Система энергоснабжения и транспортное средство

Иллюстрации

Показать все

Использование: в области энергоснабжения. Технический результат заключается в подавлении сдвига электроэнергии между модулями аккумулирования энергии и снижении потерь электроэнергии. Система содержит множество модулей аккумулирования энергии, множество модулей преобразования напряжения и модуль управления, в котором модуль (50) выбора максимального значения принимает значения (Vb1, Vb2) напряжения батарей и выводит их максимальное значение в модуль (54) ограничения нижнего предельного значения. Модуль (52) выбора максимального значения принимает требуемые значения (Vm1*, Vm2*) напряжения и выводит их максимальное значение в модуль (54) ограничения нижнего предельного значения. Модуль (54) ограничения нижнего предельного значения выводит опорное значение (Vh*) напряжения, ограничивая значение таким образом, чтобы оно не падало ниже выходного значения модуля (50) выбора максимального значения. Команды (PWC1, PWC2) переключения модулей преобразования напряжения генерируются на основании вычисления управляющих воздействий с использованием комбинации управляющего элемента с обратной связью по напряжению и управляющего элемента с прямой связью по напряжению и вычисления управляющих воздействий с использованием комбинации управляющего элемента с обратной связью по току и управляющего элемента с прямой связью по напряжению соответственно. 4 н. и 11 з.п. ф-лы, 9 ил.

Реферат

Область техники, к которой относится изобретение

Настоящее изобретение относится к системе энергоснабжения, включающей в себя множество модулей аккумулирования энергии, и к транспортному средству, оборудованному энергетической системой. В частности, настоящее изобретение относится к технике подавления нежелательного сдвига электроэнергии между модулями аккумулирования энергии.

Предшествующий уровень техники

В последние годы, при рассматривании проблем состояния окружающей среды, было обращено внимание на транспортное средство, использующее в качестве источника движущей силы электродвигатель, такое как транспортное средство с электрическим приводом, гибридное транспортное средство и транспортное средство с топливным элементом. Такое транспортное средство оборудовано модулем аккумулирования энергии, реализованным, например, посредством аккумуляторной батареи для снабжения электродвигателя электроэнергией и преобразования кинетической энергии в электрическую энергию во время рекуперативного торможения.

В таком транспортном средстве, использующем электродвигатель в качестве источника движущей силы, желательно увеличить зарядную/разрядную емкость модуля аккумулирования энергии дополнительно, чтобы улучшить характеристику ускорения и характеристику движения, такую как максимальное проходимое расстояние. В качестве способа увеличения зарядной/разрядной емкости модуля аккумулирования энергии была предложена конфигурация, оборудованная множеством модулей аккумулирования энергии.

Например, патент США № 6608396 раскрывает систему управления энергией электродвигателя, обеспечивающую высоковольтную систему электротяги транспортного средства с требуемым высоким уровнем напряжения постоянного тока. Система управления энергией электродвигателя включает в себя множество энергетических каскадов, соединенных параллельно, где каждый имеет батарею и повышающий/понижающий преобразователь постоянного тока для снабжения энергией постоянного тока по меньшей мере одного инвертора, и контроллер, управляющий множеством энергетических каскадов так, что множество энергетических каскадов могут поддерживать выходное напряжение по меньшей мере для одного инвертора посредством равномерной зарядки/разрядки батарей из множества энергетических каскадов.

Там раскрыто, что в системе управления энергией электродвигателя каждая батарея активно поддерживается таким образом, чтобы она находилась в таком же SOC (состоянии зарядки), что и другие батареи в системе. Однако батареи в одном и том же SOC не всегда имеют одно и то же значение напряжения аккумулирования энергии (то есть, значение напряжения на разомкнутом конце), потому что значение напряжения каждой батареи значительно варьируется в зависимости от температуры батареи, степени износа и т.п., в дополнение к SOC.

С другой стороны, на фиг.1 в патенте США № 6608396 при запуске системы или подобном действии все понижающие переключатели 38 включаются, и, таким образом, батареи подсоединены параллельно к шине 48 идентичного высокого напряжения постоянного тока (к линии электропитания) через соответствующие повышающие/понижающие преобразователи 13 постоянного напряжения (модули преобразования напряжения). Поэтому, когда батареи имеют различные значения напряжения, ток, соответствующий разностям напряжений, протекает между батареями, вызывая нежелательный сдвиг электроэнергии между батареями и увеличенные потери.

Раскрытие сущности изобретения

Настоящее изобретение было сделано для того, чтобы решить такую проблему, и одна из целей настоящего изобретения заключается в обеспечении системы энергоснабжения и транспортного средства, подавляющего нежелательный сдвиг электроэнергии между модулями аккумулирования энергии и избегающего возникновения потерь.

Система энергоснабжения в соответствии с одним объектом настоящего изобретения имеет множество модулей аккумулирования энергии, причем каждый сконфигурирован так, что является заряжаемым/разряжаемым, и включает в себя: линию электропитания, сконфигурированную так, чтобы обеспечивать возможность снабжения/приема электроэнергии между устройством нагрузки и системой энергоснабжения; множество модулей преобразования напряжения, обеспеченных между множеством модулей аккумулирования энергии и линией электропитания соответственно, где каждый выполняет операцию преобразования напряжения между соответствующим модулем аккумулирования энергии и линией электропитания; средство получения значений напряжения аккумулирования энергии, получающее значение напряжения аккумулирования энергии для каждого из множества модулей аккумулирования энергии; и средство определения опорного значения напряжения, определяющее опорное значение напряжения электроэнергии, подлежащей подаче в устройство нагрузки в соответствии с состоянием работы устройства нагрузки. Каждый из множества модулей преобразования напряжения выполняет операцию преобразования напряжения в соответствии с опорным значением напряжения, определяемым средством определения опорного значения напряжения, а средство определения опорного значения напряжения ограничивает опорное значение напряжения так, чтобы оно не падало ниже максимального значения напряжения аккумулирования энергии из значений напряжения аккумулирования энергии, получаемых средством получения значений напряжения аккумулирования энергии.

Согласно системе энергоснабжения в соответствии с этим объектом опорное значение напряжения ограничивается таким образом, чтобы оно не падало ниже максимального значения напряжения аккумулирования энергии из значений напряжения аккумулирования энергии для множества модулей аккумулирования энергии, и каждый из множества модулей преобразования энергии выполняет операцию преобразования напряжения в соответствии с опорным значением напряжения. Поскольку опорное значение напряжения не меньше, чем значение напряжения линии электропитания, до которого может быть заряжен модуль аккумулирования энергии прежде, чем начато управление модулем преобразования напряжения, каждый модуль преобразования напряжения начинает операцию преобразования напряжения сразу после начала управления. В связи с этим, каждый модуль преобразования напряжения работает так, чтобы снабжать электроэнергией линию энергоснабжения от соответственного модуля аккумулирования энергии, и, таким образом, можно избегать подачи электроэнергии через линию электропитания от другого модуля аккумулирования энергии. Поэтому нежелательный сдвиг электроэнергии между модулями аккумулирования энергии может быть подавлен, даже когда между модулями аккумулирования энергии существует разность напряжений.

Предпочтительно, система энергоснабжения дополнительно включает в себя средство получения требуемого значения напряжения, получающее по меньшей мере одно требуемое значение напряжения для устройства нагрузки, и средство определения опорного значения напряжения, дополнительно определяющее опорное значение напряжения так, чтобы оно было не меньше максимального требуемого значения напряжения по меньшей мере из одного требуемого значения напряжения, получаемого средством получения требуемого значения напряжения.

Предпочтительно, система энергоснабжения дополнительно включает в себя средство выявления значения напряжения, выявляющее значение напряжения линии электропитания, и по меньшей мере один из множества модулей преобразования напряжения выполняет операцию преобразования напряжения в ответ на результат вычисления, включающий в себя управляющий элемент с обратной связью по напряжению, для согласования значения напряжения линии электропитания, выявленного средством выявления значения напряжения, с опорным значением напряжения.

Предпочтительно, по меньшей мере один из множества модулей преобразования напряжения выполняет операцию преобразования напряжения в ответ на результат вычисления, включающий в себя управляющий элемент с прямой связью по напряжению, отражающий значение, соответствующее отношению между значением напряжения аккумулирования энергии соответственного модуля аккумулирования энергии и опорным значением напряжения.

Предпочтительно, система энергоснабжения дополнительно включает в себя средство выявления значения тока батареи, выявляющее значение тока батареи, входящего/выходящего в/из по меньшей мере одного из множества модулей аккумулирования энергии, и по меньшей мере один модуль преобразования напряжения, выполняющий операцию преобразования напряжения в ответ на результат вычисления, включающий в себя управляющий элемент с прямой связью по напряжению, выполняет операцию преобразования напряжения в ответ на результат вычисления, включающий в себя управляющий элемент с обратной связью по току, для согласования значения тока батареи соответствующего модуля аккумулирования энергии, выявленного средством выявления значения тока батареи, с каждым опорным значением тока.

Предпочтительно, каждый из множества модулей преобразования напряжения включает в себя цепь прерывателя.

Система энергоснабжения в соответствии с другим объектом настоящего изобретения имеет множество модулей аккумулирования энергии, причем каждый сконфигурирован так, что является заряжаемым/разряжаемым, и включает в себя: линию электропитания, сконфигурированную так, чтобы обеспечивать возможность снабжения/приема электроэнергии между устройством нагрузки и системой энергоснабжения; множество модулей преобразования напряжения, обеспеченных между множеством модулей аккумулирования энергии и линией электропитания соответственно, где каждый выполняет операцию преобразования напряжения между соответствующим модулем аккумулирования энергии и линией электропитания; модуль выявления значения напряжения аккумулирования энергии, выявляющий значение напряжения аккумулирования энергии для каждого из множества модулей аккумулирования энергии; и модуль управления. Модуль управления определяет опорное значение напряжения электроэнергии, подлежащее подаче в устройство нагрузки в соответствии с состоянием работы устройства нагрузки. Каждый из множества модулей преобразования напряжения выполняет операцию преобразования напряжения в соответствии с опорным значением напряжения, определяемым средством определения опорного значения напряжения. Модуль управления ограничивает опорное значение напряжения так, чтобы оно не падало ниже максимального значения напряжения аккумулирования энергии из значений напряжения аккумулирования энергии, выявляемых модулем выявления значения напряжения аккумулирования энергии.

Транспортное средство в соответствии с еще одним объектом настоящего изобретения включает в себя: систему энергоснабжения, имеющую множество модулей аккумулирования энергии, причем каждый сконфигурирован так, что является заряжаемым/разряжаемым; и модуль генерирования движущей силы, принимающий электроэнергию, поставляемую от системы энергоснабжения, чтобы генерировать движущую силу. Система энергоснабжения включает в себя: линию электропитания, сконфигурированную так, чтобы обеспечивать возможность снабжения/приема электроэнергии между модулем генерирования движущей силы и системой энергоснабжения; множество модулей преобразования напряжения, обеспеченных между множеством модулей аккумулирования энергии и линией электропитания соответственно, причем каждый выполняет операцию преобразования напряжения между соответствующим модулем аккумулирования энергии и линией электропитания; средство получения значения напряжения аккумулирования энергии, получающее значение напряжения аккумулирования энергии для каждого из множества модулей аккумулирования энергии; и средство определения опорного значения напряжения, определяющее опорное значение напряжения электроэнергии, подлежащее подаче в модуль генерирования движущей силы в соответствии с состоянием работы модуля генерирования движущей силы. Дополнительно, каждый из множества модулей преобразования напряжения выполняет операцию преобразования напряжения в соответствии с опорным значением напряжения, определяемым средством определения опорного значения напряжения, и средство определения опорного значения напряжения ограничивает опорное значение напряжения так, чтобы оно не падало ниже максимального значения напряжения аккумулирования энергии из значений напряжения аккумулирования энергии, получаемых средством получения значений напряжения аккумулирования энергии.

Согласно транспортному средству в соответствии с этим объектом опорное значение напряжения ограничивается таким образом, чтобы оно не падало ниже максимального значения напряжения аккумулирования энергии из значений напряжения аккумулирования энергии для множества модулей аккумулирования энергии, и каждый из множества модулей преобразования энергии выполняет операцию преобразования напряжения в соответствии с опорным значением напряжения. Поскольку опорное значение напряжения не меньше, чем значение напряжения линии электропитания, до которого может быть заряжен модуль аккумулирования энергии прежде, чем начато управление модулем преобразования напряжения, каждый модуль преобразования напряжения начинает операцию преобразования напряжения сразу после начала управления. В связи с этим, каждый модуль преобразования напряжения работает так, чтобы снабжать электроэнергией линию энергоснабжения от соответственного модуля аккумулирования энергии, и таким образом может избегать подачи электроэнергии от другого модуля аккумулирования энергии через эту линию электропитания. Поэтому нежелательный сдвиг электроэнергии между модулями аккумулирования энергии может быть подавлен, даже когда существует разность напряжений между модулями аккумулирования энергии.

Предпочтительно, модуль генерирования движущей силы включает в себя по меньшей мере один модуль преобразования энергии, сконфигурированный так, что он способен преобразовывать электроэнергию, поставляемую от системы энергоснабжения, и по меньшей мере одну электрическую вращающуюся машину, подсоединенную к соответствующему модулю преобразования энергии и сконфигурированную так, что она способна генерировать движущую силу.

Предпочтительно, система энергоснабжения дополнительно включает в себя средство получения требуемого значения напряжения, получающее по меньшей мере одно требуемое значение напряжения для модуля генерирования движущей силы, и средство определения опорного значения напряжения, дополнительно определяющее опорное значение напряжения так, чтобы оно было не меньше максимального требуемого значения напряжения по меньшей мере из одного требуемого значения напряжения, получаемого средством получения требуемого значения напряжения.

Предпочтительно, система энергоснабжения дополнительно включает в себя средство выявления значения напряжения, выявляющее значение напряжения линии электропитания, и по меньшей мере один из множества модулей преобразования напряжения, выполняющий операцию преобразования напряжения в ответ на результат вычисления, включающий в себя управляющий элемент с обратной связью по напряжению для согласования значения напряжения линии электропитания, выявленного средством выявления значения напряжения, с опорным значением напряжения.

Предпочтительно, по меньшей мере один из множества модулей преобразования напряжения выполняет операцию преобразования напряжения в ответ на результат вычисления, включающий в себя управляющий элемент с прямой связью по напряжению, отражающий значение, соответствующее отношению между значением напряжения аккумулирования энергии соответственного модуля аккумулирования энергии и опорным значением напряжения.

Предпочтительно, система энергоснабжения дополнительно включает в себя средство выявления значения тока батареи, выявляющее значение тока батареи, входящего/выходящего в/из по меньшей мере одного из множества модулей аккумулирования энергии, и по меньшей мере один модуль преобразования напряжения, выполняющий операцию преобразования напряжения в ответ на результат вычисления, включающий в себя управляющий элемент с прямой связью по напряжению, который выполняет операцию преобразования напряжения в ответ на результат вычисления, включающий в себя управляющий элемент с обратной связью по току, для согласования значения тока батареи соответствующего модуля аккумулирования энергии, выявленного средством выявления значения тока батареи, с каждым опорным значением тока.

Предпочтительно, каждый из множества модулей преобразования напряжения включает в себя цепь прерывателя.

Транспортное средство в соответствии с еще одним объектом настоящего изобретения включает в себя: систему энергоснабжения, имеющую множество модулей аккумулирования энергии, причем каждый сконфигурирован так, что является заряжаемым/разряжаемым; и модуль генерирования движущей силы, принимающий электроэнергию, поставляемую от системы энергоснабжения, чтобы генерировать движущую силу. Система энергоснабжения включает в себя: линию электропитания, сконфигурированную так, чтобы обеспечивать возможность снабжения/приема электроэнергии между модулем генерирования движущей силы и системой энергоснабжения; множество модулей преобразования напряжения, обеспеченных между множеством модулей аккумулирования энергии и линией электропитания соответственно, где каждый выполняет операцию преобразования напряжения между соответствующим модулем аккумулирования энергии и линией электропитания; средство выявления значения напряжения аккумулирования энергии, выявляющее значение напряжения аккумулирования энергии для каждого из множества модулей аккумулирования энергии; и модуль управления. Модуль управления определяет опорное значение напряжения электроэнергии, подлежащее подаче в модуль генерирования движущей силы в соответствии с состоянием работы модуля генерирования движущей силы. Каждый из множества модулей преобразования напряжения выполняет операцию преобразования напряжения в соответствии с опорным значением напряжения, определяемым средством определения опорного значения напряжения. Модуль управления ограничивает опорное значение напряжения так, чтобы оно не падало ниже максимального значения напряжения аккумулирования энергии из значений напряжения аккумулирования энергии, получаемых средством получения значений напряжения аккумулирования энергии.

Согласно настоящему изобретению могут быть реализованы система энергоснабжения и транспортное средство, подавляющее нежелательный сдвиг электроэнергии между модулями аккумулирования энергии и избегающее возникновения потерь.

Краткое описание чертежей

Фиг.1 - схематическое представление конфигурации, показывающее существенную часть транспортного средства, которая включает в себя систему энергоснабжения в соответствии с первым вариантом осуществления настоящего изобретения.

Фиг.2 - схематическое представление конфигурации преобразователя в соответствии с первым вариантом осуществления настоящего изобретения.

Фиг.3 - вид, иллюстрирующий состояния реле и транзисторов системы относительно операции преобразования напряжения преобразователя.

Фиг.4A и 4B - виды, иллюстрирующие сдвиг электроэнергии между модулями аккумулирования энергии, вызываемый при запуске управления операцией повышения напряжения.

Фиг.5 - вид, показывающий блок управления, предназначенный для управления преобразователем, в соответствии с первым вариантом осуществления настоящего изобретения.

Фиг.6 - вид, показывающий блок управления, предназначенный для управления преобразователем, в соответствии с разновидностью первого варианта осуществления настоящего изобретения.

Фиг.7 - схематическое представление конфигурации, показывающее существенную часть транспортного средства, которая включает в себя систему энергоснабжения в соответствии со вторым вариантом осуществления настоящего изобретения.

Фиг.8 - вид, показывающий блок управления, предназначенный для управления преобразователем, в соответствии со вторым вариантом осуществления настоящего изобретения.

Фиг.9 - вид, показывающий блок управления, предназначенный для управления преобразователем, в соответствии с разновидностью второго варианта осуществления настоящего изобретения.

Лучшие способы выполнения изобретения

Теперь будут подробно описаны варианты осуществления настоящего изобретения со ссылками на чертежи, на которых идентичные или соответственные части будут обозначены одними и теми же ссылочными позициями, и их описание не будет повторяться.

[Первый вариант осуществления]

Транспортное средство 100, включающее в себя систему 1 энергоснабжения в соответствии с первым вариантом осуществления настоящего изобретения, будет описано со ссылкой на фиг.1. Первый вариант осуществления иллюстрирует случай, в котором в качестве примера устройства нагрузки используется модуль 3 генерирования движущей силы, генерирующий движущую силу для транспортного средства 100. Модуль 3 генерирования движущей силы принимает электроэнергию от системы 1 энергоснабжения, чтобы генерировать движущую силу, и снабжает движущей силой колеса (не показаны) транспортного средства 100, вызывая движение транспортного средства 100.

В первом варианте осуществления будет описана система 1 энергоснабжения, которая в качестве примера множества модулей аккумулирования энергии имеет два модуля аккумулирования энергии. Система 1 энергоснабжения сконфигурирована таким образом, что она способна снабжать модуль 3 генерирования движущей силы и принимать от него энергию постоянного тока через главную положительную электрическую шину MPL и главную отрицательную электрическую шину MNL.

Модуль 3 генерирования движущей силы включает в себя первый инвертор INV1, второй инвертор INV2, первый электродвигатель-генератор MG1 и второй электродвигатель-генератор MG2 и генерирует движущую силу в ответ на переключение команд PWM1, PWM2 от HV_ECU (модуля электронного управления гибридного транспортного средства) 4.

Инверторы INV1, INV2 подсоединены параллельно к главной положительной электрической шине MPL и главной отрицательной электрической шине MNL, снабжают систему 1 энергоснабжения и принимают от нее электроэнергию. В частности, инверторы INV1, INV2 преобразовывают энергию постоянного тока, принимаемую через главную положительную электрическую шину MPL и главную отрицательную электрическую шину MNL, в энергию переменного тока и снабжают энергией переменного тока электродвигатели-генераторы MG1, MG2 соответственно. Дополнительно, инверторы INV1, INV2 могут быть сконфигурированы таким образом, чтобы преобразовывать энергию переменного тока, генерируемую электродвигателями-генераторами MG1, MG2, принимающими кинетическую энергию транспортного средства 100 во время рекуперативного торможения транспортного средства 100 или подобного действия, в энергию постоянного тока и снабжать систему 1 энергоснабжения энергией постоянного тока как регенеративной энергией. Например, инверторы INV1, INV2 сформированы в виде мостовой схемы, включающей в себя переключающие элементы для трех фаз, и генерируют энергию трехфазного переменного тока, выполняя операцию переключения (размыкания/замыкания цепи) в ответ на соответствующие команды PWM1, PWM2 переключения, принимаемые от HV_ECU 4.

Электродвигатели-генераторы MG1, MG2 сконфигурированы так, что способны генерировать вращательную движущую силу, принимая энергию переменного тока, поставляемую от инверторов INV1, INV2 соответственно, и генерировать энергию переменного тока, принимая внешнюю вращательную движущую силу. Например, электродвигатели-генераторы MG1, MG2 представляют собой электрическую вращающуюся машину трехфазного переменного тока, включающую в себя ротор, имеющий встроенные в него постоянные магниты. Электродвигатели-генераторы MG1, MG2 подсоединены к механизму 6 передачи мощности, расходуемой на движение, таким образом, чтобы передавать произведенную движущую силу колесам (не показаны) через приводной вал 8.

Если модуль 3 генерирования движущей силы применяют для гибридного транспортного средства, электродвигатели-генераторы MG1, MG2 также подсоединены к двигателю (не показан) через механизм 6 передачи мощности, расходуемой на движение, или приводной вал 8. Тогда, HV_ECU 4 выполняет управление так, чтобы получать оптимальное соотношение между движущей силой, генерируемой двигателем, и движущей силой, генерируемой электродвигателями-генераторами MG1, MG2. Если модуль 3 генерирования движущей силы применяют для такого гибридного транспортного средства, электродвигатель-генератор MG1 может служить исключительно как электродвигатель, а электродвигатель-генератор MG2 может служить исключительно как генератор.

HV_ECU 4 выполняет сохраненную заранее программу для вычисления опорного значения крутящего момента и опорного значения скорости вращения электродвигателей-генераторов MG1, MG2, основываясь на сигнале, передаваемом от каждого датчика (не показаны), ситуации движения, вариантах положения педали акселератора, хранящейся карты и т.п. Тогда HV_ECU 4 генерирует команды PWM1, PWM2 переключения и подает эти команды в модуль 3 генерирования движущей силы так, чтобы генерируемые крутящие моменты и скорости вращения электродвигателей-генераторов MG1, MG2 согласовывались с расчетными опорными значениями крутящего момента и опорными значениям скорости вращения.

Кроме того, HV_ECU 4 получает значения Vm1, Vm2 противодействующего напряжения электродвижущей силы, генерируемые в электродвигателях-генераторах MG1, MG2 соответственно, основанные на расчетных опорных значениях крутящего момента и опорных значениях скорости вращения или на фактических значениях крутящего момента и фактических значениях скорости вращения, выявляемых различными датчиками (не показаны), и выводит требуемые для системы 1 энергоснабжения значения Vm1*, Vm2* напряжения, определяемые на основании значений Vm1, Vm2 противодействующего напряжения электродвижущей силы. В частности, HV_ECU 4 определяет значения напряжения, которые выше, чем значения Vm1, Vm2 противодействующего напряжения электродвижущей силы, как требуемые значения Vm1*, Vm2* напряжения, таким образом, что система 1 энергоснабжения может снабжать электроэнергией электродвигатели-генераторы MG1, MG2. Дополнительно, HV_ECU 4 получает фактические значения P1, P2 электроэнергии, основанные на произведениях опорных значений крутящего момента и опорных значений скорости вращения или на произведениях фактических значений крутящего момента и фактических значений скорости вращения, и выводит фактические значения P1, P2 электроэнергии в систему 1 энергоснабжения. Следует отметить, что HV_ECU 4 информирует систему 1 энергоснабжения о состоянии снабжения/приема электроэнергии в модуле 3 генерирования движущей силы посредством изменения знаков фактических значений P1, P2 электроэнергии, например, таким образом, что потребление электроэнергии представлено положительным значением, а генерирование электроэнергии представлено отрицательным значением.

Кроме того, после получения сигнала о включении зажигания IGON, представляющего команду активизирования для транспортного средства 100, посредством действия водителя или подобного действия, HV_ECU 4 выводит сигнал IGON о включении зажигания в модуль 2 управления.

С другой стороны, система 1 энергоснабжения включает в себя сглаживающий конденсатор C, модуль 16 выявления значения тока питания, модуль 18 выявления значения напряжения питания, первый преобразователь CONV1, второй преобразователь CONV2, первый модуль BAT1 аккумулирования энергии, второй модуль BAT2 аккумулирования энергии, модули 10-1, 10-2 выявления значения тока батареи, модули 12-1, 12-2 выявления значения напряжения батарей, модули 14-1, 14-2 выявления температуры батарей, реле SR1, SR2 системы и модуль 2 управления.

Сглаживающий конденсатор C подсоединен между главной положительной электрической шиной MPL и главной отрицательной электрической шиной MNL и понижает компонент флуктуации, содержащийся в электроэнергии, поставляемой от преобразователей CONV1, CONV2.

Модуль 16 выявления значения тока питания расположен в главной положительной электрической шине MPL последовательно, он выявляет значение Ih тока питания электроэнергии, поставляемой в модуль 3 генерирования движущей силы, и выводит результат выявления в модуль 2 управления.

Модуль 18 выявления значения напряжения питания подсоединен между главной положительной электрической шиной MPL и главной отрицательной электрической шиной MNL, он выявляет значение Vh напряжения питания электроэнергии, поставляемой в модуль 3 генерирования движущей силы, и выводит результат выявления в модуль 2 управления.

Преобразователи CONV1, CONV2 подсоединены параллельно к главной положительной электрической шине MPL и главной отрицательной электрической шине MNL и выполняют операцию преобразования напряжения между соответствующими модулями BAT1, BAT2 аккумулирования энергии и главной положительной электрической шиной MPL и главной отрицательной электрической шиной MNL. Более конкретно, преобразователи CONV1, CONV2 повышают энергию разрядки от модулей BAT1, BAT2 аккумулирования энергии до опорного значения напряжения соответственно, чтобы генерировать энергию питания. Например, преобразователи CONV1, CONV2 включают в себя цепь прерывателя.

Модули BAT1, BAT2 аккумулирования энергии подсоединены параллельно к главной положительной электрической шине MPL и главной отрицательной электрической шине MNL через реле SR1, SR2 системы и преобразователи CONV1, CONV2 соответственно. Например, модули BAT1, BAT2 аккумулирования энергии реализованы посредством аккумуляторной батареи, сконфигурированной так, что она является заряжаемой/разряжаемой, такой как никелево-гидридная батарея или литиево-ионная батарея, или посредством емкостного элемента с относительно большой емкостью, такого как электрический двухслойный конденсатор.

Модули 10-1, 10-2 выявления значения тока батарей расположены в линиях электропитания, подсоединяющих модули BAT1, BAT2 аккумулирования энергии к преобразователям CONV1, CONV2 соответственно, выявляют значения Ib1, Ib2 тока батарей, связанные с входом-выводом модулей BAT1, BAT2 аккумулирования энергии соответственно, и выводят результат выявления в модуль 2 управления.

Модули 12-1, 12-2 выявления значения напряжения батарей подсоединены между линиями электропитания, подсоединяющими модули BAT1, BAT2 аккумулирования энергии к преобразователям CONV1, CONV2 соответственно, выявляют значения Vb1, Vb2 напряжения батарей модулей BAT1, BAT2 аккумулирования энергии соответственно и выводят результат выявления в модуль 2 управления.

Модули 14-1, 14-2 выявления температуры батарей выполнены поблизости от элементов батареи или подобных устройств, составляющих модули BAT1, BAT2 аккумулирования энергии соответственно, выявляют температуры Tb1, Tb2 батарей, представляющие внутренние температуры модулей BAT1, BAT2 аккумулирования энергии соответственно, и выводят результат выявления в модуль 2 управления. Следует отметить, что модули 14-1, 14-2 выявления температуры батарей также могут быть сконфигурированы так, чтобы выводить репрезентативные значения, получаемые, например, с помощью процесса усреднения, основанного на результате выявления множества элементов выявления, выполненных в соответствии с множеством элементов батареи, составляющих модули BAT1, BAT2 аккумулирования энергии соответственно.

Реле SR1, SR2 системы расположены между преобразователями CONV1, CONV2 и модулями BAT1, BAT2 аккумулирования энергии соответственно и электрически подсоединяют или отсоединяют преобразователи CONV1, CONV2 от модулей BAT1, BAT2 аккумулирования энергии в ответ на команды реле SRC1, SRC2, принимаемые от модуля 2 управления.

После приема сигнала IGON о включении зажигания от HV_ECU 4, модуль 2 управления активизирует команды SRC1, SRC2 реле, чтобы включить реле SR1, SR2 системы. Затем модуль 2 управления генерирует команды PWC1, PWC2 переключения в соответствии с управляющей структурой, описанной ниже, основываясь на требуемых значениях Vm1*, Vm2* напряжения и фактических значениях P1, P2 электроэнергии, принимаемых от HV_ECU 4, значении Ih тока питания, принимаемого от модуля 16 выявления значения тока питания, значении Vh напряжения питания, принимаемого от модуля 18 выявления значения напряжения питания, значениях Ib1, Ib2 тока батарей, принимаемых от модулей 10-1, 10-2 выявления значения тока батарей, значениях Vb1, Vb2 напряжения батарей, принимаемых от модулей 12-1, 12-2 выявления значения напряжения батарей, и температурах Tb1, Tb2 батарей, принимаемых от модулей 14-1, 14-2 выявления температуры батарей соответственно, и подает команды переключения преобразователям CONV1, CONV2 соответственно.

Более конкретно, модуль 2 управления определяет верхнее из требуемых значений Vm1*, Vm2* напряжения, принимаемых от HV_ECU 4, как опорное значение Vh* напряжения энергии питания, таким образом, что опорное значение Vh* напряжения не падает ниже максимального значения напряжения батарей из значений Vb1, Vb2 напряжения батарей, то есть, минимальное значение опорного значения Vh* напряжения ограничено максимальным значением напряжения батареи. Тогда, модуль 2 управления генерирует команды PWC1, PWC2 переключения таким образом, что преобразователи CONV1, CONV2 выполняют операцию преобразования напряжения в соответствии с опорным значением Vh* напряжения.

В частности, в первом варианте осуществления настоящего изобретения преобразователь CONV1 выполняет операцию преобразования напряжения в ответ на результат вычисления управляющих воздействий, включающий в себя управляющий элемент с обратной связью по напряжению для согласования значения Vh напряжения питания с опорным значением Vh* напряжения и управляющий элемент с прямой связью по напряжению, прибавляющий значение, соответствующее соотношению между значением Vb1 напряжения батареи модуля BAT1 аккумулирования энергии и опорным значением Vh* напряжения (коэффициент преобразования напряжения). С другой стороны, преобразователь CONV2 выполняет операцию преобразования напряжения в ответ на результат вычисления управляющих воздействий, включающий в себя управляющий элемент с обратной связью по току для согласования значения Ib2 тока батареи с опорным значением Ib2* тока и управляющий элемент с прямой связью по напряжению, прибавляя значение, соответствующее соотношению между значением Vb2 напряжения батареи модуля BAT2 аккумулирования энергии и опорным значением Vh* напряжения (коэффициент преобразования напряжения). Следует отметить, что опорное значение Ib2* тока определяется на основании состояния зарядки (в дальнейшем также упоминается просто как "SOC") модуля BAT2 аккумулирования энергии и требуемого значения электроэнергии модуля 3 генерирования движущей силы.

Поскольку опорное значение Vh* напряжения определяется как отражающее значения Vb1, Vb2 напряжения батарей, как описано выше, нежелательный сдвиг электроэнергии между модулями BAT1 и BAT2 аккумулирования энергии может быть подавлен. Дополнительно, поскольку значения, соответствующие соотношениям между значениями Vb1, Vb2 напряжения батарей и опорным значением Vh* напряжения (коэффициенты преобразования напряжения), выводятся управляющими элементами с прямой связью по напряжению как начальные значения, преобразователи CONV1, CONV2 начинают операцию преобразования напряжения сразу после начала управления. Таким образом, ток, циркулирующий между модулями BAT1 и BAT2 аккумулирования энергии, который может быть вызван сразу после начала управления, также может быть подавлен.

Модуль 2 управления вычисляет состояния зарядки SOC1, SOC2 в модулях BAT1, BAT2 аккумулирования энергии, основываясь на значениях Ib1, Ib2 тока батарей, значениях Vb1, Vb2 напряжения батарей и температурах Tb1, Tb2 батарей соответственно. Для вычисления SOC модулей BAT1, BAT2 аккумулирования энергии могут использоваться различные известные методы. Например,