Система и способ защиты микроструктуры матрицы отображения с использованием прокладок в зазоре внутри устройства отображения

Иллюстрации

Показать все

Устройство отображения содержит матрицу интерферометрических модуляторов, сформированных на подложке, заднюю пластину, уплотнение и одну или более прокладок. Уплотнение размещено между подложкой и задней пластиной вместе для монтажа матрицы модуляторов в корпус. Прокладки размещены между матрицей и пластиной. Прокладки предохраняют заднюю пластину от контакта с матрицей. Прокладки не контактируют с задней пластиной или матрицей. В способе изготовления устройства отображения обеспечивают наличие матрицы интерферометрических модуляторов на подложке, размещают прокладки между матрицей и задней пластиной и уплотняют вместе заднюю пластину и подложку. Технический результат - предотвращение или уменьшение повреждений за счет монтажа устройства в корпус и использования прокладок. 4 н. и 35 з.п. ф-лы, 76 ил.

Реферат

Область техники, к которой относится изобретение

Это изобретение относится к электронным устройствам. Более конкретно это изобретение относится к системе монтажа в корпус и способу защиты микроэлектромеханического устройства от физического повреждения.

Уровень техники

Микроэлектромеханические системы (МЭМС) включают в себя микромеханические элементы, исполнительные механизмы и электронику. Микромеханические элементы могут быть созданы с использованием осаждения, травления и/или других процессов микрообработки, которые вытравливают части подложек и/или осажденных слоев материалов или которые добавляют слои для формирования электрических и электромеханических устройств. Один тип МЭМС-устройства называют интерферометрическим модулятором. Интерферометрический модулятор может содержать пару проводящих пластин, одна или обе из которых могут быть прозрачными и/или отражающими полностью или частично и способными к относительному перемещению при приложении соответствующего электрического сигнала. Одна пластина может содержать стационарный слой, осажденный на подложке, другая пластина может содержать металлическую мембрану, отделенную от стационарного слоя посредством воздушного зазора. Такие устройства имеют широкий диапазон применений, и было бы выгодно в данной области техники использовать и/или модифицировать характеристики устройств этих типов так, чтобы их признаки могли быть использованы для улучшения существующих изделий (продуктов) и создания новых изделий, которые еще не были разработаны.

Раскрытие изобретения

Одним вариантом воплощения этого изобретения является устройство отображения (дисплей), содержащее матрицу интерферометрических модуляторов, сформированных на подложке. Этот вариант воплощения включает в себя объединительную пластину и уплотнение, размещенное между подложкой и объединительной пластиной, причем подложка и объединительная пластина плотно скреплены вместе для монтажа матрицы интерферометрических модуляторов в корпус. Между матрицей и объединительной пластиной размещены одна или более прокладок (распорок или разделителей), причем эти одна или более прокладок предохраняют объединительную пластину от контакта с матрицей.

Другим вариантом воплощения этого изобретения является способ изготовления устройства отображения. Этот вариант воплощения включает в себя обеспечение наличия матрицы интерферометрических модуляторов на подложке и размещение на этой подложке одной или более прокладок. Этот способ также включает в себя плотное прикрепление объединительной пластины к подложке для формирования устройства отображения, причем эти одна или более прокладок предохраняют объединительную пластину от контакта с матрицей.

Еще одним вариантом воплощения этого изобретения является устройство отображения, изготовленное с помощью способа, включающего в себя обеспечение наличия матрицы интерферометрических модуляторов на подложке и размещения одной или более прокладок на этой подложке. Способ изготовления устройства отображения также включает в себя плотное прикрепление объединительной пластины к подложке для формирования устройства отображения, причем одна или более прокладок предохраняют объединительную пластину от контакта с матрицей.

Еще одним вариантом воплощения этого изобретения является устройство отображения. В этом варианте воплощения устройство отображения включает в себя работающее на пропускание средство для пропускания через него света и модулирующее средство для модулирования света, прошедшего через работающее на пропускание средство. Устройство отображения также содержит покрывающее средство для покрытия модулирующего средства и уплотняющее средство, размещенное между работающим на пропускание средством и покрывающим средством для формирования корпуса. Кроме того, устройство отображения включает в себя распорное средство для предохранения модулирующего средства и покрывающего средства от контакта друг с другом внутри устройства отображения.

Краткое описание чертежей

Эти и другие аспекты данного изобретения станут более очевидными из последующего описания и из прилагаемых чертежей (не в масштабе), которые предназначены иллюстрировать, а не ограничивать это изобретение.

Фиг.1 представляет собой изометрическую проекцию, изображающую часть дисплея на основе интерферометрических модуляторов согласно одному варианту воплощения, в котором подвижный отражающий слой первого интерферометрического модулятора находится в неактивизированном положении, а подвижный отражающий слой второго интерферометрического модулятора находится в активизированном положении.

Фиг.2 представляет собой блок-схему системы, показывающую один вариант воплощения электронного устройства, включающего в себя имеющий матрицу 3×3 дисплей на основе интерферометрических модуляторов.

Фиг.3 представляет собой диаграмму зависимости положений подвижного зеркала от приложенного напряжения для одного примерного варианта воплощения интерферометрического модулятора по Фиг.1.

Фиг.4 представляет собой иллюстрацию набора напряжений строк и столбцов, которые могут использоваться для возбуждения дисплея на основе интерферометрических модуляторов.

Фиг.5A показывает один примерный кадр отображаемых данных в имеющем матрицу 3×3 дисплее на основе интерферометрических модуляторов по Фиг.2.

Фиг.5B показывает одну примерную временную диаграмму для сигналов строк и столбцов, которые могут использоваться для записи кадра по Фиг.5A.

Фиг.6A представляет собой поперечное сечение устройства по Фиг.1. Фиг.6B представляет собой поперечное сечение альтернативного варианта воплощения интерферометрического модулятора. Фиг.6C представляет собой поперечное сечение альтернативного варианта воплощения интерферометрического модулятора.

Фиг.7A и Фиг.7B показывают изображение с пространственным разделением деталей и поперечное сечение одного варианта воплощения корпуса дисплея, содержащего прокладку. Фиг.7C показывает вариант воплощения корпуса дисплея, содержащего утопленную крышку. Фиг.7D показывает вариант воплощения корпуса дисплея, который содержит изогнутую объединительную пластину.

Фиг.8A показывает поперечное сечение варианта воплощения утопленной крышки. Фиг.8B показывает поперечное сечение варианта воплощения объединительной пластины, содержащей усиливающие ребра. Фиг.8C показывает поперечное сечение варианта воплощения утопленной крышки, содержащей усиливающие ребра. Фиг.8D и Фиг.8E показывают в поперечном сечении объединительные пластины, содержащие полости, в которых размещается влагопоглотитель.

Фиг.9 показывает поперечное сечение устройства с двойной матрицей, которое содержит две матрицы интерферометрических модуляторов.

Фиг.10 показывает поперечное сечение варианта воплощения корпуса дисплея, содержащего влагопоглотитель.

Фиг.11A показывает вид сверху варианта воплощения устройства, в котором прокладки располагаются, по существу, упорядоченным образом (с регулярной структурой или рисунком). Фиг.11B показывает вид сверху варианта воплощения устройства, в котором прокладки располагаются случайным образом (с произвольным рисунком). Фиг.11C показывает вид сверху варианта воплощения устройства, в котором прокладки располагаются около центра матрицы. Фиг.11D показывает вид сверху варианта воплощения устройства, в котором прокладки являются более плотными около центра матрицы и менее плотными около периферии. Фиг.11E показывает вид сверху варианта воплощения устройства, содержащего три концентрические зоны прокладок.

Фиг.12A-Фиг.12T показывают варианты воплощения прокладок.

Фиг.13A показывает вид сверху варианта воплощения устройства, содержащего прокладки, которые простираются на по меньшей мере два столбика в матрице. Фиг.13B показывает вид сверху варианта воплощения устройства, содержащего прокладки в форме диска, которые простираются на по меньшей мере два столбика в матрице.

Фиг.14 показывает вид сверху варианта воплощения устройства, содержащего прокладки, по меньшей мере, столь же большие по размеру, как и один интерферометрический модуляторный элемент в матрице.

Фиг.15A показывает вид сверху варианта воплощения устройства, содержащего прокладки, по существу, центрированные над столбиками. Фиг.15B показывает вид сверху варианта воплощения устройства, в котором некоторая часть каждой прокладки располагается над столбиком. Фиг.15C показывает вид сверху варианта воплощения устройства, в котором никакая часть никакой прокладки не располагается над каким-либо столбиком.

Фиг.16 показывает вид сверху варианта воплощения устройства, содержащего прокладки различных размеров.

Фиг.17A показывает вид сверху варианта воплощения устройства, содержащего сеточную прокладку. Фиг.17B показывает вид сверху варианта воплощения устройства, содержащего сеточную прокладку, которая является более плотной в центре, чем на периферии. Фиг.17C показывает вид сверху цельной прямоугольной прокладки. Фиг.17D показывает вид сверху цельной диагональной прокладки.

Фиг.18A показывает поперечное сечение варианта воплощения устройства, содержащего пленочную прокладку. Фиг.18B показывает поперечное сечение варианта воплощения устройства, содержащего пленочную прокладку с неплоским поперечным сечением. Фиг.18C показывает поперечное сечение варианта воплощения устройства, содержащего пленочную прокладку в виде мешка.

Фиг.19 показывает поперечное сечение варианта воплощения устройства, содержащего множество пленочных прокладок.

Фиг.20A-Фиг.20D показывают в поперечном сечении реакцию прокладки с треугольным поперечным сечением согласно одному варианту воплощения на приложенное усилие. Фиг.20E показывает вариант воплощения прокладки с более тонкой верхней частью и более толстой нижней частью. Фиг.20F показывает поперечное сечение варианта воплощения прокладки с двумя областями, которые различным образом реагируют на приложенное усилие.

Фиг.21A показывает поперечное сечение варианта воплощения устройства, в котором прокладка простирается между матрицей и объединительной пластиной. Фиг.21B показывает поперечное сечение варианта воплощения устройства, в котором прокладка контактирует с матрицей, но не с объединительной пластиной. Фиг.21C показывает поперечное сечение варианта воплощения устройства, в котором прокладка контактирует с объединительной пластиной, но не с матрицей.

Фиг.22A показывает поперечное сечение варианта воплощения устройства, содержащего цельные прокладки, сформированные поверх столбиков интерферометрических модуляторов. Фиг.22B показывает поперечное сечение варианта воплощения устройства, содержащего цельные прокладки, сформированные поверх столбиков интерферометрических модуляторов различных высот, и вторую прокладку, размещенную на этих цельных прокладках. Фиг.22C показывает поперечное сечение варианта воплощения устройства, содержащего цельные прокладки, сформированные поверх столбиков интерферометрических модуляторов, и вторую прокладку, которая захватывает цельные прокладки.

Фиг.23 представляет собой блок-схему технологических операций, показывающую вариант воплощения способа изготовления смонтированного в корпусе электронного устройства, которое устойчиво к физическому повреждению.

Фиг.24 представляет собой блок-схему технологических операций, показывающую вариант воплощения способа защиты электронного устройства от физического повреждения.

Фиг.25A и 25B представляют собой блок-схемы системы, показывающие вариант воплощения устройства визуального отображения, содержащего множество интерферометрических модуляторов.

Подробное описание конкретных вариантов воплощения

Электронные устройства являются восприимчивыми к повреждению в результате физических воздействий, например падений, скручивания, ударов, сжатия и тому подобного. Некоторые устройства являются более чувствительными к повреждению, чем другие. Например, устройства с движущимися частями являются восприимчивыми к смещению или поломке одной или более из движущихся частей. Некоторые устройства на основе микроэлектромеханических систем (МЭМС) являются особенно чувствительными к физическим воздействиям из-за точных размеров составляющих их деталей. Следовательно, такие устройства обычно монтируют в корпусе для уменьшения или предотвращения нежелательных контактов, которые могут нанести повреждения устройству.

В некоторых случаях сам корпус искажается или деформируется внешними силами, которые служат причиной того, что детали корпуса контактируют и в некоторых случаях повреждают или ухудшают работу смонтированного в корпусе устройства. Соответственно, предлагается система монтажа в корпус для электронных устройств, включая МЭМС-устройства, которая включает в себя прокладки, выполненные с возможностью предотвращения или уменьшения контактов деталей в смонтированном в корпусе устройстве, которые имеют вероятность повредить это электронное устройство. В некоторых вариантах воплощения прокладки выполнены с возможностью предотвращения или уменьшения повреждений, возникающих в результате контактов между матрицей интерферометрических модуляторов и объединительной пластиной системы монтажа в корпус для этого устройства. Следовательно, в некоторых вариантах воплощения смонтированный в корпусе дисплей, содержащий одну или более прокладок, является более тонким, чем эквивалентный смонтированный в корпусе дисплей, изготовленный без прокладок, так как прокладки позволяют размещать объединительную пластину ближе к матрице интерферометрических модуляторов, как обсуждается ниже.

МЭМС-устройства на основе интерферометрических модуляторов, раскрываемые здесь, являются применимыми в производстве устройств отображения (дисплеев). В некоторых вариантах воплощения дисплей содержит матрицу интерферометрических модуляторов, сформированных на подложке, тем самым давая устройство, которое является относительно тонким по сравнению с его длиной и/или шириной. Некоторые варианты воплощения таких конструкций восприимчивы к отклонению или деформации усилием, имеющим составляющую, нормальную к поверхности этого устройства. Некоторые варианты воплощения таких конструкций являются восприимчивыми к деформации при скручивании. Специалистам в данной области должно быть понятно, что при прочих равных условиях отклонение или деформация будут увеличиваться с увеличением длины и/или ширины этого устройства.

Усилия, которые имеют вероятность вызвать такие отклонения и/или деформации, не являются необычными в портативных электронных устройствах. Такие усилия возникают, например, в вариантах применения, связанных с сенсорным экраном, или в интерфейсах, основанных на использовании пера. Более того, для пользователей является обычным касаться или нажимать на поверхность дисплея, например, при указании какого-либо изображения на дисплее компьютера. Непреднамеренный контакт с дисплеем также происходит, например, на дисплее мобильного телефона в кармане или кошельке пользователя.

Последующее подробное описание направлено на определенные конкретные варианты воплощения этого изобретения. Однако настоящее изобретение может быть воплощено множеством различных способов. В этом описании делается ссылка на чертежи, причем сходные части всюду обозначаются с помощью сходных ссылочных позиций. Как будет видно из последующего описания, это изобретение может быть реализовано в любом устройстве, которое выполнено с возможностью отображения изображения, в движении ли (например, видео), или в статике (например, неподвижное изображение, фотография), будь то текст или картинка. Более конкретно, предполагается, что это изобретение может быть реализовано в или связано с самыми разнообразными электронными устройствами, такими как, но не ограничиваясь этими, мобильные телефоны, беспроводные устройства (радиоустройства), персональные цифровые секретари (ПЦС или PDA), ручные или портативные компьютеры, приемники/навигаторы Глобальной системы позиционирования (ГСП или GPS), съемочные камеры, MP3-плееры, видеокамеры, игровые консоли (пульты), наручные часы, настенные или напольные часы, будильники, калькуляторы, телевизионные мониторы, дисплеи с плоским экраном, компьютерные мониторы, автомобильные дисплеи (например, дисплей одометра (т.е. счетчика пройденного пути) и т.д.), органы управления и/или дисплеи кабин пилотов, дисплей съемочной камеры (например, дисплей камеры заднего вида в транспортном средстве), электронные фотоаппараты, электронные доски объявлений, рекламные щиты или вывески, дорожные знаки, проекторы, архитектурные конструкции, средства монтажа в корпус и эстетические конструкции (например, дисплеи для отображения изображений на ювелирных изделиях). МЭМС-устройства с конструкцией, аналогичной описываемым здесь, также могут быть использованы в приложениях, не использующих дисплеи, таких как, например, в электронных коммутирующих устройствах.

Один вариант воплощения дисплея на основе интерферометрических модуляторов, содержащего интерферометрический МЭМС-элемент дисплея, показан на Фиг.1. В этих устройствах пиксели находятся либо в ярком, либо в темном состоянии. В ярком («включенном» или «открытом») состоянии элемент дисплея отражает большую часть падающего видимого света к пользователю. Находясь в темном («выключенном» или «закрытом») состоянии, элемент дисплея отражает мало падающего видимого света к пользователю. В зависимости от варианта воплощения свойства отражения света «включенного» и «выключенного» состояний могут меняться на противоположные. МЭМС-пиксели могут быть выполнены с возможностью отражения преимущественно на выбранных цветах, делая возможным создание цветного дисплея в дополнение к черно-белому.

Фиг.1 представляет собой изометрическую проекцию, изображающую два соседних пикселя в ряду пикселей визуального дисплея, причем каждый пиксель содержит интерферометрический МЭМС-модулятор. В некоторых вариантах воплощения дисплей на основе интерферометрических модуляторов содержит матрицу-строк/столбцов из этих интерферометрических модуляторов. Каждый интерферометрический модулятор включает в себя пару отражающих слоев, располагающихся на изменяемом и управляемом расстоянии друг от друга с образованием резонансной оптической полости с по меньшей мере одним изменяемым линейным размером. В одном варианте воплощения один из отражающих слоев может перемещаться между двумя положениями. В первом положении, указываемом здесь как неактивизированное состояние, подвижный слой располагается на относительно большом расстоянии от зафиксированного (неподвижного) частично отражающего слоя. Во втором положении подвижный слой располагается более близко к частично отражающему слою. Падающий свет, который отражается от этих двух слоев, интерферирует конструктивно или деструктивно в зависимости от положения подвижного отражающего слоя, давая либо полностью отражающее или неотражающее состояние для каждого пикселя.

Изображенная часть матрицы пикселей на Фиг.1 включает в себя два соседних интерферометрических модулятора 12a и 12b. В интерферометрическом модуляторе 12a с левой стороны подвижный и сильно отражающий слой 14a показан в неактивизированном положении на заданном расстоянии от зафиксированного частично отражающего слоя 16a. В интерферометрическом модуляторе 12b с правой стороны подвижный сильно отражающий слой 14b показан в активизированном положении рядом с зафиксированным частично отражающим слоем 16b.

Фиксированные слои 16a, 16b являются электрически проводящими, частично прозрачными и частично отражающими и могут быть изготовлены, например, посредством осаждения одного или более слоев, каждый из хрома и оксида индия-олова, на прозрачную подложку 20. Слои наносятся с рисунком в виде параллельных полос и могут формировать электроды строк в устройстве отображения, как дополнительно описывается ниже. Подвижные слои 14a, 14b могут быть сформированы в виде последовательности параллельных полос осажденного металлического слоя или слоев (ортогональных к электродам 16a, 16b строк), осажденного(ых) поверх столбиков 18 и промежуточного удаляемого материала, осажденного между столбиками 18. Когда удаляемый материал вытравливается, деформируемые металлические слои отделены от зафиксированных металлических слоев некоторым определенным воздушным зазором 19. Для деформируемых слоев может использоваться высоко проводящий и отражающий материал, такой как алюминий, и эти полосы могут формировать электроды столбцов в устройстве отображения.

В отсутствие приложенного напряжения между слоями 14a, 16a остается полость 19, и деформируемый слой находится в механически ненапряженном («расслабленном») состоянии, как показано с помощью пикселя 12a на Фиг.1. Однако, когда к выбранным строке и столбцу прилагается разность потенциалов, конденсатор, образовавшийся на пересечении электродов строки и столбца в соответствующем пикселе, становится заряженным, и электростатические силы стягивают электроды вместе. Если напряжение является достаточно высоким, подвижный слой деформируется и принудительно придвигается к зафиксированному слою (на зафиксированный слой может быть осажден диэлектрический материал, который на этой фигуре не показан, чтобы предотвращать замыкание и управлять отделяющим их расстоянием), как показано с помощью пикселя 12b с правой стороны на Фиг.1. Поведение является одним и тем же независимо от полярности прилагаемой разности потенциалов. Таким образом, активация строк/столбцов, которая может управлять отражающим и неотражающим состояниями пикселя, во многих отношениях является аналогичной активации, используемой в стандартных жидкокристаллических дисплеев (ЖКД или LCD) и дисплеев на основе других технологий.

На фигурах с Фиг.2 по Фиг.5B показан один примерный процесс и система для использования матрицы интерферометрических модуляторов в применении к дисплею. Фиг.2 представляет собой блок-схему системы, показывающую один вариант воплощения электронного устройства, которое может включать в себя аспекты этого изобретения. В примерном варианте воплощения электронное устройство включает в себя процессор 21, который может быть любым однокристальным или многокристальным микропроцессором общего назначения, таким как ARM, Pentium®, Pentium II®, Pentium III®, Pentium IV®, Pentium® Pro, 8051-ым, MIPS®, Power PC®, ALPHA®, или любым микропроцессором специального назначения, таким как процессор цифровых сигналов, микроконтроллер или матрица программируемых логических элементов. Как является стандартным в данной области техники, процессор 21 может быть выполнен с возможностью исполнения одного или более программных модулей. В дополнение к исполнению операционной системы, процессор может быть выполнен с возможностью исполнения одного или более программных приложений, включая Web-браузер, телефонное приложение, программу электронной почты или любое другое программное приложение.

В одном варианте воплощения процессор 21 также выполнен с возможностью связывания с контроллером 22 матрицы. В одном варианте воплощения контроллер 22 матрицы включает в себя схему 24 возбуждения строк и схему 26 возбуждения столбцов, которые подают сигналы на матрицу 30 пикселей. Поперечное сечение матрицы, проиллюстрированной на Фиг.1, показано линиями 1-1 на Фиг.2. Для интерферометрических МЭМС-модуляторов протокол активации строк/столбцов может использовать преимущество наличия свойства гистерезиса у этих устройств, показанного на Фиг.3. Может требоваться, например, разность потенциалов в 10 вольт для того, чтобы заставить подвижный слой деформироваться из неактивизированного состояния в активизированное состояние. Однако, когда от этой величины напряжение уменьшается, подвижный слой сохраняет свое состояние по мере того, как напряжение падает назад ниже 10 вольт. В иллюстративном варианте воплощения по Фиг.3 подвижный слой не «освобождается» полностью до тех пор, пока напряжение не упадет ниже 2 вольт. Таким образом, имеется некоторый диапазон напряжения, примерно 3 до 7 В в примере, показанном на Фиг.3, где существует диапазон («окно») прилагаемого напряжения, внутри которого устройство является устойчивым либо в неактивизированном, либо в активизированном состоянии. Оно называется здесь как «окно гистерезиса» или «окно устойчивости». Для матрицы дисплея, имеющей характеристики гистерезиса согласно Фиг.3, протокол активации строк/столбцов может быть разработан так, что во время стробирования строки пиксели в стробируемой строке, которые должны активизироваться, подвергаются воздействию разности напряжения в примерно 10 вольт, а пиксели, которые должны остаться невозбужденными, подвергаются воздействию разности напряжения, близкой к нулю вольт. После строб-импульса пиксели подвергаются воздействию разности потенциалов устойчивого состояния в примерно 5 вольт, так что они остаются в том состоянии, в которое строковый строб-импульс их поместил. После записи каждый пиксель находится при разности потенциалов внутри «окна устойчивости», составляющего 3-7 вольт в этом примере. Этот признак делает конструкцию пикселей, показанную на Фиг.1, устойчивой при одних и тех же условиях прилагаемого напряжения либо в активизированном, либо в неактивизированном предварительно существующем состоянии. Так как каждый пиксель интерферометрического модулятора, в активизированном или неактивизированном состоянии, является, по существу, конденсатором, образованным зафиксированным и подвижным отражающими слоями, это устойчивое состояние может поддерживаться при напряжении внутри окна гистерезиса при почти полном отсутствии рассеяния энергии. Если прилагаемый потенциал является фиксированным, то в пиксель, по существу, не течет никакой ток.

В обычных приложениях кадр дисплея может быть создан посредством назначения набора электродов столбцов в соответствии с желаемым набором активизированных пикселей в первой строке. Затем к электроду строки 1 прилагается строковый импульс, активизируя пиксели, соответствующие назначенным шинам столбцов. Назначенный набор электродов столбцов затем изменяется, чтобы соответствовать желаемому набору активизированных пикселей во второй строке. Затем импульс прилагается к электроду строки 2, активизируя соответствующие пиксели в строке 2 в соответствии с назначенными электродами столбцов. Пиксели строки 1 импульсом строки 2 не затрагиваются, и остаются в том состоянии, в которое они были установлены в течение импульса строки 1. Это может повторяться для всей последовательности строк последовательным образом с тем, чтобы произвести кадр. В общем, кадры обновляются и/или корректируются новыми отображаемыми данными путем непрерывного повторения этого процесса при некотором желаемом количестве кадров в секунду. Широкое многообразие протоколов для управления электродами строк и столбцов матриц пикселей для воспроизведения кадров изображения в дисплее также хорошо известно и может быть использовано в сочетании с настоящим изобретением.

Фиг.4, Фиг.5A и Фиг.5B показывают один возможный протокол активации для создания кадра изображения в дисплее на основе матрицы 3×3 по Фиг.2. Фиг.4 показывает возможный набор уровней напряжения столбцов и строк, которые могут использоваться для пикселей, демонстрирующих гистерезисные кривые по Фиг.3. В варианте воплощения по Фиг.4 активизация пикселя включает в себя установку соответствующего столбца на -Vсмещения и соответствующей строки на +∆V, что может соответствовать -5 вольтам и +5 вольтам соответственно. Снятие возбуждения пикселя выполняется посредством установки соответствующего столбца на

+Vсмещения и соответствующей строки на то же +∆V, производя разность потенциалов на пикселе в ноль вольт. В тех строках, где напряжение строки поддерживается на нуле вольт, пиксели являются устойчивыми в том состоянии, в котором они были исходно, независимо от того, находится ли столбец при +Vсмещения или -Vсмещения.

Фиг.5B представляет собой временную диаграмму, показывающую последовательность сигналов строк и столбцов, прилагаемых к матрице 3×3 по Фиг.2, которые дают в результате конфигурацию дисплея, показанную на Фиг.5A, где активизированные пиксели являются неотражающими. До записи кадра, показанного на Фиг.5A, пиксели могут быть в любом состоянии, и в этом примере все строки находятся при 0 вольт, а все столбцы находятся при +5 вольт. При этих прилагаемых напряжениях все пиксели являются устойчивыми в их существующих активизированных или неактивизированных состояниях.

В кадре по Фиг.5A пиксели (1,1), (1,2), (2,2), (3,2) и (3,3) являются активизированными. Чтобы достичь этого, в течение «времени включения шины» для строки 1 столбцы 1 и 2 устанавливаются на -5 вольт, а столбец 3 устанавливается на +5 вольт. Это не изменяет состояние каких-либо пикселей, так как все пиксели остаются в 3-7-вольтном окне устойчивости. Строка 1 затем стробируется посредством импульса, который идет от 0 вверх к 5 вольт и назад к нулю. Это активизирует пиксели (1,1) и (1,2) и снимает возбуждение с пикселя (1,3). Никакие другие пиксели в матрице не затрагиваются. Чтобы задать желательным образом строку 2, столбец 2 устанавливается на -5 вольт, а столбцы 1 и 3 устанавливаются на +5 вольт. Тот же строб-импульс, прилагаемый к строке 2, затем активизирует пиксель (2,2) и снимает возбуждение с пикселей (2,1) и (2,3). Опять, никакие другие пиксели матрицы не затрагиваются. Строка 3 задается аналогично посредством установки столбцов 2 и 3 на -5 вольт и столбца 1 - на +5 вольт. Строб строки 3 устанавливает пиксели строки 3, как показано на Фиг.5A. После записи кадра потенциалы строк равны нулю, а потенциалы столбцов могут оставаться либо на +5, либо на -5 вольтах, и тогда дисплей является устойчивым в конфигурации по Фиг.5A. Следует принять во внимание, что та же процедура может применяться для матриц из десятков или сотен строк и столбцов. Следует также принять во внимание, что синхронизация, последовательность и уровни напряжений, используемые для выполнения активации строк и столбцов, могут широко варьироваться в рамках общих принципов, очерченных выше, и вышеописанный пример является только иллюстративным, и с настоящим изобретением может использоваться любой способ активации, основанный на напряжении.

Подробности конструкции интерферометрических модуляторов, которые работают в соответствии с принципами, изложенными выше, могут широко варьироваться. Например, Фиг.6A-Фиг.6C показывают три различных варианта воплощения конструкции подвижных зеркал. Фиг.6A представляет собой поперечное сечение варианта воплощения по Фиг.1, где полоса металлического материала 14 осаждена на ортогонально простирающиеся опоры 18. На Фиг.6B подвижный отражающий материал 14 прикреплен к опорам только в углах, на привязях 32. На Фиг.6C подвижный отражающий материал 14 свешивается с деформируемого слоя 34. Этот вариант воплощения имеет преимущества, так как конструктивная компоновка и материалы, используемые для отражающего материала 14, могут быть оптимизированы по оптическим свойствам, а конструктивная компоновка и материалы, используемые для деформируемого слоя 34, могут быть оптимизированы по желаемым механическим свойствам. Производство различных типов интерферометрических устройств описывается в многообразных опубликованных документах, включая, например, опубликованную заявку на патент США 2004/0051929. Для производства вышеописанных конструкций может использоваться широкое многообразие хорошо известных технологий, включая последовательность из этапов осаждения материала, шаблонирования и травления.

Фиг.7A и Фиг.7B показывают изображение с пространственным разделением деталей и поперечное сечение одного варианта воплощения смонтированного в корпусе электронного устройства 700, содержащего подложку 710, матрицу 720 интерферометрических модуляторов 722, одну или более прокладок 730, уплотнение 740 и объединительную пластину 750. Как лучше всего видно на Фиг.7B, устройство 700 имеет первую сторону 702 и вторую сторону 704. Подложка 710 имеет первую поверхность 712 и вторую поверхность 714. На второй поверхности 714 подложки сформирована матрица 720 интерферометрических модуляторов. В показанном варианте воплощения объединительная пластина 750 прикреплена к подложке 710 с помощью уплотнения 740. Между матрицей 720 и объединительной пластиной 750 размещаются одна или более прокладок 730. Также в этом описании на Фиг.7A показаны оси x, y и z, и на Фиг.7B оси y и z.

Подложка 710 и интерферометрические модуляторы 722 описаны более детально выше. Кратко, подложка 710 является любой подложкой, на которой может быть сформирован интерферометрический модулятор 722. В некоторых вариантах воплощения устройство 700 отображает изображение, видимое с первой стороны 702, и, соответственно, подложка 710 является, по существу, прозрачной и/или полупрозрачной. Например, в некоторых вариантах воплощения подложка выполнена из стекла, диоксида кремния (кварца) и/или оксида алюминия. В других вариантах воплощения подложка 710, по существу, не является прозрачной и/или полупрозрачной, например, в устройстве 700, которое отображает изображение, видимое со второй стороны 704, или в устройстве 700, которое не отображает видимого изображения. В некоторых вариантах воплощения первая поверхность 712 подложки дополнительно содержит одну или более дополнительных структур, например, одну или более структурных, защитных и/или оптических пленок.

Интерферометрические модуляторы 722 относятся к любому типу. В некоторых вариантах воплощения интерферометрический модулятор 722 содержит механический слой 724, отдаленный от подложки 710 и расположенный близко к объединительной пластине 750. Как обсуждается более детально ниже, в некоторых вариантах воплощения механический слой 724 является восприимчивым к физическому повреждению.

В показанных вариантах воплощения уплотнение 740 прикрепляет объединительную пластину 750 к подложке 710. Для обозначения уплотнения 740 здесь также используется термин «проходящая по периметру опора». В варианте воплощения, показанном на Фиг.7B, уплотнение 740 также служит для того, чтобы поддерживать заданное расстояние между объединительной пластиной 750 и подложкой 710. В варианте воплощения, показанном на Фиг.7C, уплотнение 740' не имеет дистанцирующей функции. В некоторых вариантах воплощения уплотнение не дает или не выделяет в виде газа какого-либо летучего соединения, например углеводородов, кислот, аминов и тому подобного. В некоторых вариантах воплощения уплотнение является частично или, по существу, полностью непроницаемым для воды в жидком состоянии и/или водяного пара. В некоторых вариантах воплощения уплотнение является частично или, по существу, полностью непроницаемым для воздуха и/или других газов. В некоторых вариантах воплощения уплотнение является жестким. В других вариантах воплощения уплотнение является эластичным или упругим. В других вариантах воплощения уплотнение содержит как жесткие, так и эластичные или упругие детали. В некоторых вариантах воплощения уплотнение содержит один или более клеев, совместимых с подложкой и/или объединительной пластиной. Клей или клеи относятся к любому подходящему типу, известному в данной области техники. В некоторых вариантах воплощения один или более клеев являются чувствительными к давлению. В некоторых вариантах воплощения один или более клеев являются термически отверждаемыми. В некоторых вариантах воплощения один или более клеев являются отверждаемыми ультрафиолетовым (УФ) излучением. В некоторых вариантах воплощения уплотнение термически соединено с подложкой и/или объединительной пластиной. В некоторых вариантах воплощения уплотнение прикреплено к подложке и/или объединительной пластине механически. В некоторых вариантах воплощения используется комбинация способов прикрепления уплотнения к подложке и/или объединительной пластине. В некоторых вариантах воплощения уплотнения нет, например там, где под