Система электропитания и транспортное средство, содержащее такую систему

Иллюстрации

Показать все

Использование в системах электропитания. Технический результат заключается в повышении стабильности электропитания. Система содержит множество блоков накопления мощности, линию электропитания, выполненную с возможностью подачи и приема электрической мощности между нагрузочным устройством и системой электропитания; множество блоков преобразования напряжения, между соответствующими блоками накопления мощности и упомянутой линией электропитания, блок выбора режима работы, выбирающий режим работы, в котором разрешается операция преобразования напряжения в одном блоке преобразования напряжения, а операция преобразования напряжения в другом блоке преобразования напряжения останавливается; и блок выбора блока преобразования напряжения, который переключает между блоками преобразования напряжения, когда выходное напряжение блока преобразования мощности, соответствующего блоку преобразования напряжения, выполняющему операцию преобразования напряжения, ниже выходного напряжения блока накопления мощности, соответствующего блоку преобразования напряжения, операция преобразования напряжения которого остановлена, на величину, превышающую заданное пороговое напряжение. 2 н. и 11 з.п. ф-лы, 16 ил.

Реферат

Область техники

Настоящее изобретение относится к системе электропитания, имеющей множество блоков накопления мощности, и транспортному средству, содержащему такую систему, и, в частности, к методике для того, чтобы выбирать любой один из двух блоков накопления мощности для использования.

Уровень техники

В настоящее время при рассмотрении вопросов защиты окружающей среды уделяется внимание транспортному средству, использующему двигатель в качестве источника движущей силы, такому как электрическое транспортное средство, гибридное транспортное средство и транспортное средство на топливных элементах. Такое транспортное средство включает в себя блок накопления мощности, реализованный, например, посредством аккумуляторной батареи или конденсатора, для подачи электрической мощности в двигатель и преобразования кинетической энергии в электроэнергию во время рекуперативного торможения и сохранения этой электроэнергии.

В транспортном средстве, использующем двигатель в качестве источника движущей силы, чтобы повысить эффективность ускорения и эффективность эксплуатации, например пробег, требуется большая емкость подзарядки/разрядки блока накопления мощности. При этом конфигурация, в которой используется множество блоков накопления мощности, предложена в качестве способа повышения емкости подзарядки/разрядки блока накопления мощности.

Например, в Патенте США № 6608396 раскрыта система управления мощностью, предоставляющая требуемые высокие уровни постоянного напряжения, требуемые посредством тяговой системы высокого напряжения транспортного средства. Система управления мощностью включает в себя множество силовых каскадов для обеспечения мощности постоянного тока в, по меньшей мере, один инвертор, причем каждый каскад включает в себя аккумулятор и вольтодобавочный/компенсирующий преобразователь постоянного тока, силовые каскады, разведенные параллельно, и контроллер, управляющий множеством силовых каскадов так, чтобы поддерживать выходное напряжение в, по меньшей мере, одном инверторе за счет обеспечения однородной подзарядки/разрядки аккумуляторов множества силовых каскадов.

С другой стороны, движущая сила, требуемая в транспортном средстве, существенно варьируется в зависимости от режима эксплуатации. Например, при движении на низкой скорости или движении под уклон требуемая электроэнергия является незначительной относительно общего значения допустимой мощности подзарядки/разрядки во множестве блоков накопления мощности. Далее, в таком случае желательно операция преобразования напряжения в блоке преобразования напряжения (соответствующем вышеупомянутому вольтодобавочному/компенсирующему преобразователю постоянного тока), соответствующем принятому блоку накопления мощности, выборочно останавливается с тем, чтобы уменьшались потери в преобразовании электроэнергии в блоке преобразования напряжения.

При выборочной остановке этого блока преобразования напряжения блок преобразования напряжения, который должен быть остановлен, выбирается посредством отражения состояния накопления мощности соответствующего блока накопления мощности. Например, блок преобразования напряжения, который должен быть остановлен, выбирается в зависимости от величины выходного напряжения блока накопления мощности, подключенного к каждому блоку преобразования напряжения. А именно, блок преобразования напряжения, соответствующий блоку накопления мощности, меньшему по выходному напряжению, предпочтительно останавливается с тем, чтобы формирование лишнего циклического тока между блоками накопления мощности исключалось.

В системе электропитания, имеющей два блока накопления мощности, относительно близкие друг к другу по емкости, выходное напряжение каждого блока накопления мощности может иметь относительно близкое значение. Соответственно, если блок преобразования напряжения, который должен быть остановлен, выбирается просто на основе величины выходного напряжения блока накопления мощности, переключение между блоками преобразования напряжения, которые должны быть остановлены, выполняется часто, и питающее напряжение из блока преобразования напряжения в нагрузочное устройство становится нестабильным. Помимо этого, каждый блок преобразования напряжения должен повторять остановку и выполнение операции преобразования напряжения так, что система управления, участвующая в операции преобразования напряжения, становится нестабильной.

Сущность изобретения

Настоящее изобретение создано для того, чтобы устранить эти проблемы, и целью настоящего изобретения является создание системы электропитания, обеспечивающей повышенную стабильность режима работы, позволяющего только одному блоку преобразования напряжения из двух блоков преобразования напряжения выполнять операцию преобразования напряжения, и транспортного средства, имеющего такую систему.

Согласно одному аспекту настоящего изобретения система электропитания, имеющая множество блоков накопления мощности, каждый из которых выполнен с возможностью подзарядки и разрядки, включает в себя: линию электропитания, выполненную с возможностью подачи и приема электрической мощности между нагрузочным устройством и системой электропитания; множество блоков преобразования напряжения, предусмотренных между соответствующими из множества блоков накопления мощности и линией электропитания, каждый из которых выполняет операцию преобразования напряжения между соответствующим блоком накопления мощности и линией электропитания; блок выбора режима работы, выбирающий режим работы, в котором операция преобразования напряжения в одном блоке преобразования напряжения из первого и второго блоков преобразования напряжения, включенных во множество блоков преобразования напряжения, разрешается, а операция преобразования напряжения в другом блоке преобразования напряжения останавливается в соответствии с потребностью в электрической мощности нагрузочного устройства; и блок выбора блока преобразования напряжения, выбирающий блок преобразования напряжения, которому должно быть разрешено выполнять операцию преобразования напряжения, на основе выходных напряжений указанных соответствующих блоков накопления мощности, когда режим работы выбран. Блок выбора блока преобразования напряжения переключается между блоками преобразования напряжения, которым должно быть разрешено выполнять операцию преобразования напряжения, когда выходное напряжение блока накопления мощности, соответствующего блоку преобразования напряжения, выполняющему операцию преобразования напряжения, ниже выходного напряжения блока накопления мощности, соответствующего блоку преобразования напряжения, операция преобразования напряжения которого остановлена, на величину, превышающую заданное пороговое напряжение.

Согласно настоящему изобретению режим работы, в котором одному блоку преобразования напряжения из первого и второго блоков преобразования напряжения, включенных в блоки преобразования напряжения, разрешено выполнять операцию преобразования напряжения, а операция преобразования напряжения в другом блоке преобразования напряжения останавливается, выбирается в соответствии с потребностью в электрической мощности нагрузочного устройства. В этом режиме работы, когда выходное напряжение блока накопления мощности, соответствующего блоку преобразования напряжения, выполняющему операцию преобразования напряжения, ниже выходного напряжения блока накопления мощности, соответствующего блоку преобразования напряжения, операция преобразования напряжения которого остановлена, на величину, превышающую заданное пороговое напряжение, выполняется переключение между блоками преобразования напряжения, которым должно быть разрешено выполнять операцию преобразования напряжения. Таким образом, в сравнении с такой конфигурацией, что переключение между блоками преобразования напряжения осуществляется непосредственно в соответствии с величиной выходных напряжений блоков накопления мощности, слишком частая операция переключения между блоками преобразования напряжения менее вероятна. Следовательно, можно не допустить нестабильности питающего напряжения в нагрузочное устройство или систему управления, участвующую в операции преобразования напряжения.

Предпочтительно блок выбора блока преобразования напряжения выбирает в качестве начального выбора в режиме работы блок преобразования напряжения, соответствующий блоку преобразования напряжения, большему по напряжению из соответствующих блоков накопления мощности.

Помимо этого, пороговое напряжение переключения определяется в соответствии со значением состояния, ассоциативно связанным со степенью колебания выходного напряжения в блоке накопления мощности.

Дополнительно, предпочтительно пороговое напряжение переключения изменяется в соответствии с температурой, внутренним сопротивлением, степенью износа или остаточной емкостью, по меньшей мере, одного из блоков накопления мощности, соответствующих первому и второму блокам преобразования напряжения.

Дополнительно, предпочтительно пороговое напряжение переключения изменяется в соответствии с выходным током блока накопления мощности, соответствующего блоку преобразования напряжения, выполняющему операцию преобразования напряжения.

Помимо этого, настоящее изобретение направлено на создание транспортного средства, включающего в себя систему электропитания согласно настоящему изобретению, описанную выше, и блок формирования движущей силы, формирующий движущую силу посредством приема электрической мощности, подаваемой из системы электропитания.

Согласно настоящему изобретению могут быть получены система электропитания, достигающая повышенной стабильности режима работы, позволяющего только одному блоку преобразования напряжения из двух блоков преобразования напряжения выполнять операцию преобразования напряжения, и транспортное средство, имеющее такую систему.

Краткое описание чертежей

Фиг.1 - схематичное структурное представление, показывающее значительную часть транспортного средства, включающего в себя систему электропитания согласно варианту осуществления настоящего изобретения.

Фиг.2 - схематичное структурное представление преобразователя согласно варианту осуществления настоящего изобретения.

Фиг.3A и 3B - схематичные представления, показывающие электроэнергию, подаваемую и принимаемую в и из блока формирования движущей силы в режиме односторонней остановки.

Фиг.4 - блок-схема, иллюстрирующая структуру управления в блоке управления согласно варианту осуществления настоящего изобретения.

Фиг.5 - схема для подробной иллюстрации работы блока с гистерезисной характеристикой.

Фиг.6A-6C - схемы для иллюстрации примера режима односторонней остановки, приводимого в исполнение посредством использования блока с гистерезисной характеристикой согласно варианту осуществления настоящего изобретения.

Фиг.7 - схема для иллюстрации взаимосвязи степени колебаний в выходном напряжении блока накопления мощности с температурой и выходным током блока накопления мощности.

Фиг.8 - схема, иллюстрирующая примерный график, на котором пороговое напряжение переключения задается в соответствии с температурой и выходным током блока накопления мощности.

Фиг.9 - схема для иллюстрации взаимосвязи степени колебаний в выходном напряжении блока накопления мощности с внутренним сопротивлением блока накопления мощности или степенью износа блока накопления мощности.

Фиг.10 - схема, иллюстрирующая примерный график, на котором пороговое напряжение переключения задается в соответствии с внутренним сопротивлением блока накопления мощности или степенью износа блока накопления мощности.

Фиг.11 - схема для иллюстрации взаимосвязи степени колебаний в выходном напряжении блока накопления мощности с остаточной емкостью блока накопления мощности и степенью износа блока накопления мощности.

Фиг.12 - схема, иллюстрирующая примерный график, на котором пороговое напряжение переключения задается в соответствии с остаточной емкостью блока накопления мощности и степенью износа блока накопления мощности.

Фиг.13 - схематичное структурное представление, показывающее значительную часть транспортного средства, включающего в себя систему электропитания согласно разновидности варианта осуществления настоящего изобретения.

Наилучшие способы осуществления изобретения

Далее подробно описывается предпочтительный вариант осуществления настоящего изобретения со ссылками на чертежи. Одинаковые или соответствующие элементы на чертежах обозначены одинаковыми ссылочными позициями, и поэтому их подробное описание не повторяется.

Фиг.1 представляет собой схематичное структурное представление, показывающее значительную часть транспортного средства 100, включающего в себя систему 1 электропитания согласно варианту осуществления настоящего изобретения.

Согласно фиг.1 в настоящем варианте осуществления конфигурация, в которой электроэнергия подается и принимается в и из блока 3 формирования движущей силы для формирования движущей силы транспортного средства 100, проиллюстрирована в качестве примера нагрузочного устройства. Транспортное средство 100 движется за счет передачи на колеса (не показаны) движущей силы, формируемой посредством блока 3 формирования движущей силы в силу приема электрической мощности, подаваемой из системы 1 электропитания.

В настоящем варианте осуществления описывается система 1 электропитания, включающая в себя два блока накопления мощности в качестве примера множества блоков накопления мощности. Система 1 электропитания подает/принимает мощность постоянного тока в/из блока 3 формирования движущей силы через основную положительную шину MPL и основную отрицательную шину MNL.

Блок 3 формирования движущей силы включает в себя первый инвертор INV1, второй инвертор INV2, первый электродвигатель-генератор MG1 и второй электродвигатель-генератор MG2 и формирует движущую силу в соответствии с командами PWM1, PWM2 переключения из HV_ECU (электронный блок управления гибридного транспортного средства) 4.

Инверторы INV1, INV2 подключены параллельно к основной положительной шине MPL и основной отрицательной шине MNL и подают/принимают электроэнергию в/из системы 1 электропитания. Т.е. инверторы INV1, INV2 преобразуют мощность постоянного тока, принимаемую через основную положительную шину MPL и основную отрицательную шину MNL, в мощность переменного тока и подают мощность переменного тока в электродвигатели-генераторы MG1, MG2 соответственно. Помимо этого, инверторы INV1, INV2 могут быть выполнены с возможностью преобразовывать мощность переменного тока, формируемую посредством электродвигателей-генераторов MG1, MG2, посредством приема кинетической энергии транспортного средства 100, в мощность постоянного тока и возвращать результирующую мощность постоянного тока в качестве рекуперативной мощности в систему 1 электропитания при регенеративном торможении и т.п. транспортного средства 100. Например, инверторы INV1, INV2 состоят из мостовой схемы, включающей в себя переключающие элементы из трех фаз, и формируют мощность трехфазного переменного тока посредством выполнения операции переключения (размыкания/замыкания цепи) в ответ на команды PWM1, PWM2 переключения, принимаемые от HV_ECU 4.

Электродвигатели-генераторы MG1, MG2 выполнены с возможностью формирования вращающей движущей силы посредством приема мощности переменного тока, подаваемой из инверторов INV1, INV2 соответственно, и формирования мощности переменного тока посредством приема внешней вращающей движущей силы. Например, электродвигатели-генераторы MG1, MG2 реализованы посредством трехфазной электрической роторной машины переменного тока, включающей в себя ротор, имеющий встроенные постоянные магниты. Электродвигатели-генераторы MG1, MG2 подсоединены к устройству 6 деления мощности с тем, чтобы передавать сформированную движущую силу на колеса (не показаны) посредством приводного вала 8.

Если блок 3 формирования движущей силы применяется к гибридному транспортному средству, электродвигатели-генераторы MG1, MG2 также механически подсоединены к двигателю (не показан) через устройство 6 деления мощности или приводной вал 8. Далее HV_ECU 4 осуществляет управление с тем, чтобы поддерживалось оптимальное соотношение между движущей силой, формируемой посредством двигателя, и движущей силой, формируемой посредством электродвигателей-генераторов MG1, MG2. Если блок 3 формирования движущей силы применяется к такому гибридному транспортному средству, то один электродвигатель-генератор может выступать исключительно как двигатель, тогда как другой электродвигатель-генератор может выступать исключительно как генератор.

HV_ECU 4 приводит в исполнение программу, сохраненную заранее, с тем, чтобы вычислять уставки крутящего момента и уставки скорости электродвигателей-генераторов MG1, MG2 на основе сигнала, передаваемого из каждого не показанного датчика, режима движения, варьирования позиции акселератора, сохраненной карты и т.п. Далее HV_ECU 4 формирует команды PWM1, PWM2 переключения и предоставляет их в блок 3 формирования движущей силы с тем, чтобы сформированный крутящий момент и скорость электродвигателей-генераторов MG1, MG2 поддерживали уставки крутящего момента и уставки скорости соответственно.

Помимо этого, HV_ECU 4 получает противоэлектродвижущие силы Vm1, Vm2, формируемые в соответствующих двигателях-генераторах MG1, MG2, на основе вычисленных уставок крутящего момента и уставок скорости либо на основе фактического значения крутящего момента и фактического значения скорости, обнаруженного посредством непоказанных различных датчиков, и выводит потребности Vm1*, Vm2* в напряжении, определенные на основе противоэлектродвижущих сил Vm1, Vm2, в систему 1 электропитания. А именно, HV_ECU 4 определяет напряжение, превышающее противоэлектродвижущую силу Vm1, Vm2, как потребность Vm1*, Vm2* в напряжении, с тем чтобы электроэнергия могла подаваться из системы 1 электропитания в электродвигатель-генератор MG1, MG2.

Более того, HV_ECU 4 вычисляет потребность P1*, P2* в электрической мощности на основе уставки крутящего момента и уставки скорости либо произведения фактического значения крутящего момента и фактического значения скорости и выводит потребность в электроэнергии в систему 1 электропитания. Следует отметить, что посредством изменения знака потребности P1*, P2* в электрической мощности HV_ECU 4 передает состояние подачи/потребления электроэнергии в блок 3 формирования движущей силы, такое как потребляемая электроэнергия (положительное значение) или рекуперация электроэнергии (отрицательное значение), в систему 1 электропитания.

Между тем, система 1 электропитания включает в себя сглаживающий конденсатор C, блок 16 обнаружения питающего тока, блок 18 обнаружения питающего напряжения, первый преобразователь CONV1, второй преобразователь CONV2, первый блок BAT1 накопления мощности, второй блок BAT2 накопления мощности, блоки 10-1, 10-2 обнаружения выходного тока, блоки 12-1, 12-2 обнаружения выходного напряжения, блоки 14-1, 14-2 определения температуры блоков накопления мощности и блок 2 управления.

Сглаживающий конденсатор C подключен между основной положительной шиной MPL и основной отрицательной шиной MNL и уменьшает компонент колебания (компонент переменного тока), содержащийся в электроэнергии, подаваемой из преобразователя CONV1, CONV2.

Блок 16 обнаружения питающего тока обычно вставлен в основную положительную шину MPL последовательно, причем он обнаруживает питающий ток Ih в блок 3 формирования движущей силы и выводит результат обнаружения в блок 2 управления.

Блок 18 обнаружения питающего напряжения подключен между основной положительной шиной MPL и основной отрицательной шиной MNL, обнаруживает питающее напряжение Vh в блок 3 формирования движущей силы и выводит результат обнаружения в блок 2 управления.

Преобразователи CONV1, CONV2 подключены к основной положительной шине MPL и основной отрицательной шине MNL параллельно и выполняют операцию преобразования напряжения между указанными соответствующими блоками BAT1, BAT2 накопления мощности и основной положительной шиной MPL, основной отрицательной шиной MNL. Более конкретно, преобразователи CONV1, CONV2 повышают мощность разрядки из блоков BAT1, BAT2 накопления мощности до целевого напряжения и формируют питающую электроэнергию. Например, преобразователи CONV1, CONV2 выполнены с возможностью включать в себя цепь модулятора-прерывателя.

Блоки BAT1, BAT2 накопления мощности подключены параллельно к основной положительной шине MPL и основной отрицательной шине MNL, причем преобразователи CONV1, CONV2 помещаются между ними соответственно. Например, блок BAT1, BAT2 накопления мощности реализуется посредством аккумуляторной батареи, выполненной с возможностью подзарядки/разрядки, такой как никель-металлогидридный аккумулятор или литиево-ионный аккумулятор, либо посредством элемента накопления мощности, такого как электрический двухслойный конденсатор.

Блоки 10-1, 10-2 обнаружения выходного тока вставлены в одну линию пары линий электропитания, соединяющих блоки BAT1, BAT2 накопления мощности с преобразователями CONV1, CONV2 соответственно, обнаруживают выходные токи Ib1, Ib2, связанные с вводом и выводом блоков BAT1, BAT2 накопления мощности соответственно, и выводят результат обнаружения в блок 2 управления.

Блоки 12-1, 12-2 обнаружения выходного напряжения подключены между парой линий электропитания, соединяющих блоки BAT1, BAT2 накопления мощности с преобразователями CONV1, CONV2 соответственно, обнаруживают выходные напряжения Vb1, Vb2 блоков BAT1, BAT2 накопления мощности соответственно и выводят результат обнаружения в блок 2 управления.

Блоки 14-1, 14-2 определения температуры блоков накопления мощности размещаются рядом с элементами аккумулятора и т.п., составляющими блоки BAT1, BAT2 накопления мощности соответственно, определяют температуры Tb1, Tb2 блоков накопления мощности, которые представляют внутренние температуры блоков BAT1, BAT2 накопления мощности, и выводят результат обнаружения в блок 2 управления. Следует отметить, что блоки 14-1, 14-2 определения температуры блоков накопления мощности могут быть выполнены с возможностью выводить характерное значение, получаемое, например, посредством усреднения обработки, на основе результата определения посредством множества элементов определения, размещающихся в соответствии с множеством элементов аккумуляторов, составляющих блоки BAT1, BAT2 накопления мощности соответственно.

Блок 2 управления формирует команды PWC1, PWC2 переключения в соответствии со структурой управления, которая описывается далее, на основе потребности Vm1*, Vm2* в напряжении и потребности P1*, P2* в электрической мощности, принимаемой от HV_ECU 4, питающего тока Ih, принимаемого из блока 16 обнаружения питающего тока, питающего напряжения Vh, принимаемого из блока 18 обнаружения питающего напряжения, выходного тока Ib1, Ib2, принимаемого из блока 10-1, 10-2 обнаружения выходного тока, выходного напряжения Vb1, Vb2, принимаемого из блока 12-1, 12-2 обнаружения выходного напряжения, и температуры Tb1, Tb2 блоков накопления мощности, принимаемой из блока 14-1, 14-2 определения температуры блоков накопления мощности, и управляет операцией преобразования напряжения преобразователя CONV1, CONV2.

В частности, блок 2 управления выборочно приводит в исполнение режим работы, в котором операция преобразования напряжения одного преобразователя из преобразователей CONV1 и CONV2 разрешена, а операция преобразования напряжения другого преобразователя остановлена (далее также упоминается как "режим односторонней остановки"), в соответствии с потребностью P1*, P2* в электрической мощности из блока 3 формирования движущей силы. А именно, если совокупное значение потребностей P1*, P2* в электрической мощности от блока 3 формирования движущей силы меньше разрешенной мощности подзарядки/разрядки блока BAT1 или BAT2 накопления мощности, блок 2 управления останавливает операцию преобразования напряжения преобразователя и тем самым снижает потери при преобразовании энергии.

В частности, блок 2 управления выбирает в качестве начального выбора в режиме односторонней остановки преобразователь, соответствующий блоку накопления мощности с большим выходным напряжением из блоков BAT1 и BAT2 накопления мощности, и разрешает этому преобразователю выполнять операцию преобразования напряжения, чтобы подавить формирование лишнего циклического тока между блоками накопления мощности и исключить ненормальный износ или лишние потери в блоке накопления мощности. Другими словами, если выходное напряжение блока накопления мощности, подключенного к преобразователю, операция преобразования напряжения которого остановлена, больше выходного напряжения другого блока накопления мощности, возникает лишний циклический ток, который протекает обратно через преобразователь, операция преобразования напряжения которого остановлена.

Помимо этого, блок 2 управления переключается между преобразователями, которые должны выполнять операцию преобразования напряжения, когда выходное напряжение блока накопления мощности, соответствующего преобразователю, выполняющему операцию преобразования напряжения, ниже выходного напряжения блока накопления мощности, соответствующего преобразователю, операция преобразования напряжения которого остановлена, на величину, превышающую заданное пороговое напряжение. А именно, блок 2 управления имеет гистерезисную характеристику, заданную посредством порогового напряжения переключения, в отношении определения переключения между преобразователями в режиме односторонней остановки.

Пороговое напряжение переключения определяется в соответствии со значением состояния, ассоциативно связанным со степенью колебания выходного напряжения в блоке накопления мощности. Как описано далее, температура Tb1, Tb2 блока накопления мощности, выходной ток Ib1, Ib2, внутреннее сопротивление блока BAT1, BAT2 накопления мощности, степень износа блока BAT1, BAT2 накопления мощности, остаточная емкость (SOC - состояние подзарядки) блока BAT1, BAT2 накопления мощности и т.п. используются в качестве значения состояния, определяющего такое пороговое напряжение переключения.

Более того, первое пороговое напряжение переключения, используемое для определения переключения с преобразователя CONV1 на преобразователь CONV2, и второе пороговое напряжение переключения, используемое для определения переключения с преобразователя CONV2 на преобразователь CONV1, может быть задано в качестве порогового напряжения переключения, описанного выше, независимо друг от друга.

При этом, как описано выше, для того чтобы ток разрядки из блока накопления мощности протекал обратно через преобразователь, операция преобразования напряжения которого остановлена, напряжение разрядки блока накопления мощности должно быть выше выходного напряжения блока накопления мощности на величину, превышающую заданное напряжение. Следовательно, даже если конфигурация такова, что гистерезисная характеристика испытывается, невыгодный циклический ток практически невозможен.

В варианте осуществления настоящего изобретения блок 3 формирования движущей силы соответствует "нагружаемому устройству", основная положительная шина MPL и основная отрицательная шина MNL соответствуют "линии электропитания", а преобразователи CONV1, CONV2 соответствуют "множеству блоков преобразования напряжения". Помимо этого, блок 2 управления соответствует "блоку выбора режима работы" и "блоку выбора блока преобразования напряжения".

Фиг.2 представляет собой схематичное структурное представление преобразователей CONV1, CONV2 согласно варианту осуществления настоящего изобретения.

Ссылаясь на фиг.2, преобразователь CONV1 состоит из цепи 40A модулятора-прерывателя и сглаживающего конденсатора C1.

Цепь 40A модулятора-прерывателя допускает двунаправленную подачу электроэнергии. В частности, в ответ на команду PWC1 переключения из блока 2 управления (фиг.1) цепь 40A модулятора-прерывателя допускает повышение электрической мощности, разряжаемой из блока BAT1 накопления мощности, чтобы подавать результирующую мощность в блок 3 формирования движущей силы (фиг.1), тогда как цепь 40A модулятора-прерывателя допускает компенсацию рекуперативной энергии, принимаемой из блока 3 формирования движущей силы, чтобы подавать результирующую мощность в блок BAT1 накопления мощности. Помимо этого, цепь 40A модулятора-прерывателя включает в себя положительную шину LN1A, отрицательную шину LN1C, линию LN1B, транзисторы Q1A, Q1B, представляющие переключающий элемент, диоды D1A, D1B и индуктор L1.

Положительная шина LN1A имеет один конец, подключенный к коллектору транзистора Q1A, и другой конец, подключенный к основной положительной шине MPL. Помимо этого, отрицательная шина LN1C имеет один конец, подключенный к отрицательной стороне блока BAT1 накопления мощности, и другой конец, подключенный к основной отрицательной шине MNL.

Транзисторы Q1A, Q1B подключены последовательно между положительной шиной LN1A и отрицательной шиной LN1C. Транзистор Q1A имеет коллектор, подключенный к положительной шине LN1A, а транзистор Q1B имеет эмиттер, подключенный к отрицательной шине LN1C. Помимо этого, диоды D1A, D1B, позволяющие току протекать со стороны эмиттера на сторону коллектора, подключены между коллекторами и эмиттерами транзисторов Q1A, Q1B соответственно. Дополнительно индуктор L1 подключен к точке подключения транзистора Q1A и транзистора Q1B.

Линия LN1B имеет один конец, подключенный к положительной стороне блока BAT1 накопления мощности, и другой конец, подключенный к индуктору L1.

Сглаживающий конденсатор C1 подключен между линией LN1B и отрицательной шиной LN1C и уменьшает компонент переменного тока, содержащийся в напряжении постоянного тока, вдоль линии LN1B и отрицательной шины LN1C.

Операция преобразования напряжения преобразователя CONV1 описывается далее. При операции повышения блок 2 управления (фиг.1) поддерживает транзистор Q1A во включенном состоянии и включает/отключает транзистор Q1B с предварительно заданной продолжительностью включения. В течение периода включения транзистора Q1B ток разрядки протекает из блока BAT1 накопления мощности в основную положительную шину MPL последовательно через линию LN1B, индуктор L1, транзистор Q1A и положительную шину LN1A. В то же время ток накачки протекает из блока BAT1 накопления мощности последовательно через линию LN1B, индуктор L1, транзистор Q1B и отрицательную шину LN1C. Индуктор L1 накапливает электромагнитную энергию посредством тока накачки. Постепенно, когда транзистор Q1B осуществляет переход из состояния включения в состояние выключения, индуктор L1 накладывает накопленную электромагнитную энергию на ток разрядки. Следовательно, среднее напряжение мощности постоянного тока, подаваемое из преобразователя CONV1 в основную положительную шину MPL и основную отрицательную шину MNL, повышается посредством напряжения, соответствующего электромагнитной энергии, накопленной в индукторе L1, в соответствии с продолжительностью включения.

Поскольку преобразователь CONV2 также выполнен с возможностью и работает так же, как и преобразователь CONV1, описанный выше, его подробное описание не повторяется.

Далее будет описан режим односторонней остановки.

Фиг.3A и 3B представляют собой схематичные представления, показывающие электроэнергию, подаваемую и принимаемую в и из блока 3 формирования движущей силы в режиме односторонней остановки.

Фиг.3A иллюстрирует пример, где преобразователь CONV1 выбирается так, чтобы выполнять операцию преобразования мощности.

Фиг.3В иллюстрирует пример, где преобразователь CONV2 выбирается так, чтобы выполнять операцию преобразования мощности.

Согласно фиг.3A если выходное напряжение Vb1 блока BAT1 накопления мощности превышает выходное напряжение Vb2 блока BAT2 накопления мощности сразу после перехода в режим односторонней остановки, то преобразователь CONV1 выполняет операцию преобразования напряжения, а операция преобразования напряжения преобразователя CONV2 останавливается. Далее, в блок 3 формирования движущей силы подается мощность Pa разрядки из блока BAT1 накопления мощности через преобразователь CONV1.

С другой стороны, как показано на фиг.3B, если выходное напряжение Vb2 блока BAT2 накопления мощности превышает выходное напряжение Vb1 блока BAT1 накопления мощности сразу после перехода в режим односторонней остановки, то преобразователь CONV2 выполняет операцию преобразования напряжения, а операция преобразования напряжения преобразователя CONV1 останавливается. Далее, в блок 3 формирования движущей силы подается мощность Pb разрядки из блока BAT2 накопления мощности через преобразователь CONV2.

Как описано выше, в режиме односторонней остановки, поскольку операция преобразования напряжения одного из двух преобразователей CONV1, CONV2 остановлена, потери при переключении (потери на преобразование энергии) в цепях 40A, 40B модулятора-прерывателя (фиг.2) и т.п. могут быть уменьшены.

Фиг.4 является блок-схемой, иллюстрирующей структуру управления в блоке 2 управления согласно варианту осуществления настоящего изобретения.

Согласно фиг.4 структура управления согласно варианту осуществления настоящего изобретения выдает команды PWC1A, PWC2A переключения для управления операцией преобразования напряжения (операцией повышения) в преобразователях CONV1, CONV2. Структура управления согласно варианту осуществления настоящего изобретения включает в себя блок 50 определения уставки/режима, блоки 54a, 54b, 58a, 58b вычитания, пропорциональные интегральные блоки (PI) 56a, 56b, блоки 60a, 60b выбора и блоки модуляции (MOD) 62a, 62b.

Блок 54a вычитания и пропорциональный интегральный блок 56a конфигурируют компонент управления обратной связью по напряжению для преобразователя CONV1 и формируют управляющий выходной сигнал так, чтобы питающее напряжение Vh в основной положительной шине MPL и основной отрицательной шине MNL совпадало с целевым напряжением Vh*. Помимо этого, блок 58a вычитания конфигурирует компонент управления прямой связью по напряжению для преобразователя CONV1, корректирует управляющий выходной сигнал, предоставляемый из пропорционального интегрального блока 56a, и формирует рабочую команду #Ton1A (предварительное значение).

Блок 60a выбора принимает рабочую команду #Ton1A (предварительное значение) и значение "0" и выводит любое из них в блок 62a модуляции в качестве рабочей команды Ton1A в ответ на команду SEL1 выбора.

Блок 62a модуляции формирует команду PWC1A переключения на основе сравнения несущей волны, формируемой посредством непоказанного блока колебаний, с рабочей командой Ton1A и предоставляет ее в преобразователь CONV1. Следовательно, когда рабочая команда #Ton1A (предварительное значение) выводится из блока 60a выбора в качестве рабочей команды Ton1A, преобразователь CONV1 выполняет операцию преобразования напряжения. С другой стороны, когда значение "0" выводится из блока 60a выбора, операция преобразования напряжения преобразователя CONV1 останавливается.

Аналогично, блок 54b вычитания и пропорциональный интегральный блок 56b конфигурируют компонент управления обратной связью по напряжению для преобразователя CONV2 и формируют управляющий выходной сигнал так, чтобы питающее напряжение Vh в основной положительной шине MPL и основной отрицательной шине MNL совпадало с целевым напряжением Vh*. Помимо этого, блок 58b вычитания конфигурирует компонент управления прямой связью по напряжению для преобразователя CONV2, корректирует управляющий выходной сигнал, предоставляемый из пропорционального интегрального блока 56b, и формирует рабочую команду #Ton2A (предварительное значение).

Блок 60b выбора принимает рабочую команду #Ton2A (предварительное значение) и значение "0" и выводит любое из них в блок 62b модуляции в качестве рабочей команды Ton2A в ответ на команду SEL2 выбора.

Блок 62b модуляции формирует команду PWC2A переключения на основе сравнения несущей волн