяющимся образом (итерациями).

Хотя для упрощения это не показано на фиг.3B, понятно, что, если самое последнее измеренное значение плотности было определено выше или ниже целевого значения, тогда алгоритм может осуществить, перед регулировкой работы газового клапана, дополнительное определение того, находится ли отклонение вне любого заданного диапазона приемлемых значений относительно целевого значения; если да, осуществляется соответствующая регулировка настроек газового клапана, а если нет, тогда регулировку контрольного клапана для этого цикла не осуществляют, и процесс продолжается до следующего детектирования плотности и сравнивает итерацию после следующего заданного временного интервала Δt между измерениями. При другом подходе, измерения плотности могут быть количественно ограничены заданным значением, так чтобы небольшие числовые отклонения от целевого значения эффективно игнорировались, и никаких исправляющих действий на газовом контрольном клапане не предпринималось до тех пор, пока будут наблюдаться отклонения, находящиеся в диапазоне допустимых значений.

Для данного набора условий процесса и набора оборудования, производственная система 100 может предварительно настраиваться и программироваться для получения прогнозной модели, с математическим алгоритмом, взаимосвязи между будущим значением плотности конечного продукта согласно показаниям денситометра и настоящими значениями плотности конечного продукта, плотностями компонентов выше по ходу и скоростью введения газа. Таким образом, полученная прогнозная модель может учитывать значения всех входных сигналов плотности для предсказания плотности продукта в будущем и осуществления соответствующих регулировок. Для применения такой прогнозной модели, контроллер может содержать программируемый логический контроллер (PLC), имеющий доступ к компьютерному коду, выполненный в виде микроэлектронного устройства, установленного на материнской плате или подобном устройстве, и/или в программе, загруженной на удаленном компьютере, сообщающемся с ним. Модули PLC, обладающие этими функциями, коммерчески доступны. Контроллер может работать как пропорциональный интегрально-дифференциальный (PID) контроллер или контроллер с прогнозными настройками, (PSC), причем последний является предпочтительным. Код содержит алгоритм, который математически соотносит измеренную плотность продукта, скорость введения газа, а также, предпочтительно, измеренные плотности исходных материалов. В одном из вариантов, алгоритм используется для получения прогнозной модели, применимой к линии производства аэрированного пищевого продукта. Алгоритм также может принадлежать к тому типу, который способен адаптироваться к изменениям, регистрируемым в течение хода процесса для других регулируемых переменных процесса, в дополнение к скорости введения газа, которые могут также воздействовать на плотность продукта, таких как изменения температуры, для исходных материалов и/или на месте измерения плотности продукта.

Неограничивающий пример системы контроллера, имеющей аппаратное и программное обеспечение, пригодное для получения и применения алгоритма регулирования описанного здесь процесса аэрирования пищевого продукта, представляет собой контроллерная система QUICKSTUDY™, разработанная Adaptive Resources, Pittsburgh, PA. Он работает от обычных рабочих данных, в реальном времени, или хронологически, и автоматически генерирует модели процесса, которые могут использоваться для прогнозирования направления развития процесса или корректирования этого процесса непосредственно после или перед этим в случае упреждающего мониторинга, для устранения или предотвращения отклонений от заданного значения плотности продукта. Как объяснено и показано в данном описании, эта коммерчески доступная система регулирования процесса сама по себе не может правильно моделировать процесс и управлять линией производства аэрированного пищевого продукта без преимуществ настоящего изобретения и понимания того, что плотность продукта для аэрированных пищевых продуктов и ее измерение очень чувствительны к выбору места измерения внутри системы, и что только определенные места в системе могут успешно использоваться (как здесь описано).

Обращаясь к фиг.4A, для динамического регулирования плотности продукта и непрерывного поддержания ее на заданном целевом значении в ходе процесса система использует управляющее устройство 400 с прогнозирующей моделью. Измерение плотности в ходе процесса может осуществляться в течение относительно короткого интервала, например через каждые несколько секунд. Регулировка процесса может дополнительно уточняться посредством включения данных о плотности продукта, взятых от упакованного продукта, в дополнение к обсуждаемым выше измерениям плотности в ходе процесса. Однако измерения плотности продукта вне производственной линии, на основе лабораторных измерений, осуществляемых на открытых упаковках аэрированного пищевого продукта, как правило, занимают больше времени. Такие данные практически могут быть получены только через каждые несколько часов или даже дней. На фиг.4A и 4C показана система для включения измерений плотности упакованного продукта в схему регулировки процесса по настоящему изобретению. В этой системе выбирается заданное или целевое значение плотности продукта, а также начальное отклонение между плотностью в ходе процесса и плотностью упакованного продукта. После того как вводится газ, и получаемая смесь обрабатывается в узле сдвиговой обработки и выходит из него, плотность аэрированного диспергированного продукта измеряется в месте дальше по ходу в течение относительно короткого временного интервала времени дельта (Δ) t1 (например, каждые 2-10 секунд). В дополнение к этому, данные о плотности упакованного аэрированного диспергированного продукта собирают вне производственной линии с более продолжительными временными интервалами (например, каждые 3 часа). Измеренную в ходе процесса плотность продукта сравнивают с целевым значением в контроллере для определения того, существует ли отклонение. Если плотность упакованного продукта вводится при самой последней итерации алгоритма, тогда отклонение плотности, измеренной в ходе процесса, и плотности упакованного продукта будет обновляться по мере необходимости. Это обновленное отклонение будет включаться в прогнозируемый диапазон плотностей продуктов, измеряемых в будущем и предсказываемых контроллером. Дополнительно регистрируют значения плотности исходных материалов препарата, таких как Поток A и Поток B. Затем скорость введения газа регулируют с помощью вычислений контроллера для изменения плотности аэрированного диспергированного продукта, чтобы она соответствовала целевому или заданному значению плотности. Эти стадии повторяют по меньшей мере еще один раз, а предпочтительно в течение большей части или по существу в течение всего производственного цикла. Фиг.4B представляет собой отдельный вариант осуществления, который осуществляют подобно варианту фиг.4A, но дополнительно предусматривает регулирование процесса на двух параллельных производственных линиях вместо одной, которые питают общую упаковочную линию (такую как показана на фиг.5 и обсуждается ниже).

Регулировку с обратной связью и/или регулировку с прогнозирующей моделью независимо используется для одной или более частей данного варианта выполнения, а также, возможно, в течение всего осуществления процесса. Например, при запуске процесса, до того как в системе 100 будут достигнуты относительно постоянные условия, может приводиться в действие упреждающий контроль, но не система регулирования с обратной связью, которая приводится в действие впоследствии, в течение этого же процесса, когда система приближается к относительно постоянным условиям или достигает их. Выражение "Относительно постоянные условия" для целей данного описания означает в целом состояние процесса, при котором изменение переменной, представляющей интерес, например плотности, по-прежнему может происходить, но находится в диапазоне действия прогнозирующей модели, применяемой для регулирования с обратной связью, или системы упреждающего регулирования, если таковая используется.

Для целей данного описания, "плотность" образца материала означает отношение массы материала к данному объему образца. Плотность аэрированного материала подвергается воздействию давления и температуры. Как указано выше, хотя обычно полагают, что влияние давления на измерения денситометра является пренебрежимо малым, авторы настоящего изобретения обнаружили, что растворимость газа также может воздействовать на измерения плотности в пищевой эмульсии, если эти измерения осуществляют сразу после операции обработки сдвигом или диспергирования, используемой при приготовлении аэрированной эмульсии.

В предпочтительном варианте осуществления, денситометр используется для получения значений плотности различных потоков исходных материалов и продуктов при производстве аэрированного пищевого продукта. Использование денситометров в соответствии с настоящими вариантами осуществления обеспечивает точный и полный контроль процесса. Это устраняет необходимость в отдельных измерениях потока, температуры и давления для получения значений плотности, хотя такой альтернативный подход не исключается.

В одном из вариантов, измерения плотности могут осуществляться с использованием измерителя с источником радиоактивного излучения или измерителя Кориолиса. Измеритель с источником радиоактивного излучения может представлять собой обычный датчик радиоактивности для измерения плотности, включая коммерчески доступные устройства, такие как измерители с источником радиоактивного излучения ALARA. Измерители радиоактивного излучения, пригодные для поточной установки, которые способны измерять плотность продукта в потоке, являются коммерчески доступными, например от Berthold Industrial Systems (например, измеритель LB379). Датчики радиоактивного излучения, как правило, могут обеспечить бесконтактное, непрерывное измерение плотности независимо от цвета, температуры, давления, вязкости, электропроводности или химических свойств обрабатываемого продукта. Измерение плотности в датчиках радиоактивного из