Способ получения жидкой композиции, содержащей гиперполяризованный 13c-пируват, композиция, содержащая гиперполяризованный 13c-пируват (варианты), ее применение (варианты), радикал и его применение
Иллюстрации
Показать всеИзобретение относится к способу получения жидкой композиции, содержащей гиперполяризованный 13С-пируват, включающий: а) образование жидкой смеси, содержащей радикал формулы (I)
где М представляет собой водород или один эквивалент катиона; и R1, которые являются одинаковыми или разными, каждый представляет собой гидроксилированную и/или алкоксилированную С1-С4-углеводородную группу с прямой или разветвленной цепью, 13С-пировиноградную кислоту и/или 13С-пируват, и замораживание этой смеси; б) усиление поляризации 13С ядер пировиноградной кислоты и/или пирувата в этой смеси посредством ДПЯ (динамическая поляризация ядер); в) добавление физиологически переносимого буфера, который обеспечивает рН в пределах от 7 до 8, и основания к замороженной смеси для ее растворения и для превращения 13С-пировиноградной кислоты в 13С-пируват с получением жидкой композиции или когда на стадии (а) используют только 13С-пируват, добавление буфера к замороженной смеси для ее растворения с получением жидкой композиции; и г) возможно удаление радикала и/или его реакционных продуктов из жидкой композиции. Изобретение также относится к применению такой композиции и к радикалу формулы (I). Технический результат - получение композиции для применения в качестве МР визуализирующего агента. 8 н.п. и 14 з.п. ф-лы, 2 ил.
Реферат
Изобретение относится к способу получения композиции, содержащей гиперполяризованный 13С-пируват, к данной композиции и к ее применению в качестве визуализирующего агента для МР визуализации.
Магнитно-резонансная (МР) визуализация (МРВ) представляет собой метод визуализации, который стал особенно привлекательным для врачей, поскольку он позволяет получать изображения организма пациента или его частей неинвазивным способом, не подвергая пациента и медицинский персонал воздействию потенциально опасного излучения, такого как рентгеновское излучение. Благодаря высокому качеству изображений МРВ является предпочтительным методом визуализации мягких тканей и органов, который позволяет различать нормальную ткань и больную ткань, например опухоли и патологические изменения.
МР визуализацию опухоли можно осуществлять с использованием или без использования МР контрастных агентов. На МР изображении, полученном без использования контрастного агента, довольно четко будут видны опухоли размером от примерно 1-2 сантиметров и больше. Однако МРВ с контрастным усилением обеспечивает обнаружение гораздо меньших изменений ткани, то есть гораздо меньших опухолей, что делает МР визуализацию с контрастным усилением мощным инструментом обнаружения опухолей на ранних стадиях и обнаружения метастазов.
В МР визуализации опухолей используется несколько типов контрастных агентов. Водорастворимые хелаты парамагнитных металлов, например хелаты гадолиния, такие как Omniscan™ (Amersham Health), широко используются в качестве МР контрастных агентов. При введении в сосудистую сеть благодаря своей низкой молекулярной массе они быстро распределяются во внеклеточное пространство (то есть в кровь и интерстиций). Они также относительно быстро выводятся из организма. Было обнаружено, что хелаты гадолиния особенно полезны для увеличения процента обнаружения метастазов и небольших опухолей и для улучшения классификации опухолей, причем последнее обеспечивается дифференцированием витальной опухолевой ткани (высокая степень перфузиии и/или нарушение гематоэнцефалического барьера) от центрального некроза и от окружающего отека или макроскопически незатронутой ткани (см., например, С.Claussen et al., Neuroradiology 1985; 27: 164-171).
С другой стороны, МР контрастные агенты кровяного пула, например частицы суперпарамагнитного оксида железа, остаются в сосудистой сети в течение длительного времени. Оказалось, что они чрезвычайно полезны для усиления контраста в печени, а также для обнаружения аномалий проницаемости капилляров, например "имеющих течь" стенок капилляров в опухолях, например в результате ангиогенеза.
Несмотря на бесспорно превосходные свойства указанных контрастных агентов, их использование не лишено риска. Хотя хелатные комплексы парамагнитных металлов обычно имеют высокие константы стабильности, возможно, что ионы токсичных металлов высвобождаются в организм после введения. Кроме того, контрастные агенты этого типа демонстрируют плохую специфичность.
В WO-A-99/35508 раскрыт способ МР исследования пациента с использованием гиперполяризованного раствора агента с высоким T1 в качестве МР визуализирующего агента. Термин "гиперполяризация" означает усиление ядерной поляризации ЯМР активных ядер, присутствующих в агенте с высоким T1, то есть ядер с ненулевым ядерным спином, предпочтительно ядер 13С или 15N. При усилении ядерной поляризации ЯМР активных ядер разница между населенностями возбужденного и основного ядерных спиновых состояниях этих ядер значительно увеличивается, и в силу этого интенсивность МР сигнала усиливается в сто раз и более. При использовании гиперполяризованного 13С- и/или 15N-обогащенного агента с высоким T1 помехи от фоновых сигналов практически отсутствуют, поскольку распространенность 13С и/или 15N в природе пренебрежимо мала, и поэтому контрастность изображения будет преимущественно высокой. Раскрыт целый ряд возможных агентов с высоким T1, подходящих для гиперполяризации и последующего использования в качестве МР визуализирующих агентов, включая, но не ограничивая ими, неэндогенные и эндогенные соединения, такие как ацетат, пируват, оксалат или глюконат, сахара, такие как глюкоза или фруктоза, мочевина, амиды, аминокислоты, такие как глутамат, глицин, цистеин или аспартат, нуклеотиды, витамины, такие как аскорбиновая кислота, производные пенициллина и сульфонамиды. Установлено также, что промежуточные соединения в нормальных метаболических циклах, таких как цикл лимонной кислоты, такие как фумаровая кислота и пировиноградная кислота, являются предпочтительными визуализирующими агентами для визуализации метаболической активности.
Необходимо подчеркнуть, что сигнал от гиперполяризованного визуализирующего агента ослабевает из-за релаксации и после введения в организм пациента из-за разбавления. Следовательно, значение T1 визуализирующих агентов в биологических жидкостях (например, в крови) должно быть достаточно высоким, чтобы обеспечить распределение агента в сайт-мишень в организме пациента в высоко гиперполяризованном состоянии. Кроме контрастного агента, имеющего высокое значение T1, чрезвычайно полезно достичь высокого уровня поляризации.
Несколько методов гипеполяризации раскрыто в WO-A-99/35508, и один из них представляет собой метод динамической поляризации ядер (ДПЯ), при котором поляризацию образца осуществляют парамагнитным соединением, так называемым парамагнитным агентом или ДПЯ агентом. Во время осуществления процесса ДПЯ подводят энергию, обычно в форме микроволнового излучения, которая первоначально возбуждает парамагнитный агент. При угасании до исходного состояния происходит перенос поляризации от неспаренного электрона парамагнитного агента к ЯМР активным ядрам образца. Обычно в процессе ДПЯ используют умеренное или сильное магнитное поле и очень низкую температуру, например проводят процесс ДПЯ в жидком гелии и в магнитном поле около 1 Тл или выше. Альтернативно, можно использовать умеренное магнитное поле и любую температуру, при которой достигается достаточное усиление поляризации. Методика ДПЯ описана, например, в международных публикациях WO-A-98/58272 и в WO-A-01/96895, которые обе включены в данное описание изобретения ссылкой на них.
Парамагнитный агент играет решающую роль в процессе ДПЯ, и его выбор имеет большое влияние на достигаемый уровень поляризации. Известен целый ряд парамагнитных агентов, которые в WO-A-99/35508 обозначены как "OMRI-контрастные агенты", например органические свободные радикалы на основе кислорода, на основе серы или на основе углерода или магнитные частицы, упомянутые в WO-A-99/35508, WO-A-88/10419, WO-A-90/00904, WO-A-91/12024, WO-A-93/02711 или WO-A-96/39367.
Теперь авторы неожиданно нашли улучшенный способ получения жидкой композиции, содержащей гиперполяризованный 13С-пируват, который дает возможность получать гиперполяризованный 13С-пируват с необычайно высоким уровнем поляризации. Было также найдено, что такая композиция особенно подходит для МР визуализации опухолей in vivo.
Таким образом, в одном аспекте настоящего изобретения предложен способ получения жидкой композиции, содержащей гиперполяризованный 13С-пируват, включающий
а) образование жидкой смеси, содержащей радикал формулы (I)
где
М представляет собой водород или один эквивалент катиона; и
R1, которые являются одинаковыми или разными, каждый представляет собой гидроксилированную и/или алкоксилированную С1-С4-углеводородную группу с прямой или разветвленной цепью,
13С-пировиноградную кислоту и/или 13С-пируват, и замораживание этой смеси;
б) усиление поляризации 13С ядер пировиноградной кислоты и/или пирувата в этой смеси посредством ДПЯ;
в) добавление буфера и основания к замороженной смеси для ее растворения и для превращения 13С-пировиноградной кислоты в 13С-пируват с получением жидкой композиции или, когда на стадии (а) используют только 13С-пируват, добавление буфера к замороженной смеси для ее растворения с получением жидкой композиции; и
г) возможно удаление радикала и/или его реакционных продуктов из жидкой композиции.
Термины "гиперполяризованный" и "поляризованный", использованные здесь ниже, взаимозаменяемы и означают поляризацию до уровня выше обнаруженного при комнатной температуре и 1 Тл.
В способе по изобретению используют радикал формулы (I)
где
M представляет собой водород или один эквивалент катиона; и
R1, которые являются одинаковыми или разными, каждый представляет собой гидроксилированную и/или алкоксилированную С1-С4-углеводородную группу с прямой или разветвленной цепью,
Здесь ниже термин "радикал" относится к радикалу формулы (I).
В предпочтительном воплощении М представляет собой водород или один эквивалент физиологически переносимого катиона. Термин "физиологически переносимый катион" означает катион, который переносим живым организмом человека или животного, не являющегося человеком. Предпочтительно, М представляет собой водород или катион щелочного металла, ион аммония или ион органического амина, например меглумина. Наиболее предпочтительно, М представляет собой водород или натрий.
В еще одном предпочтительном воплощении R1 одинаковые или разные и каждый представляет собой гидроксиметил или гидроксиэтил. В другом предпочтительном воплощении R1 одинаковые или разные и каждый представляет собой алкоксилированную С1-С4-углеводородную группу с прямой или разветвленной цепью, предпочтительно -СН2-O-(С1-С3-алкил), -(СН2)2-O-СН3 или -(С1-С3-алкил)-O-СН3. В другом предпочтительном воплощении R1 одинаковые или разные и каждый представляет собой алкоксилированную С1-С4-углеводородную группу с прямой или разветвленной цепью, несущую концевую гидроксильную группу, предпочтительно -CH2-O-C2H4OH или -C2H4-O-CH2OH. В более предпочтительном воплощении R1 одинаковые и каждый представляет собой алкоксилированную С1-С4-углеводородную группу с прямой цепью, предпочтительно метокси, -СН2-ОСН3, -СН2-OC2H5 или -СН2-СН2-ОСН3, наиболее предпочтительно -СН2-СН2-ОСН3.
В наиболее предпочтительном воплощении М представляет собой водород или натрий, и R1 одинаковые и каждый представляет собой -СН2-СН2-ОСН3.
Способы синтеза этих радикалов известны в данной области и раскрыты в WO-A-91/12024, WO-A-96/39367, WO 97/09633 и WO-A-98/39277. Коротко, эти радикалы могут быть синтезированы путем взаимодействия трех мольных эквивалентов металлированного мономерного арильного соединения с одним мольным эквивалентом соответствующим образом защищенного производного карбоновой кислоты с образованием тримерного промежуточного соединения. Это промежуточное соединение металлируют и затем подвергают взаимодействию, например, с диоксидом углерода с образованием трикарбокситритилкарбинола, который на следующей стадии обрабатывают сильной кислотой с образованием триарилметильного катиона. Этот катион затем восстанавливают с образованием стабильного тритильного радикала.
Изотопное обогащение 13С-пировиноградной кислоты и/или 13С-пирувата, используемого в способе по изобретению, предпочтительно составляет по меньшей мере 75%, более предпочтительно по меньшей мере 80% и особенно предпочтительно по меньшей мере 90%, причем изотопное обогащение свыше 90% является наиболее предпочтительным. В идеале обогащение составляет 100%. 13С-пировиноградная кислота и/или 13С-пируват могут быть обогащены изотопом в положении С1 (что ниже обозначено как 13С1-пировиноградная кислота и 13С1-пируват), в положении С2 (что ниже обозначено как 13С2-пировиноградная кислота и 13C2-пируват), в положении С3 (что ниже обозначено как 13С3-пировиноградная кислота и 13С3-пируват), в положениях С1 и С2 (что ниже обозначено как 13С1,2-пировиноградная кислота и 13С3-пируват), в положениях С1 и С3 (что ниже обозначено как 13С1,3-пировиноградная кислота и 13С1,3-пируват), в положениях С2 и С3 (что ниже обозначено как 13С2,3-пировиноградная кислота и 13C2,3-пируват) или в положениях С1, С2 и С3 (что ниже обозначено как 13С1,2,3-пировиноградная кислота и 13С1,2,3-пируват), причем положение С1 является предпочтительным.
В данной области известно несколько способов синтеза 13C1-пировиноградной кислоты. Коротко, в Seebach et al., Journal of Organic Chemistry 40(2), 1975, 231-237, описан путь синтеза, основанный на защите и активации карбонилсодержащего исходного вещества в виде S,S-ацеталя, например 1,3-дитиана или 2-метил-1,3-дитиана. Дитиан металлируют и подвергают взаимодействию с метилсодержащим соединением и/или 13СО2. С использованием соответствующего обогащенного изотопом 13С-компонента, как описано в этой ссылке, может быть получен 13С1-пируват, 13С2-пируват или 13С1,2-пируват. Карбонильную функциональную группировку затем высвобождают общепринятыми способами, описанными в литературе. Другие пути синтеза начинаются с уксусной кислоты, которую сначала превращают в ацетилбромид, а затем подвергают взаимодействию с Cu13CN. Полученный нитрил превращают в пировиноградную кислоту через амид (см., например, S.H.Anker et al., J. Biol. Chem. 176 (1948), 1333 или J.E.Thirkettle, Chem Commun. (1997), 1025). 13С-пировиноградная кислота может быть получена также протонированием коммерчески доступного 13С-пирувата натрия, например способом, описанным в патенте США 6232497.
В зависимости в основном от используемого радикала в способе по изобретению используют 13С-пировиноградную кислоту и/или 13С-пируват. Если радикал растворим в 13С-пировиноградной кислоте, то предпочтительно используют 13С-пировиноградную кислоту и образуют жидкую смесь, предпочтительно жидкий раствор, радикала и 13С-пировиноградной кислоты. Если радикал не растворяется в 13С-пировиноградной кислоте, то используют 13С-пируват и/или 13С-пировиноградную кислоту и по меньшей мере один сорастворитель для образования жидкой смеси, предпочтительно жидкого раствора. Было установлено, что успешное осуществление ДПЯ и, следовательно, уровень поляризации зависит от нахождения поляризуемого соединения и радикала агента в тесном контакте друг с другом. Следовательно, сорастворителем предпочтительно является сорастворитель или смесь сорастворителей, который(ая) растворяет как радикал, так и 13С-пировиноградную кислоту и/или 13С-пируват. Для 13С-пирувата в качестве сорастворителя предпочтительно используют воду.
Было также обнаружено, что более высокие уровни поляризации на стадии (б) достигаются, когда смесь при охлаждении/замораживании образует стекло, а не кристаллизованный образец. Опять же, образование стекла обеспечивает более тесный контакт радикала и подвергаемого поляризации соединения. 13С-пировиноградная кислота является хорошим стеклообразующим веществом, и поэтому предпочтительно ее используют в способе по изобретению, когда радикал растворим в 13С-пировиноградной кислоте. 13С-пируват представляет собой соль, и при замораживании жидкой смеси водного раствора 13С-пирувата и радикала будет образовываться кристаллизованный образец. Чтобы предотвратить это, предпочтительно добавлять также сорастворители, которые являются хорошими стеклообразующими веществами, такие как глицерин, пропандиол или гликоль.
Таким образом, в одном воплощении 13С-пируват растворяют в воде с получением водного раствора и добавляют радикал, глицерин и возможно также сорастворитель с образованием жидкой смеси согласно стадии (а) способа по изобретению. В предпочтительном воплощении 13С-пировиноградную кислоту, радикал и сорастворитель объединяют с образованием жидкой смеси согласно стадии (а) способа по настоящему изобретению. В наиболее предпочтительном воплощении 13С-пировиноградную кислоту и радикал объединяют с образованием жидкой смеси согласно стадии (а) способа по настоящему изобретению. Смешивание соединений до гомогенного состояния может быть достигнуто несколькими способами, известными в данной области, такими как перемешивание, вортексирование или обработка ультразвуком.
Жидкая смесь стадии (а) согласно способу по изобретению предпочтительно содержит от 5 до 100 мМ радикала, более предпочтительно от 10 до 20 мМ радикала, особенно предпочтительно от 12 до 18 мМ радикала и наиболее предпочтительно от 13 до 17 мМ радикала. Было обнаружено, что время нарастания для поляризации на стадии (б) способа по изобретению короче при использовании большего количества радикала, однако достигается более низкий уровень поляризации. Следовательно, эти два эффекта должны быть сбалансированы один относительно другого.
Жидкую смесь на стадии (а) способа по изобретению замораживают, после чего проводят поляризацию. Охлаждение/замораживание жидкой смеси может быть достигнуто способами, известными в данной области, например замораживанием жидкой смеси в жидком азоте или просто помещением ее в поляризатор, где образец будет заморожен жидким гелием.
На стадии (б) способа по изобретению поляризацию 13С-ядер 13С-пировиноградной кислоты и/или 13С-пирувата усиливают посредством ДПЯ. Как указано выше, динамическая поляризация ядер (ДПЯ) представляет собой метод поляризации, заключающийся в том, что поляризацию соединения, которое поляризуют, осуществляют ДПЯ агентом, то есть парамагнитным соединением. Что касается способа по изобретению, поляризацию осуществляют используемым радикалом. Во время процесса ДПЯ подводят энергию, предпочтительно в виде микроволнового излучения, которая первоначально возбуждает радикал. При угасании до исходного состояния происходит перенос поляризации от неспаренного электрона радикала к 13С-ядру 13С-пировиноградной кислоты и/или 13С-пирувата.
Методика ДПЯ описана, например, в международных публикациях WO-A-98/58272 и в WO-A-01/96895, которые обе включены в данное описание ссылкой на них. Обычно в процессе ДПЯ используют умеренное или сильное магнитное поле и очень низкую температуру, например проводят процесс ДПЯ в жидком гелии и в магнитном поле примерно 1 Тл или выше. Альтернативно, можно использовать умеренное магнитное поле и любую температуру, при которой достигается достаточное усиление поляризации. В предпочтительном воплощении способа по изобретению процесс ДПЯ проводят в жидком гелии и в магнитном поле примерно 1 Тл или выше. Подходящие установки для проведения стадии (б) способа по изобретению описаны, например, в WO-A-02/37132. В предпочтительном воплощении установка для поляризации содержит криостат и поляризующее устройство, например микроволновую камеру, соединенную волноводом с источником микроволнового излучения, в центральном канале, окруженном создающим магнитное поле устройством, таким как сверхпроводящий магнит. Канал тянется вертикально вниз до по меньшей мере уровня области Р рядом со сверхпроводящим магнитом, где сила магнитного поля достаточно высока, например от 1 до 25 Тл, для осуществления поляризации 13С-ядер. Канал для образца предпочтительно выполнен с возможностью герметизации, и его можно откачивать до низких давлений, например давлений порядка 1 мбар (100 Па) или менее. Внутрь этого канала может быть помещено устройство для ввода образца (например, замороженной смеси стадии (а) способа по изобретению), например извлекаемая транспортирующая образец трубка, и эта трубка может быть вставлена в канал сверху вниз до позиции внутри микроволновой камеры в области Р. Область Р охлаждают жидким гелием до температуры, достаточно низкой для того, чтобы происходила поляризация, предпочтительно до температуры порядка 0,1-100 К, более предпочтительно 0,5-10 К, наиболее предпочтительно 1-5 К. Устройство для ввода образца предпочтительно выполнено с возможностью герметизации на его верхнем конце любым подходящим способом для сохранения частичного вакуума в канале. В нижнем конце устройства для ввода образца может быть установлен с возможностью извлечения удерживающий образец контейнер, например удерживающий образец стакан. Удерживающий образец контейнер предпочтительно изготовлен из легкого по массе материала с низкой удельной теплоемкостью и хорошими криогенными свойствами, такого как, например, KeIF (полихлортрифторэтилен) или PEEK (полиэфирэфиркетон). Контейнер для образца может вмещать в себя один или более чем один поляризуемый образец.
Образец вставляют в удерживающий образец контейнер, погружают в жидкий гелий и подвергают микроволновому облучению, предпочтительно при частоте примерно 94 ГГц при 200 мВт. Мониторинг уровня поляризации можно выполнять путем получения 13С-ЯМР сигналов от образца в твердом состоянии во время микроволнового облучения, поэтому на стадии (б) предпочтительно используют установку для поляризации, содержащую устройство для получения 13С-ЯМР спектров в твердом состоянии. Обычно получают кривую насыщения на графике зависимости 13С-ЯМР сигнала от времени. Следовательно, можно определить, когда достигается оптимальный уровень поляризации.
На стадии (в) способа по изобретению замороженную поляризованную смесь растворяют в буфере, предпочтительно физиологически переносимом буфере, с получением жидкой композиции. Термин "буфер" в контексте этой заявки означает один или более чем один буфер, то есть также смесь буферов.
Предпочтительными буферами являются физиологически переносимые буферы, более предпочтительно буферы, которые обеспечивают рН в пределах примерно от 7 до 8, такие как, например, фосфатный буфер (KH2PO4/Na2HPO4), ACES, PIPES, имидазол/HCl, BES, MOPS, HEPES, TES, TRIS, HEPPS или TRICIN. Более предпочтительными буферами являются фосфатный буфер и TRIS, наиболее предпочтительным является TRIS. В еще одном воплощении используют более чем один из вышеуказанных предпочтительных буферов, то есть смесь буферов.
Когда в соединении, подлежащем поляризации, используют 13С-пировиноградную кислоту, стадия (в) также включает превращение 13С-пировиноградной кислоты в 13С-пируват. Чтобы достичь этого, 13С-пировиноградную кислоту подвергают взаимодействию с основанием. В одном воплощении 13С-пировиноградную кислоту подвергают взаимодействию с основанием с превращением ее в 13С-пируват, а затем добавляют буфер. В другом предпочтительном воплощении буфер и основание объединяют в одном растворе, и этот раствор добавляют к 13С-пировиноградной кислоте, при этом она растворяется и превращается в 13С-пируват одновременно. В предпочтительном воплощении основание представляет собой водный раствор NaOH, Na2CO3 или NaHCO3, и наиболее предпочтительным основанием является NaOH. В особенно предпочтительном воплощении для растворения 13С-пировиноградной кислоты и ее превращения в натриевую соль 13С-пирувата используют раствор буфера TRIS, содержащий NaOH.
В другом предпочтительном воплощении буфер или, где это применимо, объединенный раствор буфер/основание дополнительно содержит одно или более соединений, которые способны связывать свободные парамагнитные ионы или образовывать с ними комплексы, например хелатирующие агенты, такие как DTPA (диэтилентриаминпентауксусная кислота) или EDTA (этилендиаминтетрауксусная кислота). Было обнаружено, что свободные парамагнитные ионы могут вызывать уменьшение T1 гиперполяризованного соединения, и этого предпочтительно избегают.
Растворение может быть осуществлено предпочтительно с использованием методов и/или устройств, раскрытых в WO-A-02/37132. Коротко, используют установку для растворения, которая либо физически отделена от поляризатора, либо является частью аппарата, который содержит поляризатор и установку для растворения. В предпочтительном воплощении стадию (в) проводят при повышенном магнитном поле для улучшения релаксации и сохранения максимума гиперполяризации. Узлов магнитного поля следует избегать, и, несмотря на вышеуказанные меры, слабое поле может приводить к усилению релаксации.
На возможной стадии (г) способа по изобретению радикал и/или его реакционные продукты удаляют из жидкой композиции, полученной на стадии (в). Радикал и/или реакционные продукты могут быть удалены частично, в значительной степени или в идеале полностью, причем полное удаление является предпочтительным, когда жидкую композицию используют у пациента-человека. Реакционными продуктами радикала могут быть сложные эфиры, которые могут образовываться в результате реакции пировиноградной кислоты с радикалами формулы (I), содержащими гидроксильные группы. В предпочтительном воплощении способа по изобретению стадия (г) является обязательной. Способы, используемые для удаления радикала и/или его реакционных продуктов, известны в данной области. Как правило, выбор способа зависит от природы радикала и/или его реакционных продуктов. При растворении замороженной смеси на стадии (в) радикал может осаждаться, и его легко можно выделить из жидкой композиции фильтрованием. Если осаждение не происходит, радикал может быть удален хроматографическими методами разделения, например жидкостной хроматографией, такой как хроматография с обращенными фазами, прямофазная или ионообменная хроматография, или экстракцией.
Так как радикал формулы (I) имеет характеристический спектр поглощения в УФ/видимой области, можно использовать измерение поглощения в УФ/видимой области в качестве метода проверки его присутствия в жидкой композиции после его удаления. Для получения количественных результатов, то есть концентрации радикала, присутствующего в жидкой композиции, оптический спектрометр может быть откалиброван таким образом, что поглощение при конкретной длине волны для образца дает соответствующую концентрацию радикала в образце. Удаление радикала и/или его реакционных продуктов является особенно предпочтительным, если жидкую композицию используют в качестве визуализирующего агента для МР визуализации in vivo организма человека или животного, не являющегося человеком.
В еще одном аспекте настоящего изобретения предложена композиция, содержащая гиперполяризованный 13С-пируват, предпочтительно гиперполяризованный 13С-пируват натрия, и буфер, выбранный из группы, состоящей из фосфатного буфера и TRIS.
В предпочтительном воплощении гиперполяризованный 13С-пируват имеет уровень поляризации по меньшей мере 10%, более предпочтительно по меньшей мере 15%, особенно предпочтительно по меньшей мере 20% и наиболее предпочтительно более 20%.
Было обнаружено, что такие композиции являются превосходными визуализирующими агентами для МР визуализации in vivo, особенно для МР исследования метаболических процессов in vivo и для МР визуализации опухоли in vivo, и композиция, содержащая гиперполяризованный 13С-пируват и буфер, выбранный из группы, состоящей из фосфатного буфера и TRIS, для применения в качестве МР визуализирующего агента образует еще один аспект изобретения.
Композицию по изобретению предпочтительно получают способом, заявленным в п.1 формулы изобретения, более предпочтительно с использованием 13С-пирувата на стадии (а) способа по п.1 и радикала формулы (I), где М представляет собой водород или физиологически переносимый катион, и R1 одинаковые и каждый представляет собой алкоксилированную С1-С4-углеводородную группу с прямой или разветвленной цепью, предпочтительно метокси, -CH2-ОСН3, -СН2-ОС2Н5 или -СН2-СН2-ОСН3, и стадия (г) является обязательной. В особенно предпочтительном воплощении композицию по изобретению получают способом, заявленным в п.1 формулы изобретения, где на стадии (а) используют 13С-пируват и радикал формулы (I), где М представляет собой водород, и R1 одинаковые и каждый представляет собой -СН2СН2-ОСН3, и стадия (г) является обязательной.
Другим аспектом изобретения является применение композиции, содержащей гиперполяризованный 13С-пируват, предпочтительно гиперполяризованный 13С-пируват натрия, и буфер, выбранный из группы, состоящей из фосфатного буфера и TRIS, для изготовления МР визуализирующего агента для исследования метаболических процессов in vivo в организме человека или животного, не являющегося человеком.
Еще одним аспектом изобретения является применение композиции, содержащей гиперполяризованный 13С-пируват, предпочтительно гиперполяризованный 13С-пируват натрия, и буфер, выбранный из группы, состоящей из фосфатного буфера и TRIS, для изготовления МР визуализирующего агента для визуализации опухоли in vivo в организме человека или животного, не являющегося человеком, предпочтительно для диагностирования опухоли, и/или стадирования опухоли, и/или мониторинга лечения опухоли in vivo, более предпочтительно, для диагностирования опухоли простаты, и/или для стадирования опухоли простаты, и/или для мониторинга лечения опухоли простаты in vivo.
Композицию по изобретению можно использовать в качестве "обычного" МР визуализирующего агента, то есть обеспечивающего усиление контраста, для анатомической визуализации. Дополнительное преимущество композиции по изобретению заключается в том, что пируват является эндогенным соединением, которое организм человека переносит очень хорошо даже в высоких концентрациях. В качестве предшественника в цикле лимонной кислоты пируват играет важную метаболическую роль в организме человека. Пируват превращается в разные соединения: в результате его трансаминирования образуется аланин, в результате окислительного декарбоксилирования пируват превращается в ацетил-КоА и бикарбонат, в результате восстановления пирувата образуется лактат, а в результате его карбоксилирования образуется оксалоацетат.
Теперь обнаружено, что превращение гиперполяризованного 13С-пирувата в гиперполяризованный 13С-лактат, гиперполяризованный 13С-бикарбонат (только в случае 13С1-пирувата, 13С1,2-пирувата или 13С1,2,3-пирувата) и гиперполяризованный 13С-аланин может быть использовано для МР стадирования метаболических процессов в организме человека in vivo. Это неожиданно, поскольку известно, что T1 гиперполяризованных соединений снижается из-за релаксации и разбавления. В цельной крови человека при 37°С 13С-пируват имеет релаксацию T1 примерно 42 сек, однако было обнаружено, что превращение гиперполяризованного 13С-пирувата в гиперполяризованный 13С-лактат, гиперполяризованный 13С-бикарбонат и гиперполяризованный 13С-аланин является достаточно быстрым, чтобы иметь возможность детектировать сигнал от 13С-пируватного исходного соединения и его метаболитов. Количество аланина, бикарбоната и лактата зависит от метаболического статуса исследуемой ткани. Интенсивность МР сигнала гиперполяризованного 13С-лактата, гиперполяризованного 13С-бикарбоната и гиперполяризованного 13С-аланина связана с количеством этих соединений и степенью поляризации, оставшейся к моменту детектирования. Следовательно, мониторинг превращения гиперполяризованного 13С-пирувата в гиперполяризованный 13С-лактат, гиперполяризованный 13С-бикарбонат и гиперполяризованный 13С-аланин дает возможность исследовать метаболические процессы in vivo в организме человека или животного, не являющегося человеком, с использованием неинвазивной МР визуализации.
Было обнаружено, что амплитуды МР сигналов от разных метаболитов пирувата меняются в зависимости от типа ткани. Уникальная картина метаболических пиков, образуемая аланином, лактатом, бикарбонатом и пируватом, может быть использована в качестве характерного признака для метаболического состояния исследуемой ткани и, следовательно, обеспечивает различение здоровой ткани и опухолевой ткани. Это делает композицию по изобретению превосходным агентом для МР визуализации опухоли in vivo.
Обычно для проведения МР визуализации с использованием композиции по изобретению субъекта, которого подвергают исследованию, например пациента или животное, помещают в МР магнит. Специально предназначенные 13С-МР радиочастотные катушки расположены так, что они охватывают интересующую область.
Композицию по изобретению, т.е. композицию, содержащую гиперполяризованный 13С-пируват и буфер, выбранный из группы, состоящей из фосфатного буфера и TRIS, вводят парентерально, предпочтительно внутривенно, внутриартериально или непосредственно в интересующую область или орган. Дозировка и концентрация композиции по изобретению зависят от целого ряда факторов, таких как токсичность, способность направленно доставляться в орган и путь введения. Обычно композицию вводят в концентрации вплоть до 1 ммоль пирувата на кг массы тела, предпочтительно от 0,01 до 0,5 ммоль/кг, более предпочтительно от 0,1 до 0,3 ммоль/кг. Скорость введения составляет предпочтительно менее 10 мл/сек, более предпочтительно менее 6 мл/сек и наиболее предпочтительно от 5 мл/сек до 0,1 мл/сек. Через менее чем 400 сек после введения, предпочтительно менее чем 120 сек, более предпочтительно менее чем 60 сек после введения, особенно предпочтительно через 20-50 сек после введения и наиболее предпочтительно через 30-40 сек после введения применяют последовательность МР визуализации, которая кодирует интересующий объем объединенным избирательным по частоте и пространственным характеристикам способом. Это приводит к получению метаболических изображений 13С-лактата, 13С-аланина и 13С-пирувата и, более предпочтительно, метаболических изображений 13С-лактата, 13С-аланина, 13С-бикарбоната и 13С-пирувата. В тот же самый период времени может быть получено протонное изображение с протонным МРВ контрастным агентом или без него с получением анатомической и/или перфузионной информации.
Кодирование интересующего объема может быть достигнуто с использованием так называемой последовательности спектроскопической визуализации, как описано, например, в T.R.Brown et al., Proc. Natl. Acad. Sci. USA 79, 3523-3526 (1982); A.A.Maudsley, et al., J. Magn. Res 51, 147-152 (1983). Данные спектроскопического изображения содержат множество элементов объема, при этом каждый элемент содержит полный 13С-МР спектр. 13С-пируват и его 13С-метаболиты все имеют свою уникальную позицию в 13С-МР спектре, и их резонансная частота может быть использована для их идентификации. Интеграл от пика при его резонансной частоте прямо связан с количеством 13С-пирувата и его 13С-метаболитов соответственно. Когда количество 13С-пирувата и каждого 13C-метаболита оценивают с использованием, например, рутинных методов выравнивания во временной области, как описано, например, в L.Vanhamme et al., J. Magn. Reson. 129, 35-43 (1997), можно генерировать изображения для 13С-пирувата и каждого 13C-метаболита, в которых цветовое кодирование или яркостное кодирование является характерным для измеряемого количества 13С-пирувата и каждого 13С-метаболита.
Хотя методы спектроскопической визуализации доказали свою ценность в создании метаболических изображений с использованием всех видов МР ядер, например 1H, 31P, 23Na, количество повторов, необходимых для полного кодирования спектроскопического изображения, делает этот подход менее подходящим для гиперполяризованного 13С. Необходимо обеспечивать наличие сигнала от гиперполяризованного 13С в течение всего периода получения МР данных. Этого можно достичь за счет снижения отношения сигнал/шум в результате уменьшения угла РЧ-импульса, что применяют в каждой фазе стадии кодирования. Чем выше размеры матрицы, тем больше фаз стадий кодирования и более длительные периоды